1
|
Rejnowicz E, Batchelor M, Leen E, Ahangar MS, Burgess SG, Richards MW, Kalverda AP, Bayliss R. Exploring the dynamics and interactions of the N-myc transactivation domain through solution nuclear magnetic resonance spectroscopy. Biochem J 2024; 481:1535-1556. [PMID: 39370942 DOI: 10.1042/bcj20240248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Myc proteins are transcription factors crucial for cell proliferation. They have a C-terminal domain that mediates Max and DNA binding, and an N-terminal disordered region culminating in the transactivation domain (TAD). The TAD participates in many protein-protein interactions, notably with kinases that promote stability (Aurora-A) or degradation (ERK1, GSK3) via the ubiquitin-proteasome system. We probed the structure, dynamics and interactions of N-myc TAD using nuclear magnetic resonance (NMR) spectroscopy following its complete backbone assignment. Chemical shift analysis revealed that N-myc has two regions with clear helical propensity: Trp77-Glu86 and Ala122-Glu132. These regions also have more restricted ps-ns motions than the rest of the TAD, and, along with the phosphodegron, have comparatively high transverse (R2) 15N relaxation rates, indicative of slower timescale dynamics and/or chemical exchange. Collectively these features suggest differential propensities for structure and interaction, either internal or with binding partners, across the TAD. Solution studies on the interaction between N-myc and Aurora-A revealed a previously uncharacterised binding site. The specificity and kinetics of sequential phosphorylation of N-myc by ERK1 and GSK3 were characterised using NMR and resulted in no significant structural changes outside the phosphodegron. When the phosphodegron was doubly phosphorylated, N-myc formed a robust interaction with the Fbxw7-Skp1 complex, but mapping the interaction by NMR suggests a more extensive interface. Our study provides foundational insights into N-myc TAD dynamics and a backbone assignment that will underpin future work on the structure, dynamics, interactions and regulatory post-translational modifications of this key oncoprotein.
Collapse
Affiliation(s)
- Ewa Rejnowicz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mohd Syed Ahangar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Selena G Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Arnout P Kalverda
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
2
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
3
|
Ma J, Li L, Ma B, Liu T, Wang Z, Ye Q, Peng Y, Wang B, Chen Y, Xu S, Wang K, Dang F, Wang X, Zeng Z, Jian Y, Ren Z, Fan Y, Li X, Liu J, Gao Y, Wei W, Li L. MYC induces CDK4/6 inhibitors resistance by promoting pRB1 degradation. Nat Commun 2024; 15:1871. [PMID: 38424044 PMCID: PMC10904810 DOI: 10.1038/s41467-024-45796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.
Collapse
Affiliation(s)
- Jian Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zixi Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi Ye
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zixuan Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhihua Ren
- Kintor Parmaceutical, Inc, Suzhou, 215123, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xudong Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China.
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
4
|
Schütz S, Bergsdorf C, Hänni-Holzinger S, Lingel A, Renatus M, Gossert AD, Jahnke W. Intrinsically Disordered Regions in the Transcription Factor MYC:MAX Modulate DNA Binding via Intramolecular Interactions. Biochemistry 2024. [PMID: 38264995 DOI: 10.1021/acs.biochem.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor (TF) MYC is in large part an intrinsically disordered oncoprotein. In complex with its obligate heterodimerization partner MAX, MYC preferentially binds E-Box DNA sequences (CANNTG). At promoters containing these sequence motifs, MYC controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. A vast network of proteins in turn regulates MYC function via intermolecular interactions. In this work, we establish another layer of MYC regulation by intramolecular interactions. We used nuclear magnetic resonance (NMR) spectroscopy to identify and map multiple binding sites for the C-terminal MYC:MAX DNA-binding domain (DBD) on the intrinsically disordered regions (IDRs) in the MYC N-terminus. We find that these binding events in trans are driven by electrostatic attraction, that they have distinct affinities, and that they are competitive with DNA binding. Thereby, we observe the strongest effects for the N-terminal MYC box 0 (Mb0), a conserved motif involved in MYC transactivation and target gene induction. We prepared recombinant full-length MYC:MAX complex and demonstrate that the interactions identified in this work are also relevant in cis, i.e., as intramolecular interactions. These findings are supported by surface plasmon resonance (SPR) experiments, which revealed that intramolecular IDR:DBD interactions in MYC decelerate the association of MYC:MAX complexes to DNA. Our work offers new insights into how bHLH-LZ TFs are regulated by intramolecular interactions, which open up new possibilities for drug discovery.
Collapse
Affiliation(s)
- Stefan Schütz
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Christian Bergsdorf
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Sandra Hänni-Holzinger
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
5
|
Epasto LM, Pötzl C, Peterlik H, Khalil M, Saint‐Pierre C, Gasparutto D, Sicoli G, Kurzbach D. NMR-identification of the interaction between BRCA1 and the intrinsically disordered monomer of the Myc-associated factor X. Protein Sci 2024; 33:e4849. [PMID: 38037490 PMCID: PMC10731500 DOI: 10.1002/pro.4849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The breast cancer susceptibility 1 (BRCA1) protein plays a pivotal role in modulating the transcriptional activity of the vital intrinsically disordered transcription factor MYC. In this regard, mutations of BRCA1 and interruption of its regulatory activity are related to hereditary breast and ovarian cancer (HBOC). Interestingly, so far, MYC's main dimerization partner MAX (MYC-associated factor X) has not been found to bind BRCA1 despite a high sequence similarity between both oncoproteins. Herein, we show that a potential reason for this discrepancy is the heterogeneous conformational space of MAX, which encloses a well-documented folded coiled-coil homodimer as well as a less common intrinsically disordered monomer state-contrary to MYC, which exists mostly as intrinsically disordered protein in the absence of any binding partner. We show that when the intrinsically disordered state of MAX is artificially overpopulated, the binding of MAX to BRCA1 can readily be observed. We characterize this interaction by nuclear magnetic resonance (NMR) spectroscopy chemical shift and relaxation measurements, complemented with ITC and SAXS data. Our results suggest that BRCA1 directly binds the MAX monomer to form a disordered complex. Though probed herein under biomimetic in-vitro conditions, this finding can potentially stimulate new perspectives on the regulatory network around BRCA1 and its involvement in MYC:MAX regulation.
