1
|
M13 Bacteriophage-Based Bio-nano Systems for Bioapplication. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2
|
Mori T, Sugita Y. Implicit Micelle Model for Membrane Proteins Using Superellipsoid Approximation. J Chem Theory Comput 2019; 16:711-724. [DOI: 10.1021/acs.jctc.9b00783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- RIKEN Center for Biosystems Dynamics Research, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
3
|
Goldbourt A. Structural characterization of bacteriophage viruses by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:192-210. [PMID: 31779880 DOI: 10.1016/j.pnmrs.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/03/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Magic-angle spinning (MAS) solid-state NMR has provided structural insights into various bacteriophage systems including filamentous, spherical, and tailed bacteriophage viruses. A variety of methodologies have been utilized including elementary two and three-dimensional assignment experiments, proton-detection techniques at fast spinning speeds, non-uniform sampling, structure determination protocols, conformational dynamics revealed by recoupling of anisotropic interactions, and enhancement by dynamic nuclear polarization. This review summarizes most of the studies performed during the last decade by MAS techniques and makes comparisons with prior knowledge obtained from static and solution NMR techniques. Chemical shifts for the capsids of the various systems are reported and analyzed, and DNA shifts are reported and discussed in the context of general high molecular-weight DNA molecules. Chemical shift and torsion angle prediction techniques are compared and applied to the various phage systems. The structures of the intact M13 filamentous bacteriophage and that of the Acinetobacter phage AP205 capsid, determined using MAS-based experimental data, are presented. Finally, filamentous phages, which are highly rigid systems, show interesting dynamics at the interface of the capsid and DNA, and their mutual electrostatic interactions are shown to be mediated by highly mobile positively charged residues. Novel results obtained from recoupling the chemical shift anisotropy of a single arginine in IKe phage, which is in contact with its DNA, further demonstrate this point. MAS NMR thus provides many new insights into phage structure, and on the other hand the richness, complexity and variety of bacteriophage systems provide opportunities for new NMR methodologies and technique developments.
Collapse
Affiliation(s)
- Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
4
|
Landscape Phage: Evolution from Phage Display to Nanobiotechnology. Viruses 2018; 10:v10060311. [PMID: 29880747 PMCID: PMC6024655 DOI: 10.3390/v10060311] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
The development of phage engineering technology has led to the construction of a novel type of phage display library-a collection of nanofiber materials with diverse molecular landscapes accommodated on the surface of phage particles. These new nanomaterials, called the "landscape phage", serve as a huge resource of diagnostic/detection probes and versatile construction materials for the preparation of phage-functionalized biosensors and phage-targeted nanomedicines. Landscape-phage-derived probes interact with biological threat agents and generate detectable signals as a part of robust and inexpensive molecular recognition interfaces introduced in mobile detection devices. The use of landscape-phage-based interfaces may greatly improve the sensitivity, selectivity, robustness, and longevity of these devices. In another area of bioengineering, landscape-phage technology has facilitated the development and testing of targeted nanomedicines. The development of high-throughput phage selection methods resulted in the discovery of a variety of cancer cell-associated phages and phage proteins demonstrating natural proficiency to self-assemble into various drug- and gene-targeting nanovehicles. The application of this new "phage-programmed-nanomedicines" concept led to the development of a number of cancer cell-targeting nanomedicine platforms, which demonstrated anticancer efficacy in both in vitro and in vivo experiments. This review was prepared to attract the attention of chemical scientists and bioengineers seeking to develop functionalized nanomaterials and use them in different areas of bioscience, medicine, and engineering.
Collapse
|
5
|
Abstract
Filamentous bacteriophages, also known as filamentous bacterial viruses or Inoviruses, have been studied extensively over the years. They are interesting paradigms in structural molecular biology and offer insight into molecular assembly, a process that remains to be fully understood. In this chapter, an overview on filamentous bacteriophages will be provided. In particular, we review the constituent proteins of filamentous bacteriophage and discuss assembly by examining the structure of the major coat protein at various stages of the process. The minor coat proteins will also be briefly reviewed. Structural information provides key snapshots into the dynamic process of assembly.
Collapse
|
6
|
Autonomous self-navigating drug-delivery vehicles: from science fiction to reality. Ther Deliv 2017; 8:1063-1075. [DOI: 10.4155/tde-2017-0086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Low efficacy of targeted nanomedicines in biological experiments enforced us to challenge the traditional concept of drug targeting and suggest a paradigm of ‘addressed self-navigating drug-delivery vehicles,’ in which affinity selection of targeting peptides and vasculature-directed in vivo phage screening is replaced by the migration selection, which explores ability of ‘promiscuous’ phages and their proteins to migrate through the tumor-surrounding cellular barriers, using a ‘hub and spoke’ delivery strategy, and penetrate into the tumor affecting the diverse tumor cell population. The ‘self-navigating’ drug-delivery paradigm can be used as a theoretical and technical platform in design of a novel generation of molecular medications and imaging probes for precise and personal medicine. [Formula: see text]
Collapse
|
7
|
Simulation of the M13 life cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 2016; 500:259-274. [PMID: 27644585 DOI: 10.1016/j.virol.2016.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/22/2022]
Abstract
To expand the quantitative, systems level understanding and foster the expansion of the biotechnological applications of the filamentous bacteriophage M13, we have unified the accumulated quantitative information on M13 biology into a genetically-structured, experimentally-based computational simulation of the entire phage life cycle. The deterministic chemical kinetic simulation explicitly includes the molecular details of DNA replication, mRNA transcription, protein translation and particle assembly, as well as the competing protein-protein and protein-nucleic acid interactions that control the timing and extent of phage production. The simulation reproduces the holistic behavior of M13, closely matching experimentally reported values of the intracellular levels of phage species and the timing of events in the M13 life cycle. The computational model provides a quantitative description of phage biology, highlights gaps in the present understanding of M13, and offers a framework for exploring alternative mechanisms of regulation in the context of the complete M13 life cycle.
Collapse
|
8
|
Qureshi T, Goto NK. Impact of Differential Detergent Interactions on Transmembrane Helix Dimerization Affinities. ACS OMEGA 2016; 1:277-285. [PMID: 31457129 PMCID: PMC6640775 DOI: 10.1021/acsomega.6b00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/18/2016] [Indexed: 06/10/2023]
Abstract
Interactions between transmembrane (TM) helices play a critical role in the fundamental processes required for cells to communicate and exchange materials with their surroundings. Our understanding of the factors that promote TM helix interactions has greatly benefited from our ability to study these interactions in the solution phase through the use of membrane-mimetic micelles. However, less is known about the potential influence of juxtamembrane regions flanking the interacting TM helices that may modulate dimerization affinities, even when the interacting surface itself is not altered. To investigate this question, we used solution NMR to quantitate the dimerization affinity of the major coat protein from the M13 bacteriophage in sodium dodecyl sulfate (SDS), a well-characterized model of a single-spanning self-associating TM protein. Here, we showed that a shorter construct lacking the N-terminal amphipathic helix has a higher dimerization affinity relative to that of the full-length protein, with no change in the helical structure between the monomeric and dimeric states in both cases. Although this translated into a 0.6 kcal/mol difference in free energy when the SDS solvent was approximated as a continuous phase, there were deviations from this model at high protein to detergent ratios. Instead, the equilibria were better fit to a model that treats the empty micelle as an active participant in the reaction, giving rise to standard free energies of association that were the same for both full-length and TM-segment constructs. According to this model, the higher apparent affinity of the shorter peptide could be completely explained by the enhanced detergent binding by the monomer relative to that bound by the dimer. Therefore, differential detergent binding between the monomeric and dimeric states provides a mechanism by which TM helix interactions can be modulated by noninteracting juxtamembrane regions.
Collapse
|
9
|
Marvin DA, Symmons MF, Straus SK. Structure and assembly of filamentous bacteriophages. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:80-122. [PMID: 24582831 DOI: 10.1016/j.pbiomolbio.2014.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/09/2014] [Indexed: 12/24/2022]
Abstract
Filamentous bacteriophages are interesting paradigms in structural molecular biology, in part because of the unusual mechanism of filamentous phage assembly. During assembly, several thousand copies of an intracellular DNA-binding protein bind to each copy of the replicating phage DNA, and are then displaced by membrane-spanning phage coat proteins as the nascent phage is extruded through the bacterial plasma membrane. This complicated process takes place without killing the host bacterium. The bacteriophage is a semi-flexible worm-like nucleoprotein filament. The virion comprises a tube of several thousand identical major coat protein subunits around a core of single-stranded circular DNA. Each protein subunit is a polymer of about 50 amino-acid residues, largely arranged in an α-helix. The subunits assemble into a helical sheath, with each subunit oriented at a small angle to the virion axis and interdigitated with neighbouring subunits. A few copies of "minor" phage proteins necessary for infection and/or extrusion of the virion are located at each end of the completed virion. Here we review both the structure of the virion and aspects of its function, such as the way the virion enters the host, multiplies, and exits to prey on further hosts. In particular we focus on our understanding of the way the components of the virion come together during assembly at the membrane. We try to follow a basic rule of empirical science, that one should chose the simplest theoretical explanation for experiments, but be prepared to modify or even abandon this explanation as new experiments add more detail.
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - M F Symmons
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - S K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
10
|
Mäler L. Solution NMR studies of cell-penetrating peptides in model membrane systems. Adv Drug Deliv Rev 2013; 65:1002-11. [PMID: 23137785 DOI: 10.1016/j.addr.2012.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a class of short, often cationic peptides that have the capability to translocate across cellular membranes, and although the translocation most likely involves several pathways, they interact directly with membranes, as well as with model bilayers. Most CPPs attain a three-dimensional structure when interacting with bilayers, while they are more or less unstructured in aqueous solution. To understand the relationship between structure and the effect that CPPs have on membranes it is of great importance to investigate CPPs at atomic resolution in a suitable membrane model. Moreover, the location in bilayers is likely to be correlated with the translocation mechanism. Solution-state NMR offers a unique possibility to investigate structure, dynamics and location of proteins and peptides in bilayers. This review focuses on solution NMR as a tool for investigating CPP-lipid interactions. Structural propensities and cell-penetrating capabilities can be derived from a combination of CPP solution structures and studies of the effect that the peptides have on bilayers and the localization in a bilayer.
Collapse
Affiliation(s)
- Lena Mäler
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
11
|
|
12
|
Kang C, Li Q. Solution NMR study of integral membrane proteins. Curr Opin Chem Biol 2011; 15:560-9. [DOI: 10.1016/j.cbpa.2011.05.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 05/12/2011] [Accepted: 05/23/2011] [Indexed: 11/29/2022]
|
13
|
Abstract
Nuclear magnetic resonance studies of membrane proteins yield valuable insights into their structure and topology. For example, the tilt angle and rotation of the helices in an ion channel can be determined by solid-state NMR spectroscopy in aligned lipid bilayers. Details about the structure of the protein in aligned phospholipids environments are immediately apparent from inspection of the SAMMY spectrum and the data can be further used for the determination of atomic resolution three-dimensional structures. SAR by NMR is a technique that is well suited for the field of membrane transporter proteins. The experiments on protein/phospholipid samples provide a unique insight into the interaction of drugs and the functional proteins.The advances required to transform solid-state NMR from a spectroscopic technique to a generally applicable method for determining molecular structures included multiple-pulse sequences, double-resonance methods, and separated local field spectroscopy. It also required improvements in instrumentation, especially the use of high-field magnets and efficient probes capable of high-power radio-frequency irradiations at high frequencies. The pace of development is accelerating and the local field is being utilized in an increasing number of ways in spectroscopic investigations of molecular structure and dynamics. Applications to many helical membrane proteins are underway and promise to add to our understanding of membrane proteins in health and disease.
Collapse
|
14
|
Merzlyak A, Lee SW. Engineering Phage Materials with Desired Peptide Display: Rational Design Sustained through Natural Selection. Bioconjug Chem 2009; 20:2300-10. [DOI: 10.1021/bc900303f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anna Merzlyak
- UCSF and UC Berkeley Joint Graduate Group in Bioengineering, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, and Berkeley Nanoscience and Nanoengineering Institute, Berkeley, California 94720
| | - Seung-Wuk Lee
- UCSF and UC Berkeley Joint Graduate Group in Bioengineering, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, and Berkeley Nanoscience and Nanoengineering Institute, Berkeley, California 94720
| |
Collapse
|
15
|
Viruses: incredible nanomachines. New advances with filamentous phages. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:541-50. [PMID: 19680644 PMCID: PMC2841255 DOI: 10.1007/s00249-009-0523-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 12/11/2022]
Abstract
During recent decades, bacteriophages have been at the cutting edge of new developments in molecular biology, biophysics, and, more recently, bionanotechnology. In particular filamentous viruses, for example bacteriophage M13, have a virion architecture that enables precision building of ordered and defect-free two and three-dimensional structures on a nanometre scale. This could not have been possible without detailed knowledge of coat protein structure and dynamics during the virus reproduction cycle. The results of the spectroscopic studies conducted in our group compellingly demonstrate a critical role of membrane embedment of the protein both during infectious entry of the virus into the host cell and during assembly of the new virion in the host membrane. The protein is effectively embedded in the membrane by a strong C-terminal interfacial anchor, which together with a simple tilt mechanism and a subtle structural adjustment of the extreme end of its N terminus provides favourable thermodynamical association of the protein in the lipid bilayer. This basic physicochemical rule cannot be violated and any new bionanotechnology that will emerge from bacteriophage M13 should take this into account.