Collapse
Affiliation(s)
- Ludovica Martina Epasto
- Faculty of Chemistry, Institute for Biological ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaViennaAustria
| | - Christopher Pötzl
- Faculty of Chemistry, Institute for Biological ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaViennaAustria
| | | | - Mahdi Khalil
- CNRS UMR 8516, LASIREUniversity of LilleVilleneuve d'Ascq CedexFrance
| | | | | | - Giuseppe Sicoli
- CNRS UMR 8516, LASIREUniversity of LilleVilleneuve d'Ascq CedexFrance
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute for Biological ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaViennaAustria
| |
Collapse
|
6
|
Li P, Wang W, Zhou R, Ding Y, Li X. The m 5 C methyltransferase NSUN2 promotes codon-dependent oncogenic translation by stabilising tRNA in anaplastic thyroid cancer. Clin Transl Med 2023; 13:e1466. [PMID: 37983928 PMCID: PMC10659772 DOI: 10.1002/ctm2.1466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Translation dysregulation plays a crucial role in tumourigenesis and cancer progression. Oncogenic translation relies on the stability and availability of tRNAs for protein synthesis, making them potential targets for cancer therapy. METHODS This study performed immunohistochemistry analysis to assess NSUN2 levels in thyroid cancer. Furthermore, to elucidate the impact of NSUN2 on anaplastic thyroid cancer (ATC) malignancy, phenotypic assays were conducted. Drug inhibition and time-dependent plots were employed to analyse drug resistance. Liquid chromatography-mass spectrometry and bisulphite sequencing were used to investigate the m5 C methylation of tRNA at both global and single-base levels. Puromycin intake and high-frequency codon reporter assays verified the protein translation level. By combining mRNA and ribosome profiling, a series of downstream proteins and codon usage bias were identified. The acquired data were further validated by tRNA sequencing. RESULTS This study observed that the tRNA m5 C methyltransferase NSUN2 was up-regulated in ATC and is associated with dedifferentiation. Furthermore, NSUN2 knockdown repressed ATC formation, proliferation, invasion and migration both in vivo and in vitro. Moreover, NSUN2 repression enhanced the sensitivity of ATC to genotoxic drugs. Mechanically, NSUN2 catalyses tRNA structure-related m5 C modification, stabilising tRNA that maintains homeostasis and rapidly transports amino acids, particularly leucine. This stable tRNA has a substantially increased efficiency necessary to support a pro-cancer translation program including c-Myc, BCL2, RAB31, JUNB and TRAF2. Additionally, the NSUN2-mediated variations in m5C levels and different tRNA Leu iso-decoder families, partially contribute to a codon-dependent translation bias. Surprisingly, targeting NSUN2 disrupted the c-Myc to NSUN2 cycle in ATC. CONCLUSIONS This research revealed that a pro-tumour m5C methyltransferase, dynamic tRNA stability regulation and downstream oncogenes, c-Myc, elicits a codon-dependent oncogenic translation network that enhances ATC growth and formation. Furthermore, it provides new opportunities for targeting translation reprogramming in cancer cells.
Collapse
Affiliation(s)
- Peng Li
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
- Department of Hepatobiliary SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wenlong Wang
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - Ruixin Zhou
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ying Ding
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinying Li
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
7
|
Oei V, Chuang LSH, Matsuo J, Srivastava S, Teh M, Ito Y. RUNX3 inactivates oncogenic MYC through disruption of MYC/MAX complex and subsequent recruitment of GSK3β-FBXW7 cascade. Commun Biol 2023; 6:689. [PMID: 37400551 DOI: 10.1038/s42003-023-05037-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
MYC is one of the most commonly dysregulated proto-oncogenes in cancer. MYC promotes cancer initiation and maintenance by regulating multiple biological processes, such as proliferation and stem cell function. Here, we show that developmental regulator RUNX3 targets MYC protein for rapid degradation through the glycogen synthase kinase-3 beta-F-box/WD repeat-containing protein 7 (GSK3β-FBXW7) proteolytic pathway. The evolutionarily conserved Runt domain of RUNX3 interacts directly with the basic helix-loop-helix leucine zipper of MYC, resulting in the disruption of MYC/MAX and MYC/MIZ-1 interactions, enhanced GSK3β-mediated phosphorylation of MYC protein at threonine-58 and its subsequent degradation via the ubiquitin-proteasomal pathway. We therefore uncover a previously unknown mode of MYC destabilization by RUNX3 and provide an explanation as to why RUNX3 inhibits early-stage cancer development in gastrointestinal and lung mouse cancer models.
Collapse
Affiliation(s)
- Vincent Oei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Graduate School, Integrative Sciences and Engineering Programme, Singapore, Singapore
| | - Linda Shyue Huey Chuang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Schütz S, Bergsdorf C, Goretzki B, Lingel A, Renatus M, Gossert AD, Jahnke W. The disordered MAX N-terminus modulates DNA binding of the transcription factor MYC:MAX. J Mol Biol 2022; 434:167833. [PMID: 36174765 DOI: 10.1016/j.jmb.2022.167833] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/15/2022]
Abstract
The intrinsically disordered protein MYC belongs to the family of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors (TFs). In complex with its cognate binding partner MAX, MYC preferentially binds to E-Box promotor sequences where it controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. Intramolecular regulation of MYC:MAX has not yet been investigated in detail. In this work, we use Nuclear Magnetic Resonance (NMR) spectroscopy to identify and map interactions between the disordered MAX N-terminus and the MYC:MAX DNA binding domain (DBD). We find that this binding event is mainly driven by electrostatic interactions and that it is competitive with DNA binding. Using Nuclear Magnetic resonance (NMR) spectroscopy and Surface Plasmon Resonance (SPR), we demonstrate that the MAX N-terminus serves to accelerate DNA binding kinetics of MYC:MAX and MAX:MAX dimers, while it simultaneously provides specificity for E-Box DNA. We also establish that these effects are further enhanced by Casein Kinase 2-mediated phosphorylation of two serine residues in the MAX N-terminus. Our work provides new insights how bHLH-LZ TFs are regulated by intramolecular interactions between disordered regions and the folded DNA binding domain.
Collapse
Affiliation(s)
- Stefan Schütz
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Christian Bergsdorf
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Benedikt Goretzki
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Alvar D Gossert
- Department of Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.
| |
Collapse
|
9
|
Using Flow Cytometry to Study Myc's Role in Shaping the Tumor Immune Microenvironment. Methods Mol Biol 2021. [PMID: 34019297 DOI: 10.1007/978-1-0716-1476-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Myc is deregulated in most-if not all-cancers, and it not only promotes tumor progression by inducing cell proliferation but is also responsible for tumor immune evasion. In a nutshell, MYC promotes the development of tumor-associated macrophages, impairs the cellular response to interferons, induces the expression of immunosuppressive molecules, and excludes tumor infiltrating lymphocytes (TILs) from the tumor site. Based on the insights into the role of MYC in promoting and regulating immune evasion by cancer cells, it is of special interest to study the different immune cell populations infiltrating the tumors. MYC inhibition has emerged as a potential new strategy for the treatment of cancer, directly inhibiting tumor progression while also counteracting the immunosuppressive tumor microenvironment, allowing an optimal anti-tumor immune response. Hence, this chapter describes a flow cytometry-based method to study the different immune cell subsets infiltrating the tumor by combining surface, cytoplasmic, and nuclear multicolor protein stainings.