Collapse
|
16
|
Duarte AMS, de Jong ER, Koehorst RBM, Hemminga MA. Conformational studies of peptides representing a segment of TM7 from H+-VO-ATPase in SDS micelles. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:639-46. [PMID: 19669749 PMCID: PMC2841257 DOI: 10.1007/s00249-009-0522-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/09/2009] [Accepted: 07/09/2009] [Indexed: 11/25/2022]
Abstract
The conformation of a transmembrane peptide, sMTM7, encompassing the cytoplasmic hemi-channel domain of the seventh transmembrane section of subunit a from V-ATPase from Saccharomyces cerevisiae solubilized in SDS solutions was studied by circular dichroism (CD) spectroscopy and fluorescence spectroscopy of the single tryptophan residue of this peptide. The results show that the peptide adopts an alpha-helical conformation or aggregated beta-sheet depending on the peptide-to-SDS ratio used. The results are compared with published data about a longer version of the peptide (i.e., MTM7). It is concluded that the bulky, positively charged arginine residue located in the center of both peptides has a destabilizing effect on the helical conformation of the SDS-solubilized peptides, leading to beta-sheet formation and subsequent aggregation.
Collapse
Affiliation(s)
- Afonso M. S. Duarte
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
- Present Address: Cellular Protein Chemistry Laboratory, Utrecht University, Utrecht, The Netherlands
| | - Edwin R. de Jong
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Rob B. M. Koehorst
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Marcus A. Hemminga
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| |
Collapse
|
17
|
Houbiers MC, Hemminga MA. Protein-lipid interactions of bacteriophage M13 gene 9 minor coat protein (Review). Mol Membr Biol 2009; 21:351-9. [PMID: 15764365 DOI: 10.1080/09687860400012918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gene 9 protein is one of the minor coat proteins of bacteriophage M13. The protein plays a role in the assembly process by associating with the host membrane by protein-lipid interactions. The availability of chemically synthesized protein has enabled the biophysical characterization of the membrane-bound state of the protein by using model membrane systems. This paper summarizes, discusses and further interprets this work in the light of the current state of the literature, leading to new possible models of the coat protein in a membrane. The biological implications of these findings related to the membrane-bound phage assembly are indicated.
Collapse
Affiliation(s)
- M Chantal Houbiers
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, NL-6703 HA Wageningen, The Netherlands
| | | |
Collapse
|
18
|
Bourbigot S, Dodd E, Horwood C, Cumby N, Fardy L, Welch WH, Ramjan Z, Sharma S, Waring AJ, Yeaman MR, Booth V. Antimicrobial peptide RP-1 structure and interactions with anionic versus zwitterionic micelles. Biopolymers 2009; 91:1-13. [PMID: 18712851 DOI: 10.1002/bip.21071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Topologically, platelet factor-4 kinocidins consist of distinct N-terminal extended, C-terminal helical, and interposing gamma-core structural domains. The C-terminal alpha-helices autonomously confer direct microbicidal activity, and the synthetic antimicrobial peptide RP-1 is modeled upon these domains. In this study, the structure of RP-1 was assessed using several complementary techniques. The high-resolution structure of RP-1 was determined by NMR in anionic sodium dodecyl sulfate (SDS) and zwitterionic dodecylphosphocholine (DPC) micelles, which approximate prokaryotic and eukaryotic membranes, respectively. NMR data indicate the peptide assumes an amphipathic alpha-helical backbone conformation in both micelle environments. However, small differences were observed in the side-chain orientations of lysine, tyrosine, and phenylalanine residues in SDS versus DPC environments. NMR experiments with a paramagnetic probe indicated differences in positioning of the peptide within the two micelle types. Molecular dynamics (MD) simulations of the peptide in both micelle types were also performed to add insight into the peptide/micelle interactions and to assess the validity of this technique to predict the structure of peptides in complex with micelles. MD independently predicted RP-1 to interact only peripherally with the DPC micelle, leaving its spherical shape intact. In contrast, RP-1 entered deeply into and significantly distorted the SDS micelle. Overall, the experimental and MD results support a preferential specificity of RP-1 for anionic membranes over zwitterionic membranes. This specificity likely derives from differences in RP-1 interaction with distinct lipid systems, including subtle differences in side chain orientations, rather than gross changes in RP-1 structure in the two lipid environments.
Collapse
Affiliation(s)
- Sarah Bourbigot
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kar P, Seel M, Weidemann T, Höfinger S. Theoretical mimicry of biomembranes. FEBS Lett 2009; 583:1909-15. [DOI: 10.1016/j.febslet.2009.04.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/03/2009] [Accepted: 04/23/2009] [Indexed: 11/16/2022]
|
20
|
Vos WL, Nazarov PV, Koehorst RBM, Spruijt RB, Hemminga MA. From 'I' to 'L' and back again: the odyssey of membrane-bound M13 protein. Trends Biochem Sci 2009; 34:249-55. [PMID: 19362002 DOI: 10.1016/j.tibs.2009.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/14/2009] [Accepted: 01/14/2009] [Indexed: 10/20/2022]
Abstract
The major coat protein of the filamentous bacteriophage M13 is a surprising protein because it exists both as a membrane protein and as part of the M13 phage coat during its life cycle. Early studies showed that the phage-bound structure of the coat protein was a continuous I-shaped alpha-helix. However, throughout the years various structural models, both I-shaped and L-shaped, have been proposed for the membrane-bound state of the coat protein. Recently, site-directed labelling approaches have enabled the study of the coat protein under conditions that more closely mimic the in vivo membrane-bound state. Interestingly, the structure that has emerged from this work is I-shaped and similar to the structure in the phage-bound state.
Collapse
Affiliation(s)
- Werner L Vos
- Department of Biology, National University of Ireland Maynooth, County Kildare, Ireland
| | | | | | | | | |
Collapse
|
21
|
Hamzeh-Mivehroud M, Mahmoudpour A, Rezazadeh H, Dastmalchi S. Non-specific translocation of peptide-displaying bacteriophage particles across the gastrointestinal barrier. Eur J Pharm Biopharm 2008; 70:577-81. [DOI: 10.1016/j.ejpb.2008.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
|
22
|
Gangabadage CS, Zdunek J, Tessari M, Nilsson S, Olivecrona G, Wijmenga SS. Structure and Dynamics of Human Apolipoprotein CIII. J Biol Chem 2008; 283:17416-27. [DOI: 10.1074/jbc.m800756200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Gangabadage CS, Najda A, Bogdan D, Wijmenga SS, Tessari M. Dependence of the size of a protein-SDS complex on detergent and Na+ concentrations. J Phys Chem B 2008; 112:4242-5. [PMID: 18348561 DOI: 10.1021/jp710045e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sodium dodecyl sulfate (SDS) micelles provide ideal mimetic media for high-resolution NMR studies of membrane proteins and proteins or peptides interacting with micellar aggregates. (15)N NMR relaxation of the backbone amides of a protein-SDS complex has been measured under different experimental conditions. The rotational diffusion time of this complex has been found highly sensitive to detergent and NaCl concentrations. A comparison with calculated rotational diffusion times of protein-free SDS micelles under the same conditions suggests that the size of both aggregates must follow a similar functional dependence on detergent/NaCl concentration.