Collapse
|
10
|
Identifying and Validating MYC:Protein Interactors in Pursuit of Novel Anti-MYC Therapies. Methods Mol Biol 2021. [PMID: 34019286 DOI: 10.1007/978-1-0716-1476-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
By identifying MYC protein-protein interactors, we aim to gain a deeper mechanistic understanding of MYC as a regulator of gene transcription and potent oncoprotein. This information can then be used to devise strategies for disrupting critical MYC protein-protein interactions to inhibit MYC-driven tumorigenesis. In this chapter, we discuss four techniques to identify and validate MYC-interacting partners. First, we highlight BioID, a powerful discovery method used to identify high-confidence proximal interactors in living cells. We also discuss bioinformatic prioritization strategies for the BioID-derived MYC-proximal complexes. Next, we discuss how protein interactions can be validated using techniques such as in vivo-in vitro pull-down assays and the proximity ligation assay (PLA). We conclude with an overview of biolayer interferometry (BLI), a quantitative method used to characterize direct interactions between two proteins in vitro. Overall, we highlight the principles of each assay and provide methodology necessary to conduct these experiments and adapt them to the study of interactors of additional proteins of interest.
Collapse
|
11
|
Loening NM, Barbar E. Structural characterization of the self-association domain of swallow. Protein Sci 2021; 30:1056-1063. [PMID: 33641207 DOI: 10.1002/pro.4055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/29/2023]
Abstract
Swallow, a 62 kDa multidomain protein, is required for the proper localization of several mRNAs involved in the development of Drosophila oocytes. The dimerization of Swallow depends on a 71-residue self-association domain in the center of the protein sequence, and is significantly stabilized by a binding interaction with dynein light chain (LC8). Here, we detail the use of solution-state nuclear magnetic resonance spectroscopy to characterize the structure of this self-association domain, thereby establishing that this domain forms a parallel coiled-coil and providing insight into how the stability of the dimerization interaction is regulated.
Collapse
Affiliation(s)
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
12
|
Beaulieu ME, Castillo F, Soucek L. Structural and Biophysical Insights into the Function of the Intrinsically Disordered Myc Oncoprotein. Cells 2020; 9:E1038. [PMID: 32331235 PMCID: PMC7226237 DOI: 10.3390/cells9041038] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Myc is a transcription factor driving growth and proliferation of cells and involved in the majority of human tumors. Despite a huge body of literature on this critical oncogene, our understanding of the exact molecular determinants and mechanisms that underlie its function is still surprisingly limited. Indubitably though, its crucial and non-redundant role in cancer biology makes it an attractive target. However, achieving successful clinical Myc inhibition has proven challenging so far, as this nuclear protein is an intrinsically disordered polypeptide devoid of any classical ligand binding pockets. Indeed, Myc only adopts a (partially) folded structure in some contexts and upon interacting with some protein partners, for instance when dimerizing with MAX to bind DNA. Here, we review the cumulative knowledge on Myc structure and biophysics and discuss the implications for its biological function and the development of improved Myc inhibitors. We focus this biophysical walkthrough mainly on the basic region helix-loop-helix leucine zipper motif (bHLHLZ), as it has been the principal target for inhibitory approaches so far.
Collapse
Affiliation(s)
| | | | - Laura Soucek
- Peptomyc S.L., Edifici Cellex, 08035 Barcelona, Spain; (F.C.); (L.S.)
- Vall d’Hebron Institute of Oncology (VHIO), Edifici Cellex, 08035 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08035 Bellaterra, Spain
| |
Collapse
|
13
|
Massó-Vallés D, Beaulieu ME, Soucek L. MYC, MYCL, and MYCN as therapeutic targets in lung cancer. Expert Opin Ther Targets 2020; 24:101-114. [PMID: 32003251 DOI: 10.1080/14728222.2020.1723548] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Lung cancer is the leading cause of cancer-related mortality globally. Despite recent advances with personalized therapies and immunotherapy, the prognosis remains dire and recurrence is frequent. Myc is an oncogene deregulated in human cancers, including lung cancer, where it supports tumorigenic processes and progression. Elevated Myc levels have also been associated with resistance to therapy.Areas covered: This article summarizes the genomic and transcriptomic studies that compile evidence for (i) MYC, MYCN, and MYCL amplification and overexpression in lung cancer patients, and (ii) their prognostic significance. We collected the most recent literature regarding the development of Myc inhibitors where the emphasis is on those inhibitors tested in lung cancer experimental models and their potential for future clinical application.Expert opinion: The targeting of Myc in lung cancer is potentially an unprecedented opportunity for inhibiting a key player in tumor progression and maintenance and therapeutic resistance. Myc inhibitory strategies are on the path to their clinical application but further work is necessary for the assessment of their use in combination with standard treatment approaches. Given the role of Myc in immune suppression, a significant opportunity may exist in the combination of Myc inhibitors with immunotherapies.
Collapse
Affiliation(s)
| | | | - Laura Soucek
- Peptomyc S.L., Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain.,Edifici Cellex, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Institució Catalana De Recerca I Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma De Barcelona, Bellaterra, Spain
| |
Collapse
|
14
|
Panova S, Cliff MJ, Macek P, Blackledge M, Jensen MR, Nissink JWM, Embrey KJ, Davies R, Waltho JP. Mapping Hidden Residual Structure within the Myc bHLH-LZ Domain Using Chemical Denaturant Titration. Structure 2019; 27:1537-1546.e4. [DOI: 10.1016/j.str.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/05/2019] [Accepted: 07/17/2019] [Indexed: 12/25/2022]
|
15
|
Ray S, Vazquez Reyes S, Xiao C, Sun J. Effects of membrane lipid composition on Mycobacterium tuberculosis EsxA membrane insertion: A dual play of fluidity and charge. Tuberculosis (Edinb) 2019; 118:101854. [PMID: 31430698 PMCID: PMC6817408 DOI: 10.1016/j.tube.2019.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Abstract
As a key virulence factor of Mycobacterium tuberculosis, EsxA or 6-kDa early secreted antigenic target (ESAT-6) has been implicated in phagosome rupture and mycobacterial translocation from the phagosome to the cytosol within macrophages. Our previous studies have shown that EsxA permeabilizes liposomal membrane at acidic pH and a membrane-permeabilization defective mutant Q5K attenuates mycobacterial cytosolic translocation and virulence in macrophages. To further probe the mechanism of EsxA membrane permeabilization, here we characterized the effects of various lipid compositions, including biologically relevant phagosome-mimicking lipids and lipid rafts, on the structural stability and membrane insertion of EsxA WT and Q5K. We have found a complex dual play of membrane fluidity and charge in regulating EsxA membrane insertion. Moreover, Q5K affects the membrane insertion through a structure- and lipid composition-independent mechanism. The results of this study provide a novel insights into the mechanism of EsxA membrane interaction.
Collapse
Affiliation(s)
- Supriyo Ray
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Salvador Vazquez Reyes
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA; Border Biomedical Research Center at University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA
| | - Chuan Xiao
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA; Border Biomedical Research Center at University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA
| | - Jianjun Sun
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA; Border Biomedical Research Center at University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA.
| |
Collapse
|
16
|
Zheng T, Chen Y, Shi Y, Feng H. High efficiency liposome fusion induced by reducing undesired membrane peptides interaction. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA full membrane fusion model which attains both complete lipid mixing and content mixing liposomal membranes mediated by coiled-coil forming lipopeptides LPK [L-PEG12-(KIAALKE)3] and LPE [L-PEG12-(EIAALEK)3] is presented. The electrostatic effects of lipid anchored peptides on fusion efficiency was investigated. For this, the original amino acid sequence of the membrane bound LPK was varied at its ‘f’-position of the helical structure, i.e. via mutating the anionic glutamate residues by either neutral serines or cationic lysines. Both CD and fluorescence measurements showed that replacing the negatively charged glutamate did not significantly alter the peptide ability to form a coiled coil, but lipid mixing and content mixing assays showed more efficient liposome-liposome fusion resulting in almost quantitative content mixing for the lysine mutated analogue (LPKK) in conjunction with LPE. A mechanism is proposed for a fusion model triggered by membrane destabilizing effects mediated by the membrane destabilizing activety of LPK in cooperation with the electrostatic activity of LPE. This new insight may enlightens the further development of a promising nano carrier tool for biomedical applications.
Collapse
Affiliation(s)
- Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Shenzhen, China
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Yun Chen
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Yu Shi
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Huanhuan Feng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
17
|
Stuchfield D, Barran P. Unique insights to intrinsically disordered proteins provided by ion mobility mass spectrometry. Curr Opin Chem Biol 2018; 42:177-185. [DOI: 10.1016/j.cbpa.2018.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 02/05/2023]
|
18
|
Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol Adv 2017; 35:575-596. [PMID: 28522213 PMCID: PMC7127164 DOI: 10.1016/j.biotechadv.2017.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/23/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
Vaccination has been one of the most successful breakthroughs in medical history. In recent years, epitope-based subunit vaccines have been introduced as a safer alternative to traditional vaccines. However, they suffer from limited immunogenicity. Nanotechnology has shown value in solving this issue. Different kinds of nanovaccines have been employed, among which virus-like nanoparticles (VLPs) and self-assembled peptide nanoparticles (SAPNs) seem very promising. Recently, SAPNs have attracted special interest due to their unique properties, including molecular specificity, biodegradability, and biocompatibility. They also resemble pathogens in terms of their size. Their multivalency allows an orderly repetitive display of antigens on their surface, which induces a stronger immune response than single immunogens. In vaccine design, SAPN self-adjuvanticity is regarded an outstanding advantage, since the use of toxic adjuvants is no longer required. SAPNs are usually composed of helical or β-sheet secondary structures and are tailored from natural peptides or de novo structures. Flexibility in subunit selection opens the door to a wide variety of molecules with different characteristics. SAPN engineering is an emerging area, and more novel structures are expected to be generated in the future, particularly with the rapid progress in related computational tools. The aim of this review is to provide a state-of-the-art overview of self-assembled peptide nanoparticles and their use in vaccine design in recent studies. Additionally, principles for their design and the application of computational approaches to vaccine design are summarized.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Golkar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutics Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Hajighahramani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Bayliss R, Burgess SG, Leen E, Richards MW. A moving target: structure and disorder in pursuit of Myc inhibitors. Biochem Soc Trans 2017; 45:709-717. [PMID: 28620032 DOI: 10.1042/bst20160328] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 02/11/2024]
Abstract
The Myc proteins comprise a family of ubiquitous regulators of gene expression implicated in over half of all human cancers. They interact with a large number of other proteins, such as transcription factors, chromatin-modifying enzymes and kinases. Remarkably, few of these interactions have been characterized structurally. This is at least in part due to the intrinsically disordered nature of Myc proteins, which adopt a defined conformation only in the presence of binding partners. Owing to this behaviour, crystallographic studies on Myc proteins have been limited to short fragments in complex with other proteins. Most recently, we determined the crystal structure of Aurora-A kinase domain bound to a 28-amino acid fragment of the N-Myc transactivation domain. The structure reveals an α-helical segment within N-Myc capped by two tryptophan residues that recognize the surface of Aurora-A. The kinase domain acts as a molecular scaffold, independently of its catalytic activity, upon which this region of N-Myc becomes ordered. The binding site for N-Myc on Aurora-A is disrupted by certain ATP-competitive inhibitors, such as MLN8237 (alisertib) and CD532, and explains how these kinase inhibitors are able to disrupt the protein-protein interaction to affect Myc destabilization. Structural studies on this and other Myc complexes will lead to the design of protein-protein interaction inhibitors as chemical tools to dissect the complex pathways of Myc regulation and function, which may be developed into Myc inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Selena G Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
20
|
Maltais L, Montagne M, Bédard M, Tremblay C, Soucek L, Lavigne P. Biophysical characterization of the b-HLH-LZ of ΔMax, an alternatively spliced isoform of Max found in tumor cells: Towards the validation of a tumor suppressor role for the Max homodimers. PLoS One 2017; 12:e0174413. [PMID: 28350847 PMCID: PMC5370111 DOI: 10.1371/journal.pone.0174413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/08/2017] [Indexed: 11/19/2022] Open
Abstract
It is classically recognized that the physiological and oncogenic functions of Myc proteins depend on specific DNA binding enabled by the dimerization of its C-terminal basic-region-Helix-Loop-Helix-Leucine Zipper (b-HLH-LZ) domain with that of Max. However, a new paradigm is emerging, where the binding of the c-Myc/Max heterodimer to non-specific sequences in enhancers and promoters drives the transcription of genes involved in diverse oncogenic programs. Importantly, Max can form a stable homodimer even in the presence of c-Myc and bind DNA (specific and non-specific) with comparable affinity to the c-Myc/Max heterodimer. Intriguingly, alterations in the Max gene by germline and somatic mutations or changes in the gene product by alternative splicing (e.g. ΔMax) were recently associated with pheochromocytoma and glioblastoma, respectively. This has led to the proposition that Max is, by itself, a tumor suppressor. However, the actual mechanism through which it exerts such an activity remains to be elucidated. Here, we show that contrary to the WT motif, the b-HLH-LZ of ΔMax does not homodimerize in the absence of DNA. In addition, although ΔMax can still bind the E-box sequence as a homodimer, it cannot bind non-specific DNA in that form, while it can heterodimerize with c-Myc and bind E-box and non-specific DNA as a heterodimer with high affinity. Taken together, our results suggest that the WT Max homodimer is important for attenuating the binding of c-Myc to specific and non-specific DNA, whereas ΔMax is unable to do so. Conversely, the splicing of Max into ΔMax could provoke an increase in overall chromatin bound c-Myc. According to the new emerging paradigm, the splicing event and the stark reduction in homodimer stability and DNA binding should promote tumorigenesis impairing the tumor suppressor activity of the WT homodimer of Max.