Collapse
Affiliation(s)
- Chinthaka Sanath Gangabadage
- Department of Chemistry, University of Ruhuna, Matara, Sri Lanka, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawińskiego, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
24
|
Vos WL, Schor M, Nazarov PV, Koehorst RBM, Spruijt RB, Hemminga MA. Structure of membrane-embedded M13 major coat protein is insensitive to hydrophobic stress. Biophys J 2007; 93:3541-7. [PMID: 17704180 PMCID: PMC2072081 DOI: 10.1529/biophysj.107.112698] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of a membrane-embedded alpha-helical reference protein, the M13 major coat protein, is characterized under different conditions of hydrophobic mismatch using fluorescence resonance energy transfer in combination with high-throughput mutagenesis. We show that the structure is similar in both thin (14:1) and thick (20:1) phospholipid bilayers, indicating that the protein does not undergo large structural rearrangements in response to conditions of hydrophobic mismatch. We introduce a "helical fingerprint" analysis, showing that amino acid residues 1-9 are unstructured in both phospholipid bilayers. Our findings indicate the presence of pi-helical domains in the transmembrane segment of the protein; however, no evidence is found for a structural adaptation to the degree of hydrophobic mismatch. In light of current literature, and based on our data, we conclude that aggregation (at high protein concentration) and adjustment of the tilt angle and the lipid structure are the dominant responses to conditions of hydrophobic mismatch.
Collapse
Affiliation(s)
- Werner L Vos
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Li W, Suez I, Szoka FC. Reconstitution of the M13 Major Coat Protein and Its Transmembrane Peptide Segment on a DNA Template. Biochemistry 2007; 46:8579-91. [PMID: 17595059 DOI: 10.1021/bi700165m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major coat protein (pVIII) of M13 phage is of particular interest to structure biologists since it functions in two different environments: during assembly and infection, it interacts with the bacterial lipid bilayer, but in the phage particle, it exists as a protein capsid to protect a closed circular, single-stranded DNA (ssDNA) genome. We synthesized pVIII and a 32mer peptide consisting of the transmembrane and DNA binding domains of pVIII. The 32mer peptide displays typically an alpha-helical structure in trifluroethanol or 0.2 M octylglucoside solutions similar to pVIII. Attachment of polyethylene glycol (PEG) onto the N-terminal of 32mer increased the alpha-helical content and the peptide thermal stability. The peptides were reconstituted with DNA from a detergent solution into a discrete (<200 nm diameter) nanoparticle on both linear double-stranded DNA (dsDNA) and linear ssDNA, where the linear dsDNA is used to mimic the closed circular, ssDNA in M13 phage, upon removal of the detergent. The peptide/DNA particle was an irregular and not a rod-shaped aggregate when imaged by atomic force microscopy. All three peptides underwent a structural transition from alpha-helix to beta-sheet within approximately 1 h of DNA addition to the detergent solution. There was a further decrease in alpha-helical content when the detergent was removed. The presence of anionic (such as octanoic acid) or cationic (such as 1,5-diaminopentane) molecules in the detergent mixture resulted in the retention of the peptide alpha-helical structure. Thus the interaction between the peptide and DNA in octylglucoside is driven by electrostatic forces, and peptide-peptide interactions are responsible for the transition from alpha-helix to beta-sheet conformation in pVIII and its analogues. These results suggest that the assembly process to form a rod-shaped phage is a delicate balance to maintain pVIII in an alpha-helical conformation that requires either an oriented bilayer to solubilize pVIII prior to interaction with the DNA or other phage proteins to nucleate pVIII in the alpha-helical conformation on the DNA.
Collapse
Affiliation(s)
- Weijun Li
- Department of Biopharmaceutical Sciences, School of Pharmacy, University of California at San Francisco, San Francisco, California 94143-0446, USA
| | | | | |
Collapse
|
26
|
Rainey JK, Fliegel L, Sykes BD. Strategies for dealing with conformational sampling in structural calculations of flexible or kinked transmembrane peptides. Biochem Cell Biol 2007; 84:918-29. [PMID: 17215879 DOI: 10.1139/o06-178] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peptides corresponding to transmembrane (TM) segments from membrane proteins provide a potential route for the determination of membrane protein structure. We have determined that 2 functionally critical TM segments from the mammalian Na+/H+ exchanger display well converged structure in regions separated by break points. The flexibility of these break points results in conformational sampling in solution. A brief review of available NMR structures of helical membrane proteins demonstrates that there are a number of published structures showing similar properties. Such flexibility is likely indicative of kinks in the full-length protein. This minireview focuses on methods and protocols for NMR structure calculation and analysis of peptide structures under conditions of conformational sampling. The methods outlined allow the identification and analysis of structured peptides containing break points owing to conformational sampling and the differentiation between oligomerization and ensemble-averaged observation of multiple peptide conformations.
Collapse
Affiliation(s)
- Jan K Rainey
- Protein Engineering Network of Centres of Excellence and Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | | | | |
Collapse
|
27
|
Stopar D, Strancar J, Spruijt RB, Hemminga MA. Motional restrictions of membrane proteins: a site-directed spin labeling study. Biophys J 2006; 91:3341-8. [PMID: 16905615 PMCID: PMC1614470 DOI: 10.1529/biophysj.106.090308] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-directed mutagenesis was used to produce 27 single cysteine mutants of bacteriophage M13 major coat protein spanning the whole primary sequence of the protein. Single-cysteine mutants were labeled with nitroxide spin labels and incorporated into phospholipid bilayers with increasing acyl chain length. The SDSL is combined with ESR and CD spectroscopy. CD spectroscopy provided information about the overall protein conformation in different mismatching lipids. The spin label ESR spectra were analyzed in terms of a new spectral simulation approach based on hybrid evolutionary optimization and solution condensation. This method gives the residue-level free rotational space (i.e., the effective space within which the spin label can wobble) and the diffusion constant of the spin label attached to the protein. The results suggest that the coat protein has a large structural flexibility, which facilitates a stable protein-to-membrane association in lipid bilayers with various degrees of hydrophobic mismatch.
Collapse
Affiliation(s)
- David Stopar
- University of Ljubljana, Biotechnical Faculty, SI-1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
28
|
Strancar J, Koklic T, Arsov Z, Filipic B, Stopar D, Hemminga MA. Spin label EPR-based characterization of biosystem complexity. J Chem Inf Model 2006; 45:394-406. [PMID: 15807505 DOI: 10.1021/ci049748h] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following the widely spread EPR spin-label applications for biosystem characterization, a novel approach is proposed for EPR-based characterization of biosystem complexity. Hereto a computational method based on a hybrid evolutionary optimization (HEO) is introduced. The enormous volume of information obtained from multiple HEO runs is reduced with a novel so-called GHOST condensation method for automatic detection of the degree of system complexity through the construction of two-dimensional solution distributions. The GHOST method shows the ability of automatic quantitative characterization of groups of solutions, e.g. the determination of average spectral parameters and group contributions. The application of the GHOST condensation algorithm is demonstrated on four synthetic examples of different complexity and applied to two physiologically relevant examples--the determination of domains in biomembranes (lateral heterogeneity) and the study of the low-resolution structure of membrane proteins.