Collapse
Affiliation(s)
- Loïka Maltais
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
- PROTÉO; Regroupement Stratégique sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Québec, Canada
| | - Martin Montagne
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
- PROTÉO; Regroupement Stratégique sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Québec, Canada
| | - Mikaël Bédard
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
- PROTÉO; Regroupement Stratégique sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Québec, Canada
| | - Cynthia Tremblay
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
- PROTÉO; Regroupement Stratégique sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Québec, Canada
| | - Laura Soucek
- Vall d’Hebron Institute of Oncology (VHIO), Hospital Vall d’Hebron, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pierre Lavigne
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
- PROTÉO; Regroupement Stratégique sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
Floor RJ, Wijma HJ, Jekel PA, Terwisscha van Scheltinga AC, Dijkstra BW, Janssen DB. X-ray crystallographic validation of structure predictions used in computational design for protein stabilization. Proteins 2015; 83:940-51. [PMID: 25739581 DOI: 10.1002/prot.24791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/11/2015] [Accepted: 02/14/2015] [Indexed: 11/10/2022]
Abstract
Protein engineering aimed at enhancing enzyme stability is increasingly supported by computational methods for calculation of mutant folding energies and for the design of disulfide bonds. To examine the accuracy of mutant structure predictions underlying these computational methods, crystal structures of thermostable limonene epoxide hydrolase variants obtained by computational library design were determined. Four different predicted effects indeed contributed to the obtained stabilization: (i) enhanced interactions between a flexible loop close to the N-terminus and the rest of the protein; (ii) improved interactions at the dimer interface; (iii) removal of unsatisfied hydrogen bonding groups; and (iv) introduction of additional positively charged groups at the surface. The structures of an eightfold and an elevenfold mutant showed that most mutations introduced the intended stabilizing interactions, and side-chain conformations were correctly predicted for 72-88% of the point mutations. However, mutations that introduced a disulfide bond in a flexible region had a larger influence on the backbone conformation than predicted. The enzyme active sites were unaltered, in agreement with the observed preservation of catalytic activities. The structures also revealed how a c-Myc tag, which was introduced for facile detection and purification, can reduce access to the active site and thereby lower the catalytic activity. Finally, sequence analysis showed that comprehensive mutant energy calculations discovered stabilizing mutations that are not proposed by the consensus or B-FIT methods.
Collapse
Affiliation(s)
- Robert J Floor
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Rabe M, Boyle A, Zope HR, Versluis F, Kros A. Determination of oligomeric states of peptide complexes using thermal unfolding curves. Biopolymers 2015; 104:65-72. [DOI: 10.1002/bip.22598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/19/2014] [Accepted: 11/30/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Martin Rabe
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 leiden Netherlands
| | - Aimee Boyle
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 leiden Netherlands
| | - Harshal R. Zope
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 leiden Netherlands
| | - Frank Versluis
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 leiden Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 leiden Netherlands
| |
Collapse
|
23
|
Li C, Wang XF, Chen Z, Zhang Z, Song J. Computational characterization of parallel dimeric and trimeric coiled-coils using effective amino acid indices. MOLECULAR BIOSYSTEMS 2015; 11:354-60. [DOI: 10.1039/c4mb00569d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RFCoil is a novel predictor for parallel coiled-coil dimer and trimer.
Collapse
Affiliation(s)
- Chen Li
- Department of Biochemistry and Molecular Biology
- Faculty of Medicine
- Monash University
- Melbourne
- Australia
| | - Xiao-Feng Wang
- State Key Laboratory of Agrobiotechnology
- College of Biological Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Zhen Chen
- State Key Laboratory of Agrobiotechnology
- College of Biological Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology
- College of Biological Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology
- Faculty of Medicine
- Monash University
- Melbourne
- Australia
| |
Collapse
|
24
|
Zheng T, Boyle A, Robson Marsden H, Valdink D, Martelli G, Raap J, Kros A. Probing coiled-coil assembly by paramagnetic NMR spectroscopy. Org Biomol Chem 2015; 13:1159-68. [DOI: 10.1039/c4ob02125h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here a new method to determine the orientation of coiled-coil peptide motifs is described.
Collapse
Affiliation(s)
- TingTing Zheng
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Aimee Boyle
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Hana Robson Marsden
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Dayenne Valdink
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Giuliana Martelli
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Jan Raap
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Alexander Kros
- Dept. Supramolecular & Biomaterials Chemistry
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| |
Collapse
|
25
|
Vidilaseris K, Shimanovskaya E, Esson HJ, Morriswood B, Dong G. Assembly mechanism of Trypanosoma brucei BILBO1, a multidomain cytoskeletal protein. J Biol Chem 2014; 289:23870-81. [PMID: 25031322 DOI: 10.1074/jbc.m114.554659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Trypanosoma brucei BILBO1 (TbBILBO1) is an essential component of the flagellar pocket collar of trypanosomes. We recently reported the high resolution structure of the N-terminal domain of TbBILBO1. Here, we provide further structural dissections of its other three constituent domains: EF-hand, coiled coil, and leucine zipper. We found that the EF-hand changes its conformation upon calcium binding, the central coiled coil forms an antiparallel dimer, and the C-terminal leucine zipper appears to contain targeting information. Furthermore, interdimer interactions between adjacent leucine zippers allow TbBILBO1 to form extended filaments in vitro. These filaments were additionally found to condense into fibers through lateral interactions. Based on these experimental data, we propose a mechanism for TbBILBO1 assembly at the flagellar pocket collar.
Collapse
Affiliation(s)
- Keni Vidilaseris
- From the Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Ekaterina Shimanovskaya
- From the Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Heather J Esson
- From the Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Brooke Morriswood
- From the Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Gang Dong
- From the Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
26
|
Myc and its interactors take shape. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:469-83. [PMID: 24933113 DOI: 10.1016/j.bbagrm.2014.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
The Myc oncoprotein is a key contributor to the development of many human cancers. As such, understanding its molecular activities and biological functions has been a field of active research since its discovery more than three decades ago. Genome-wide studies have revealed Myc to be a global regulator of gene expression. The identification of its DNA-binding partner protein, Max, launched an area of extensive research into both the protein-protein interactions and protein structure of Myc. In this review, we highlight key insights with respect to Myc interactors and protein structure that contribute to the understanding of Myc's roles in transcriptional regulation and cancer. Structural analyses of Myc show many critical regions with transient structures that mediate protein interactions and biological functions. Interactors, such as Max, TRRAP, and PTEF-b, provide mechanistic insight into Myc's transcriptional activities, while others, such as ubiquitin ligases, regulate the Myc protein itself. It is appreciated that Myc possesses a large interactome, yet the functional relevance of many interactors remains unknown. Here, we discuss future research trends that embrace advances in genome-wide and proteome-wide approaches to systematically elucidate mechanisms of Myc action. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
27
|
Kızılsavaş G, Saxena S, Żerko S, Koźmiński W, Bister K, Konrat R. ¹H, ¹³C, and ¹⁵N backbone and side chain resonance assignments of the C-terminal DNA binding and dimerization domain of v-Myc. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:321-324. [PMID: 23179058 PMCID: PMC3758509 DOI: 10.1007/s12104-012-9437-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/31/2012] [Indexed: 06/29/2024]
Abstract
The oncogenic transcription factor Myc is one of the most interesting members of the basic-helix-loop-helix-zipper (bHLHZip) protein family. Deregulation of Myc via gene amplification, chromosomal translocation or other mechanisms lead to tumorigenesis including Burkitt lymphoma, multiple myeloma, and many other malignancies. The oncogene myc is a highly potent transforming gene and capable to transform various cell types in vivo and in vitro. Its oncogenic activity initialized by deregulated expression leads to a shift of the equilibrium in the Myc/Max/Mad network towards Myc/Max complexes. The Myc/Max heterodimerization is a prerequisite for transcriptional functionality of Myc. Primarily, we are focusing on the apo-state of the C-terminal domain of v-Myc, the retroviral homolog of human c-Myc. Based on multi-dimensional NMR measurements v-Myc appears to be neither a fully structured nor a completely unstructured protein. The bHLHZip domain of v-Myc does not exist as a random coil but exhibits partially pre-formed α-helical regions in its apo-state. In order to elucidate the structural propensities of Myc in more detail, the backbone and side-chain assignments obtained here for apo-Myc are a crucial prerequisite for further NMR measurements.