Collapse
Affiliation(s)
- Janez Strancar
- Laboratory of Biophysics, JoZef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
29
|
Stopar D, Spruijt RB, Hemminga MA. Anchoring mechanisms of membrane-associated M13 major coat protein. Chem Phys Lipids 2006; 141:83-93. [PMID: 16620800 DOI: 10.1016/j.chemphyslip.2006.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 11/17/2022]
Abstract
Bacteriophage M13 major coat protein is extensively used as a biophysical, biochemical, and molecular biology reference system for studying membrane proteins. The protein has several elements that control its position and orientation in a lipid bilayer. The N-terminus is dominated by the presence of negatively charged amino acid residues (Glu2, Asp4, and Asp5), which will always try to extend into the aqueous phase and therefore act as a hydrophilic anchor. The amphipathic and the hydrophobic transmembrane part contain the most important hydrophobic anchoring elements. In addition there are specific aromatic and charged amino acid residues in these domains (Phe 11, Tyr21, Tyr24, Trp26, Phe42, Phe45, Lys40, Lys43, and Lys44) that fine-tune the association of the protein to the lipid bilayer. The interfacial Tyr residues are important recognition elements for precise protein positioning, a function that cannot be performed optimally by residues with an aliphatic character. The Trp26 anchor is not very strong: depending on the context, the tryptophan residue may move in or out of the membrane. On the other hand, Lys residues and Phe residues at the C-terminus of the protein act in a unique concerted action to strongly anchor the protein in the lipid bilayer.
Collapse
Affiliation(s)
- David Stopar
- University of Ljubljana, Biotechnical Faculty, Slovenia
| | | | | |
Collapse
|
30
|
Nazarov PV, Koehorst RBM, Vos WL, Apanasovich VV, Hemminga MA. FRET study of membrane proteins: simulation-based fitting for analysis of membrane protein embedment and association. Biophys J 2006; 91:454-66. [PMID: 16632512 PMCID: PMC1483081 DOI: 10.1529/biophysj.106.082867] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new formalism for the simultaneous determination of the membrane embedment and aggregation of membrane proteins is developed. This method is based on steady-state Förster (or fluorescence) resonance energy transfer (FRET) experiments on site-directed fluorescence labeled proteins in combination with global data analysis utilizing simulation-based fitting. The simulation of FRET was validated by a comparison with a known analytical solution for energy transfer in idealized membrane systems. The applicability of the simulation-based fitting approach was verified on simulated FRET data and then applied to determine the structural properties of the well-known major coat protein from bacteriophage M13 reconstituted into unilamellar DOPC/DOPG (4:1 mol/mol) vesicles. For our purpose, the cysteine mutants Y24C, G38C, and T46C of this protein were produced and specifically labeled with the fluorescence label AEDANS. The energy transfer data from the natural tryptophan at position 26, which is used as a donor, to AEDANS were analyzed assuming a helix model for the transmembrane domain of the protein. As a result of the FRET data analysis, the topology and bilayer embedment of this domain were quantitatively characterized. The resulting tilt of the transmembrane helix of the protein is 18 +/- 2 degrees. The tryptophan is located at a distance of 8.5 +/- 0.5 A from the membrane center. No specific aggregation of the protein was found. The methodology developed here is not limited to M13 major coat protein and can be used in principle to study the bilayer embedment of any small protein with a single transmembrane domain.
Collapse
Affiliation(s)
- Petr V Nazarov
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Aisenbrey C, Harzer U, Bauer-Manz G, Bär G, Chotimah INH, Bertani P, Sizun C, Kuhn A, Bechinger B. Proton-decoupled 15N and 31P solid-state NMR investigations of the Pf3 coat protein in oriented phospholipid bilayers. FEBS J 2006; 273:817-28. [PMID: 16441667 DOI: 10.1111/j.1742-4658.2006.05114.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The coat proteins of filamentous phage are first synthesized as transmembrane proteins and then assembled onto the extruding viral particles. We investigated the transmembrane conformation of the Pseudomonas aeruginosa Pf3 phage coat protein using proton-decoupled 15N and 31P solid-state NMR spectroscopy. The protein was either biochemically purified and uniformly labelled with 15N or synthesized chemically and labelled at specific sites. The proteins were then reconstituted into oriented phospholipid bilayers and the resulting samples analysed. The data suggest a model in which the protein adopts a tilted helix with an angle of approximately 30 degrees and an N-terminal 'swinging arm' at the membrane surface.
Collapse
|
32
|
Affiliation(s)
- John W Kehoe
- Biosciences Division, Argonne National Laboratory, Building 202, Argonne, Illinois 60439, USA
| | | |
Collapse
|
33
|
Marvin DA, Welsh LC, Symmons MF, Scott WRP, Straus SK. Molecular Structure of fd (f1, M13) Filamentous Bacteriophage Refined with Respect to X-ray Fibre Diffraction and Solid-state NMR Data Supports Specific Models of Phage Assembly at the Bacterial Membrane. J Mol Biol 2006; 355:294-309. [PMID: 16300790 DOI: 10.1016/j.jmb.2005.10.048] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 10/13/2005] [Accepted: 10/18/2005] [Indexed: 11/20/2022]
Abstract
Filamentous bacteriophage (Inovirus) is a simple and well-characterized model system. The phage particle, or virion, is about 60 angstroms in diameter and several thousand angstrom units long. The virions are assembled at the bacterial membrane as they extrude out of the host without killing it, an example of specific transport of nucleoprotein assemblages across membranes. The Ff group (fd, f1 and M13) has been especially widely studied. Models of virion assembly have been proposed based on a molecular model of the fd virion derived by X-ray fibre diffraction. A somewhat different model of the fd virion using solid-state NMR data has been proposed, not consistent with these models of assembly nor with the X-ray diffraction data. Here we show that reinterpreted NMR data are also consistent with the model derived from X-ray fibre diffraction studies, and discuss models of virion assembly.