Collapse
Affiliation(s)
- Gönül Kızılsavaş
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Saurabh Saxena
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Szymon Żerko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Klaus Bister
- Institute of Biochemistry, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Robert Konrat
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| |
Collapse
|
28
|
Harvey SR, Porrini M, Stachl C, MacMillan D, Zinzalla G, Barran PE. Small-molecule inhibition of c-MYC:MAX leucine zipper formation is revealed by ion mobility mass spectrometry. J Am Chem Soc 2012; 134:19384-92. [PMID: 23106332 DOI: 10.1021/ja306519h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The leucine zipper interaction between MAX and c-MYC has been studied using mass spectrometry and drift time ion mobility mass spectrometry (DT IM-MS) in addition to circular dichroism spectroscopy. Peptides comprising the leucine zipper sequence with (c-MYC-Zip residues 402-434) and without a postulated small-molecule binding region (c-MYC-ZipΔDT residues 406-434) have been synthesized, along with the corresponding MAX leucine zipper (MAX-Zip residues 74-102). c-MYC-Zip:MAX-Zip complexes are observed both in the absence and in the presence of the reported small-molecule inhibitor 10058-F4 for both forms of c-MYC-Zip. DT IM-MS, in combination with molecular dynamics (MD), shows that the c-MYC-Zip:MAX-Zip complex [M+5H](5+) exists in two conformations, one extended with a collision cross section (CCS) of 1164 ± 9.3 Å(2) and one compact with a CCS of 982 ± 6.6 Å(2); similar values are observed for the two forms of c-MYC-ZipΔDT:MAX-Zip. Candidate geometries for the complexes have been evaluated with MD simulations. The helical leucine zipper structure previously determined from NMR measurements (Lavigne, P.; et al. J. Mol. Biol. 1998, 281, 165), altered to include the DT region and subjected to a gas-phase minimization, yields a CCS of 1247 Å(2), which agrees with the extended conformation we observe experimentally. More extensive MD simulations provide compact complexes which are found to be highly disordered, with CCSs that correspond to the compact form from experiment. In the presence of the ligand, the leucine zipper conformation is completely inhibited and only the more disordered species is observed, providing a novel method to study the effect of interactions of disordered systems and subsequent inhibition of the formation of an ordered helical complex.
Collapse
Affiliation(s)
- Sophie R Harvey
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | | | | | | | | | | |
Collapse
|
29
|
Beaulieu ME, McDuff FO, Frappier V, Montagne M, Naud JF, Lavigne P. New structural determinants for c-Myc specific heterodimerization with Max and development of a novel homodimeric c-Myc b-HLH-LZ. J Mol Recognit 2012; 25:414-26. [PMID: 22733550 DOI: 10.1002/jmr.2203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
c-Myc must heterodimerize with Max to accomplish its functions as a transcription factor. This specific heterodimerization occurs through the b-HLH-LZ (basic region, helix 1-loop-helix 2-leucine zipper) domains. In fact, many studies have shown that the c-Myc b-HLH-LZ (c-Myc'SH) preferentially forms a heterodimer with the Max b-HLH-LZ (Max'SH). The primary mechanism underlying the specific heterodimerization lies on the destabilization of both homodimers and the formation of a more stable heterodimer. In this regard, it has been widely reported that c-Myc'SH has low solubility and homodimerizes poorly and that repulsions within the LZ domain account for the homodimer instability. Here, we show that replacing one residue in the basic region and one residue in Helix 1 (H(1)) of c-Myc'SH with corresponding residues conserved in b-HLH proteins confers to c-Myc'SH a higher propensity to form a stable homodimer in solution. In stark contrast to the wild-type protein, this double mutant (L362R, R367L) of the c-Myc b-HLH-LZ (c-Myc'RL) shows limited heterodimerization with Max'SH in vitro. In addition, c-Myc'RL forms highly stable and soluble complexes with canonical as well as non-canonical E-box probes. Altogether, our results demonstrate for the first time that structural determinants driving the specific heterodimerization of c-Myc and Max are embedded in the basic region and H(1) of c-Myc and that these can be exploited to engineer a novel homodimeric c-Myc b-HLH-LZ with the ability of binding the E-box sequence autonomously and with high affinity.
Collapse
Affiliation(s)
- Marie-Eve Beaulieu
- Département de Pharmacologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Ray S, Taylor M, Banerjee T, Tatulian SA, Teter K. Lipid rafts alter the stability and activity of the cholera toxin A1 subunit. J Biol Chem 2012; 287:30395-405. [PMID: 22787142 DOI: 10.1074/jbc.m112.385575] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholera toxin (CT) travels from the cell surface to the endoplasmic reticulum (ER) as an AB holotoxin. ER-specific conditions then promote the dissociation of the catalytic CTA1 subunit from the rest of the toxin. CTA1 is held in a stable conformation by its assembly in the CT holotoxin, but the dissociated CTA1 subunit is an unstable protein that spontaneously assumes a disordered state at physiological temperature. This unfolding event triggers the ER-to-cytosol translocation of CTA1 through the quality control mechanism of ER-associated degradation. The translocated pool of CTA1 must regain a folded, active structure to modify its G protein target which is located in lipid rafts at the cytoplasmic face of the plasma membrane. Here, we report that lipid rafts place disordered CTA1 in a functional conformation. The hydrophobic C-terminal domain of CTA1 is essential for binding to the plasma membrane and lipid rafts. These interactions inhibit the temperature-induced unfolding of CTA1. Moreover, lipid rafts could promote a gain of structure in the disordered, 37 °C conformation of CTA1. This gain of structure corresponded to a gain of function: whereas CTA1 by itself exhibited minimal in vitro activity at 37 °C, exposure to lipid rafts resulted in substantial toxin activity at 37 °C. In vivo, the disruption of lipid rafts with filipin substantially reduced the activity of cytosolic CTA1. Lipid rafts thus exhibit a chaperone-like function that returns disordered CTA1 to an active state and is required for the optimal in vivo activity of CTA1.