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | | | | | | | | |
Collapse
|
34
|
Vos WL, Koehorst RBM, Spruijt RB, Hemminga MA. Membrane-bound conformation of M13 major coat protein: a structure validation through FRET-derived constraints. J Biol Chem 2005; 280:38522-7. [PMID: 16150733 DOI: 10.1074/jbc.m505875200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
M13 major coat protein, a 50-amino-acid-long protein, was incorporated into DOPC/DOPG (80/20 molar ratio) unilamellar vesicles. Over 60% of all amino acid residues was replaced with cysteine residues, and the single cysteine mutants were labeled with the fluorescent label I-AEDANS. The coat protein has a single tryptophan residue that is used as a donor in fluorescence (or Förster) resonance energy transfer (FRET) experiments, using AEDANS-labeled cysteines as acceptors. Based on FRET-derived constraints, a straight alpha-helix is proposed as the membrane-bound conformation of the coat protein. Different models were tested to represent the molecular conformations of the donor and acceptor moieties. The best model was used to make a quantitative comparison of the FRET data to the structures of M13 coat protein and related coat proteins in the Protein Data Bank. This shows that the membrane-bound conformation of the coat protein is similar to the structure of the coat protein in the bacteriophage that was obtained from x-ray diffraction. Coat protein embedded in stacked, oriented bilayers and in micelles turns out to be strongly affected by the environmental stress of these membrane-mimicking environments. Our findings emphasize the need to study membrane proteins in a suitable environment, such as in fully hydrated unilamellar vesicles. Although larger proteins than M13 major coat protein may be able to handle environmental stress in a different way, any membrane protein with water exposed parts in the C or N termini and hydrophilic loop regions should be treated with care.
Collapse
Affiliation(s)
- Werner L Vos
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
35
|
Howell SC, Mesleh MF, Opella SJ. NMR Structure Determination of a Membrane Protein with Two Transmembrane Helices in Micelles: MerF of the Bacterial Mercury Detoxification System,. Biochemistry 2005; 44:5196-206. [PMID: 15794657 DOI: 10.1021/bi048095v] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The three-dimensional backbone structure of a membrane protein with two transmembrane helices in micelles was determined using solution NMR methods that rely on the measurement of backbone (1)H-(15)N residual dipolar couplings (RDCs) from samples of two different constructs that align differently in stressed polyacrylamide gels. Dipolar wave fitting to the (1)H-(15)N RDCs determines the helical boundaries based on periodicity and was utilized in the generation of supplemental dihedral restraints for the helical segments. The (1)H-(15)N RDCs and supplemental dihedral restraints enable the determination of the structure of the helix-loop-helix core domain of the mercury transport membrane protein MerF with a backbone RMSD of 0.58 A. Moreover, the fold of this polypeptide demonstrates that the two vicinal pairs of cysteine residues, shown to be involved in the transport of Hg(II) across the membrane, are exposed to the cytoplasm. This finding differs from earlier structural and mechanistic models that were based primarily on the somewhat atypical hydropathy plot for MerF and related transport proteins.
Collapse
Affiliation(s)
- Stanley C Howell
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0307, USA
| | | | | |
Collapse
|
36
|
Fernández C, Wüthrich K. NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett 2003; 555:144-50. [PMID: 14630335 DOI: 10.1016/s0014-5793(03)01155-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an alternative to X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy in solution can be used for three-dimensional structure determination of small membrane proteins, preferably proteins with beta-barrel fold. This paper reviews recent achievements as well as limiting factors encountered in solution NMR studies of membrane proteins. Our particular interest has been focused on supplementing structure determination with data on the solvation of the proteins in the mixed micelles with detergents that are used to reconstitute membrane proteins for the NMR experiments. For the Escherichia coli outer membrane protein X (OmpX) in dihexanoylphosphatidylcholine (DHPC) micelles, such studies showed that the central part of the protein is covered with a fluid monolayer of lipid molecules, which seems to mimic quite faithfully the embedding of the protein in the lipid phase of the biological membrane. The implication is that the micellar systems used in this instance for the NMR studies of the membrane protein should also be suitable for further investigations of functional interactions with other proteins or low-molecular weight ligands.
Collapse
Affiliation(s)
- César Fernández
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
37
|
Zeri AC, Mesleh MF, Nevzorov AA, Opella SJ. Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2003; 100:6458-63. [PMID: 12750469 PMCID: PMC164468 DOI: 10.1073/pnas.1132059100] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atomic resolution structure of fd coat protein determined by solid-state NMR spectroscopy of magnetically aligned filamentous bacteriophage particles differs from that previously determined by x-ray fiber diffraction. Most notably, the 50-residue protein is not a single curved helix, but rather is a nearly ideal straight helix between residues 7 and 38, where there is a distinct kink, and then a straight helix with a different orientation between residues 39 and 49. Residues 1-5 have been shown to be mobile and unstructured, and proline 6 terminates the helix. The structure of the coat protein in virus particles, in combination with the structure of the membrane-bound form of the same protein in bilayers, also recently determined by solid-state NMR spectroscopy, provides insight into the viral assembly process. In addition to their roles in molecular biology and biotechnology, the filamentous bacteriophages continue to serve as model systems for the development of experimental methods for determining the structures of proteins in biological supramolecular assemblies. New NMR results include the complete sequential assignment of the two-dimensional polarization inversion spin-exchange at the magic angle spectrum of a uniformly 15N-labeled 50-residue protein in a 1.6 x 107 Da particle in solution, and the calculation of the three-dimensional structure of the protein from orientational restraints with an accuracy equivalent to an rms deviation of approximately 1A.
Collapse
Affiliation(s)
- Ana Carolina Zeri
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla 92093, USA
| | | | | | | |
Collapse
|
38
|
Stopar D, Spruijt RB, Wolfs CJAM, Hemminga MA. Protein-lipid interactions of bacteriophage M13 major coat protein. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1611:5-15. [PMID: 12659940 DOI: 10.1016/s0005-2736(03)00047-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the past years, remarkable progress has been made in our understanding of the replication cycle of bacteriophage M13 and the molecular details that enable phage proteins to navigate in the complex environment of the host cell. With new developments in molecular membrane biology in combination with spectroscopic techniques, we are now in a position to ask how phages carry out this delicate process on a molecular level, and what sort of protein-lipid and protein-protein interactions are involved. In this review we will focus on the molecular details of the protein-protein and protein-lipid interactions of the major coat protein (gp8) that may play a role during the infection of Escherichia coli by bacteriophage M13.
Collapse
Affiliation(s)
- David Stopar
- Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
39
|
Marassi FM, Opella SJ. Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints. Protein Sci 2003; 12:403-11. [PMID: 12592011 PMCID: PMC2312444 DOI: 10.1110/ps.0211503] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A solid-state NMR approach for simultaneous resonance assignment and three-dimensional structure determination of a membrane protein in lipid bilayers is described. The approach is based on the scattering, hence the descriptor "shotgun," of (15)N-labeled amino acids throughout the protein sequence (and the resulting NMR spectra). The samples are obtained by protein expression in bacteria grown on media in which one type of amino acid is labeled and the others are not. Shotgun NMR short-circuits the laborious and time-consuming process of obtaining complete sequential assignments prior to the calculation of a protein structure from the NMR data by taking advantage of the orientational information inherent to the spectra of aligned proteins. As a result, it is possible to simultaneously assign resonances and measure orientational restraints for structure determination. A total of five two-dimensional (1)H/(15)N PISEMA (polarization inversion spin exchange at the magic angle) spectra, from one uniformly and four selectively (15)N-labeled samples, were sufficient to determine the structure of the membrane-bound form of the 50-residue major pVIII coat protein of fd filamentous bacteriophage. Pisa (polarity index slat angle) wheels are an essential element in the process, which starts with the simultaneous assignment of resonances and the assembly of isolated polypeptide segments, and culminates in the complete three-dimensional structure of the protein with atomic resolution. The principles are also applicable to weakly aligned proteins studied by solution NMR spectroscopy. [The structure we determined for the membrane-bound form of the Fd bacteriophage pVIII coat protein has been deposited in the Protein Data Bank as PDB file 1MZT.]
Collapse
|
40
|
Roth TA, Weiss GA, Eigenbrot C, Sidhu SS. A minimized M13 coat protein defines the requirements for assembly into the bacteriophage particle. J Mol Biol 2002; 322:357-67. [PMID: 12217696 DOI: 10.1016/s0022-2836(02)00769-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The M13 filamentous bacteriophage coat is a symmetric array of several thousand alpha-helical major coat proteins (P8) that surround the DNA core. P8 molecules initially reside in the host membrane and subsequently transition into their role as coat proteins during the phage assembly process. A comprehensive mutational analysis of the 50-residue P8 sequence revealed that only a small subset of the side-chains were necessary for efficient incorporation into a wild-type (wt) coat. In the three-dimensional structure of P8, these side-chains cluster into three functional epitopes: a hydrophobic epitope located near the N terminus and two epitopes (one hydrophobic and the other basic) located near the C terminus on opposite faces of the helix. The results support a model for assembly in which the incorporation of P8 is mediated by intermolecular interactions involving these functional epitopes. In this model, the N-terminal hydrophobic epitope docks with P8 molecules already assembled into the phage particle in the periplasm, and the basic epitope interacts with the acidic DNA backbone in the cytoplasm. These interactions could facilitate the transition of P8 from the membrane into the assembling phage, and the incorporation of a single P8 would be completed by the docking of additional P8 molecules with the second hydrophobic epitope at the C terminus. We constructed a minimized P8 that contained only nine non-Ala side-chains yet retained all three functional epitopes. The minimized P8 assembled into the wt coat almost as efficiently as wt P8, thus defining the minimum requirements for protein incorporation into the filamentous phage coat. The results suggest possible mechanisms of natural viral evolution and establish guidelines for the artificial evolution of improved coat proteins for phage display technology.
Collapse
Affiliation(s)
- Tomer A Roth
- Department of Protein Engineering, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | |
Collapse
|
41
|
Ridder A, Thissen L, Killian A, de Kruijff B. Insertion and glycosylation of Pf3-derived membrane proteins in microsomes. FEBS Lett 2002; 512:341-4. [PMID: 11852107 DOI: 10.1016/s0014-5793(02)02312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To get insight into the insertion mechanism of small newly synthesized single-spanning membrane proteins, Pf3 coat protein mutants were constructed with potential glycosylation sites in the N-terminus. Some of these proteins, when synthesized in vitro in the presence of microsomes, became efficiently glycosylated, proving that they insert into the membrane and translocate their N-terminus to the lumenal side. Such Pf3 constructs also insert efficiently into Escherichia coli vesicles and even in pure lipid vesicles, suggesting a common mechanism, which might be spontaneous. Glycosylation was sensitive to changes in the amino acid sequence of the N-terminus, suggesting that it depends on the structure of the protein and/or its positioning with respect to the lipid-water interface.
Collapse
Affiliation(s)
- Anja Ridder
- Department of Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Melnyk RA, Partridge AW, Deber CM. Transmembrane domain mediated self-assembly of major coat protein subunits from Ff bacteriophage. J Mol Biol 2002; 315:63-72. [PMID: 11771966 DOI: 10.1006/jmbi.2001.5214] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 50-residue major coat protein (MCP) of Ff bacteriophage exists as a single-spanning membrane protein in the Escherichia coli host inner membrane prior to assembly into lipid-free virions. Here, the molecular bases for the specificity and stoichiometry that govern the protein-protein interactions of MCP in the host membrane are investigated in detergent micelles. To address these structural issues, as well as to circumvent viability requirements in mutants of the intact protein, peptides corresponding to the effective alpha-helical TM segment of wild-type and mutant bacteriophage MCPs were synthesized. Fluorescence resonance energy transfer (FRET) experiments on the dansyl and dabcyl-labeled MCP TM domain peptides in detergent micelles demonstrated that the peptides specifically associate into non-covalent homodimers, as postulated for the biologically relevant membrane-embedded MCP oligomer. MCP peptides labeled with short-range pyrene fluorophores at the N terminus displayed excimer fluorescence consistent with homodimerization occurring in a parallel fashion. Variant peptides synthesized with single substitutions at helix-interactive positions displayed a wide range of dimer/monomer ratios on SDS-PAGE gels, which are interpreted in terms of steric volume, presence or absence of beta-branching, and the effect of polar substituents. The overall results indicate discrete roles for helix-helix interfacial residues as packing recognition elements in the membrane-inserted state, and suggest a possible correlation between phage viability and efficacy of MCP TM-TM interactions.
Collapse
Affiliation(s)
- Roman A Melnyk
- Division of Structural Biology and Biochemistry. Research Institute, University of Toronto, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
43
|
Abstract
Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.
Collapse
Affiliation(s)
- S S Sidhu
- Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
44
|
Damberg P, Jarvet J, Gräslund A. Micellar systems as solvents in peptide and protein structure determination. Methods Enzymol 2001; 339:271-85. [PMID: 11462816 DOI: 10.1016/s0076-6879(01)39318-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- P Damberg
- Department of Biophysics, Stockholm University, Stockholm S-106 91, Sweden
| | | | | |
Collapse
|
45
|
Olofsson L, Ankarloo J, Andersson PO, Nicholls IA. Filamentous bacteriophage stability in non-aqueous media. CHEMISTRY & BIOLOGY 2001; 8:661-71. [PMID: 11451667 DOI: 10.1016/s1074-5521(01)00041-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Filamentous bacteriophage are used as general cloning vectors as well as phage display vectors in order to study ligand-receptor interactions. Exposure to biphasic chloroform-water interface leads to specific contraction of phage, to non-infective I- or S-forms. RESULTS Upon exposure, phage were inactivated (non-infective) at methanol, ethanol and 1-propanol concentrations inversely dependent upon alcohol hydrophobicity. Infectivity loss of phage at certain concentrations of 1-propanol or ethanol coincided with changes in the spectral properties of the f1 virion in ultraviolet fluorescence and circular dichroism studies. CONCLUSIONS The alcohols inactivate filamentous phage by a general mechanism--solvation of coat protein--thereby disrupting the capsid in a manner quite different from the previously reported I- and S-forms. The infectivity retention of phagemid pG8H6 in 99% acetonitrile and the relatively high general solvent resistance of the phage strains studied here open up the possibility of employing phage display in non-aqueous media.