Collapse
Affiliation(s)
- Supriyo Ray
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | |
Collapse
|
31
|
Follis AV, Galea CA, Kriwacki RW. Intrinsic Protein Flexibility in Regulation of Cell Proliferation: Advantages for Signaling and Opportunities for Novel Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:27-49. [DOI: 10.1007/978-1-4614-0659-4_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
32
|
Abstract
The c-Myc oncogene encodes a multifunctional transcription factor that directs the expression of genes required for cell growth and proliferation. Consistent with its potent growth-promoting properties, cells have evolved numerous mechanisms that limit the expression and activity of Myc. One of the most prominent of these mechanisms is proteolysis, which destroys Myc within minutes of its synthesis. The rapid and controlled destruction of Myc keeps its levels low and precisely tied to processes that regulate Myc production. In this review, we discuss how Myc protein stability is regulated and the influence of Myc proteolysis on its function. We describe what is known about how Myc is destroyed by ubiquitin (Ub)-mediated proteolysis, attempt to rationalize the role of different Ub-protein ligases and deubiquitylating enzymes (dUbs) in the regulation of Myc stability, and detail how these processes go awry in cancer. Finally, we discuss how our understanding of Myc regulation by the ubiquitin-proteasome system (UPS) can expose strategies for therapeutic intervention in human malignancies.
Collapse
Affiliation(s)
- Lance R Thomas
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
33
|
Banerjee T, Pande A, Jobling MG, Taylor M, Massey S, Holmes RK, Tatulian SA, Teter K. Contribution of subdomain structure to the thermal stability of the cholera toxin A1 subunit. Biochemistry 2010; 49:8839-46. [PMID: 20839789 DOI: 10.1021/bi101201c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic A1 subunit of cholera toxin (CTA1) is an ADP-ribosyltransferase with three distinct subdomains: CTA1(1) forms the catalytic core of the toxin, CTA1(2) is an extended linker between CTA1(1) and CTA1(3), and CTA1(3) is a compact globular region. CTA1 crosses the endoplasmic reticulum (ER) membrane to enter the cytosol where it initiates a cytopathic effect. Toxin translocation involves ER-associated degradation (ERAD), a quality control system that exports misfolded proteins from the ER to the cytosol. At the physiological temperature of 37 °C, the free CTA1 subunit is in a partially unfolded conformation that triggers its ERAD-mediated translocation to the cytosol. Thus, the temperature sensitivity of CTA1 structure is an important determinant of its function. Here, we examined the contribution of CTA1 subdomain structure to the thermal unfolding of CTA1. Biophysical measurements demonstrated that the CTA1(1) subdomain is thermally unstable and that the CTA1(2) subdomain provides a degree of conformational stability to CTA1(1). The CTA1(3) subdomain does not affect the overall stability of CTA1, but the thermal unfolding of CTA1 appears to begin with a local loss of structure in the CTA1(3) subdomain: glycerol and acidic pH both inhibited the thermal disordering of full-length CTA1 but not the disordering of a CTA1 construct lacking the A1(3) subdomain. These observations provide mechanistic insight regarding the thermal unfolding of CTA1, an event which facilitates its subsequent translocation to the cytosol.
Collapse
Affiliation(s)
- Tuhina Banerjee
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Apostolovic B, Danial M, Klok HA. Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem Soc Rev 2010; 39:3541-75. [DOI: 10.1039/b914339b] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
McDuff FO, Naud JF, Montagne M, Sauvé S, Lavigne P. The Max homodimeric b-HLH-LZ significantly interferes with the specific heterodimerization between the c-Myc and Max b-HLH-LZ in absence of DNA: a quantitative analysis. J Mol Recognit 2009; 22:261-9. [PMID: 19189276 DOI: 10.1002/jmr.938] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Specific heterodimerization plays a crucial role in the regulation of the biology of the cell. For example, the specific heterodimerization between the b-HLH-LZ transcription factors c-Myc and Max is a prerequisite for c-Myc transcriptional activity that leads to cell growth, proliferation and tumorigenesis. On the other hand, the Mad proteins can compete with c-Myc for Max. The Mad/Max heterodimer antagonizes the effect of the c-Myc/Max heterodimer. In this contribution, we have focused on the specific heterodimerization between the b-HLH-LZ domains of c-Myc and Max using CD and NMR. While the c-Myc and Max b-HLH-LZ domains are found to preferentially form a heterodimer; we demonstrate for the first time that a significant population of the Max homodimeric b-HLH-LZ can also form and hence interferes significantly with the specific heterodimerization. This indicates that the Max/Max homodimer can also interfere with c-Myc/Max functions, therefore adding to the complexity of the regulation of transcription by the Myc/Max/Mad network. The demonstration of the existence of the homodimeric population was made possible by the application of numerical routines that enable the simulation of composite spectroscopic signal (e.g. CD) as a function of temperature and total concentration of proteins. From a systems biology perspective, our routines may be of general interest as they offer the opportunity to treat many competing equilibriums in order to predict the probability of existence of protein complexes.
Collapse
Affiliation(s)
- François-Olivier McDuff
- Département de Pharmacologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | |
Collapse
|
36
|
Roostaee A, Côté S, Roucou X. Aggregation and amyloid fibril formation induced by chemical dimerization of recombinant prion protein in physiological-like conditions. J Biol Chem 2009; 284:30907-16. [PMID: 19710507 DOI: 10.1074/jbc.m109.057950] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are caused by the conversion of a cellular protein (PrP(C)) into a misfolded, aggregated isoform (PrP(Res)). Misfolding of recombinant PrP(C) in the absence of PrP(Res) template, cellular factors, denaturing agents, or at neutral pH has not been achieved. A number of studies indicate that dimerization of PrP(C) may be a key step in the aggregation process. In an effort to understand the molecular event that may activate misfolding of PrP(C) in more relevant physiological conditions, we tested if enforced dimerization of PrP(C) may induce a conformational change reminiscent of the conversion of PrP(C) to PrP(Res). We used a well described inducible dimerization strategy whereby a chimeric PrP(C) composed of a modified FK506-binding protein (Fv) fused with PrP(C) and termed Fv-PrP is incubated in the presence of a monomeric FK506 or dimerizing AP20187 ligand. Addition of AP20187 but not FK506 to recombinant Fv-PrP (rFv-PrP) in physiological-like conditions resulted in a rapid conformational change characterized by an increase in beta-sheet structure and simultaneous aggregation of the protein. Aggregates were partially resistant to proteinase K and induced the conversion of soluble rFv-PrP in serial seeding experiments. As judged from thioflavin T binding and electron microscopy, aggregates converted to amyloid fibers. Aggregates were toxic to cultured cells, whereas soluble rFv-PrP and amyloid fibers were harmless. This study strongly supports the proposition that dimerization of PrP(C) is a key pathological primary event in the conversion of PrP(C) and may initiate the pathogenesis of prion diseases.