Collapse
Affiliation(s)
- L Olofsson
- Bioorganic and Biophysical Chemistry Laboratory, Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-391 82, Kalmar, Sweden
| | | | | | | |
Collapse
|
46
|
Pederson DM, Welsh LC, Marvin DA, Sampson M, Perham RN, Yu M, Slater MR. The protein capsid of filamentous bacteriophage PH75 from Thermus thermophilus. J Mol Biol 2001; 309:401-21. [PMID: 11371161 DOI: 10.1006/jmbi.2001.4685] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PH75 strain of filamentous bacteriophage (Inovirus) grows in the thermophilic bacterium Thermus thermophilus at 70 degrees C. We have characterized the viral DNA and determined the amino acid sequence of the major coat protein, p8. The p8 protein is synthesized without a leader sequence, like that of bacteriophage Pf3 but unlike that of bacteriophage Pf1, both of which grow in the mesophile Pseudomonas aeruginosa. X-ray diffraction patterns from ordered fibres of the PH75 virion are similar to those from bacteriophages Pf1 and Pf3, indicating that the protein capsid of the PH75 virion has the same helix symmetry and subunit shape, even though the primary structures of the major coat proteins are quite different and the virions assemble at very different temperatures. We have used this information to build a molecular model of the PH75 protein capsid based on that of Pf1, and refined the model by simulated annealing, using fibre diffraction data extending to 2.4 A resolution in the meridional direction and to 3.1 A resolution in the equatorial direction. The common design may reflect a fundamental motif of alpha-helix packing, although differences exist in the DNA packaging and in the means of insertion of the major coat protein of these filamentous bacteriophages into the membrane of the host bacterial cell. These may reflect differences in the assembly mechanisms of the virions.
Collapse
Affiliation(s)
- D M Pederson
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Bashtovyy D, Marsh D, Hemminga MA, Páli T. Constrained modeling of spin-labeled major coat protein mutants from M13 bacteriophage in a phospholipid bilayer. Protein Sci 2001; 10:979-87. [PMID: 11316878 PMCID: PMC2374207 DOI: 10.1110/ps.43801] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The family of three-dimensional molecular structures of the major coat protein from the M13 bacteriophage, which was determined in detergent micelles by NMR methods, has been analyzed by constrained geometry optimization in a phospholipid environment. A single-layer solvation shell of dioleoyl phosphatidylcholine lipids was built around the protein, after replacing single residues by cysteines with a covalently attached maleimide spin label. Both the residues substituted and the phospholipid were chosen for comparison with site-directed spin labeling EPR measurements of distance and local mobility made previously on membranous assemblies of the M13 coat protein purified from viable mutants. The main criteria for identifying promising candidate structures, out of the 300 single-residue mutant models generated for the membranous state, were 1) lack of steric conflicts with the phospholipid bilayer, 2) good match of the positions of spin-labeled residues along the membrane normal with EPR measurements, and 3) a good match between the sequence profiles of local rotational freedom and a structural restriction parameter for the spin-labeled residues obtained from the model. A single subclass of structure has been identified that best satisfies these criteria simultaneously. The model presented here is useful for the interpretation of future experimental data on membranous M13 coat protein systems. It is also a good starting point for full-scale molecular dynamics simulations and for the design of further site-specific spectroscopic experiments.
Collapse
Affiliation(s)
- D Bashtovyy
- Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary
| | | | | | | |
Collapse
|
48
|
Deber CM, Wang C, Liu LP, Prior AS, Agrawal S, Muskat BL, Cuticchia AJ. TM Finder: a prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales. Protein Sci 2001; 10:212-9. [PMID: 11266608 PMCID: PMC2249854 DOI: 10.1110/ps.30301] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Based on the principle of dual prediction by segment hydrophobicity and nonpolar phase helicity, in concert with imposed threshold values of these two parameters, we developed the automated prediction program TM Finder that can successfully locate most transmembrane (TM) segments in proteins. The program uses the results of experiments on a series of host-guest TM segment mimic peptides of prototypic sequence KK AAAXAAAAAXAAWAAXAAAKKKK-amide (where X = each of the 20 commonly occurring amino acids) through which an HPLC-derived hydropathy scale, a hydrophobicity threshold for spontaneous membrane insertion, and a nonpolar phase helical propensity scale were determined. Using these scales, the optimized prediction algorithm of TM Finder defines TM segments by first searching for competent core segments using the combination of hydrophobicity and helicity scales, and then performs a gap-joining operation, which minimizes prediction bias caused by local hydrophilic residues and/or the choice of window size. In addition, the hydrophobicity threshold requirement enables TM Finder to distinguish reliably between membrane proteins and globular proteins, thereby adding an important dimension to the program. A full web version of the TM Finder program can be accessed at http://www.bioinformatics-canada.org/TM/.
Collapse
Affiliation(s)
- C M Deber
- Division of Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, Toronto M5G 1X8, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
49
|
Organization, Replication, Transposition, and Repair of DNA. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Spruijt RB, Meijer AB, Wolfs CJ, Hemminga MA. Localization and rearrangement modulation of the N-terminal arm of the membrane-bound major coat protein of bacteriophage M13. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:311-23. [PMID: 11118542 DOI: 10.1016/s0005-2736(00)00314-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During infection the major coat protein of the filamentous bacteriophage M13 is in the cytoplasmic membrane of the host Escherichia coli. This study focuses on the configurational properties of the N-terminal part of the coat protein in the membrane-bound state. For this purpose X-Cys substitutions are generated at coat protein positions 3, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23 and 24, covering the N-terminal protein part. All coat protein mutants used are successfully produced in mg quantities by overexpression in E. coli. Mutant coat proteins are labeled and reconstituted into mixed bilayers of phospholipids. Information about the polarity of the local environment around the labeled sites is deduced from the wavelength of maximum emission using AEDANS attached to the SH groups of the cysteines as a fluorescent probe. Additional information is obtained by determining the accessibility of the fluorescence quenchers acrylamide and 5-doxyl stearic acid. By employing uniform coat protein surroundings provided by TFE and SDS, local effects of the backbone of the coat proteins or polarity of the residues could be excluded. Our data suggest that at a lipid to protein ratio around 100, the N-terminal arm of the protein gradually enters the membrane from residue 3 towards residue 19. The hinge region (residues 17-24), connecting the helical parts of the coat protein, is found to be more embedded in the membrane. Substitution of one or more of the membrane-anchoring amino acid residues lysine 8, phenylalanine 11 and leucine 14, results in a rearrangement of the N-terminal protein part into a more extended conformation. The N-terminal arm can also be forced in this conformation by allowing less space per coat protein at the membrane surface by decreasing the lipid to protein ratio. The influence of the phospholipid headgroup composition on the rearrangement of the N-terminal part of the protein is found to be negligible within the range thought to be relevant in vivo. From our experiments we conclude that membrane-anchoring and space-limiting effects are key factors for the structural rearrangement of the N-terminal protein part of the coat protein in the membrane.
Collapse
Affiliation(s)
- R B Spruijt
- Wageningen University and Research Center, Department of Biomolecular Sciences, Laboratory of Molecular Physics, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|