Collapse
Affiliation(s)
- Alireza Roostaee
- Department of Biochemistry, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
37
|
Hodges RS, Mills J, McReynolds S, Kirwan JP, Tripet B, Osguthorpe D. Identification of a unique "stability control region" that controls protein stability of tropomyosin: A two-stranded alpha-helical coiled-coil. J Mol Biol 2009; 392:747-62. [PMID: 19627992 DOI: 10.1016/j.jmb.2009.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Nine recombinant chicken skeletal alpha-tropomyosin proteins were prepared, eight C-terminal deletion constructs and the full length protein (1-81, 1-92, 1-99, 1-105, 1-110, 1-119, 1-131, 1-260 and 1-284) and characterized by circular dichroism spectroscopy and analytical ultracentrifugation. We identified for the first time, a stability control region between residues 97 and 118. Fragments of tropomyosin lacking this region (1-81, 1-92, and 1-99) still fold into two-stranded alpha-helical coiled-coils but are significantly less stable (T(m) between 26-28.5 degrees C) than longer fragments containing this region (1-119, 1-131, 1-260 and 1-284) which show a large increase in their thermal midpoints (T(m) 40-43 degrees C) for a DeltaT(m) of 16-18 degrees C between 1-99 and 1-119. We further investigated two additional fragments that ended between residues 99 and 119, that is fragments 1-105 and 1-110. These fragments were more stable than 1-99 and less stable than 1-119, and showed that there were three separate sites that synergistically contribute to the large jump in protein stability (electrostatic clusters 97-104 and 112-118, and a hydrophobic interaction from Leu 110). All the residues involved in these stabilizing interactions are located outside the hydrophobic core a and d positions that have been shown to be the major contributor to coiled-coil stability. Our results show clearly that protein stability is more complex than previously thought and unique sites can synergistically control protein stability over long distances.
Collapse
Affiliation(s)
- Robert S Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, 80045, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Jouaux EM, Timm BB, Arndt KM, Exner TE. Improving the interaction of Myc-interfering peptides with Myc using molecular dynamics simulations. J Pept Sci 2009; 15:5-15. [PMID: 19035580 DOI: 10.1002/psc.1078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previously, a Myc-interfering peptide (Mip) was identified for the targeted inactivation of the Myc:Max complex by the combination of rational design and an in vivo protein-fragment complementation assay. In the subsequent work presented here, molecular dynamics simulations and free energy calculations based on the molecular mechanics GBSA method were performed to define the contribution of the different amino acids in the Myc:Mip coiled coil domain, and compared to wild-type Myc:Max. For further optimization of the Myc interference, point mutations were introduced into Mip and analyzed, from which two showed much higher binding affinities in the computational studies in good agreement with the experiment. These mutants with very high potential for inactivation of Myc can now be used as starting point for further optimizations based on the computational as well as experimental protocols presented here.
Collapse
Affiliation(s)
- Eva M Jouaux
- Department of Biology, Albert-Ludwigs University Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
39
|
The mechanism of specific binding of free cholesterol by the steroidogenic acute regulatory protein: evidence for a role of the C-terminal alpha-helix in the gating of the binding site. Biosci Rep 2009; 29:89-101. [PMID: 18729825 DOI: 10.1042/bsr20080111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Steroidogenesis depends on the delivery of free cholesterol to the inner mitochondrial membrane by StAR (steroidogenic acute regulatory protein). Mutations in the StAR gene leads to proteins with limited cholesterol-binding capacity. This gives rise to the accumulation of cytoplasmic cholesterol, a deficit in steroid hormone production and to the medical condition of lipoid congenital adrenal hyperplasia. A detailed understanding of the mechanism of the specific binding of free cholesterol by StAR would be a critical asset in understanding the molecular origin of this disease. Previous studies have led to the proposal that the C-terminal alpha-helix 4 of StAR was undergoing a folding/unfolding transition. This transition is thought to gate the cholesterol-binding site. Moreover, a conserved salt bridge (Glu169-Arg188) in the cholesterol-binding site is also proposed to be critical to the binding process. Interestingly, some of the documented clinical mutations occur at this salt bridge (E169G, E169K and R188C) and in the C-terminal alpha-helix 4 (L275P). In the present study, using rationalized mutagenesis, activity assays, CD, thermodynamic studies and molecular modelling, we characterized the alpha-helix 4 mutations L271N and L275P, as well as the salt bridge double mutant E169M/R188M. The results provide experimental validation for the gating mechanism of the cholesterol-binding site by the C-terminal alpha-helix and the importance of the salt bridge in the binding mechanism. Altogether, our results offer a molecular framework for understanding the impact of clinical mutations on the reduction of the binding affinity of StAR for free cholesterol.
Collapse
|
40
|
Bardhan JP. Numerical solution of boundary-integral equations for molecular electrostatics. J Chem Phys 2009; 130:094102. [PMID: 19275391 DOI: 10.1063/1.3080769] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
Collapse
Affiliation(s)
- Jaydeep P Bardhan
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| |
Collapse
|
41
|
Jouaux EM, Schmidtkunz K, Müller KM, Arndt KM. Targeting the c-Myc coiled coil with interfering peptides. J Pept Sci 2008; 14:1022-31. [PMID: 18465834 DOI: 10.1002/psc.1038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
c-Myc is one of the most frequently deregulated oncogenes in human cancers, and recent studies showed that even brief inactivation of Myc can be sufficient to induce tumor regression or loss. Consequently, inactivation of Myc provides a novel therapeutic opportunity and challenge, as the dimerization of Myc with Max is crucial for its function. We applied two strategies to specifically target this coiled coil mediated interaction with interfering peptides: a dominant-negative human Max sequence (Max) and a peptide selected from a genetic library (Mip). Both peptides form coiled coils and were fused to an acidic extension interacting with the basic DNA-binding region of human Myc. The genetic library was obtained by semi-rational design randomizing residues important for interaction, and selection was carried out using a protein-fragment complementation assay. The peptides Max and Mip easily outcompeted the human Myc:Max interaction and successfully interfered with the DNA binding of the complex. Both interfering peptides exhibited higher T(m) (DeltaT(m) = 13 and 15 degrees C) upon interaction with Myc compared to wt Max. The inhibitory effect of the two interfering peptides on human Myc:Max activity makes them promising molecules for analytical and therapeutic Myc-directed research.
Collapse
Affiliation(s)
- Eva M Jouaux
- Institute for Biology III, Albert-Ludwigs University of Freiburg, Schaenzlestrasse 1, Freiburg, Germany
| | | | | | | |
Collapse
|
42
|
Krauss N, Wessner H, Welfle K, Welfle H, Scholz C, Seifert M, Zubow K, Aÿ J, Hahn M, Scheerer P, Skerra A, Höhne W. The structure of the anti-c-myc antibody 9E10 Fab fragment/epitope peptide complex reveals a novel binding mode dominated by the heavy chain hypervariable loops. Proteins 2008; 73:552-65. [PMID: 18473392 DOI: 10.1002/prot.22080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The X-ray structure of the Fab fragment from the anti-c-myc antibody 9E10 was determined both as complex with its epitope peptide and for the free Fab. In the complex, two Fab molecules adopt an unusual head to head orientation with the epitope peptide arranged between them. In contrast, the free Fab forms a dimer with different orientation. In the Fab/peptide complex the peptide is bound to one of the two Fabs at the "back" of its extended CDR H3, in a cleft with CDR H1, thus forming a short, three-stranded antiparallel beta-sheet. The N- and C-terminal parts of the peptide are also in contact with the neighboring Fab fragment. Comparison between the CDR H3s of the two Fab molecules in complex with the peptide and those from the free Fab reveals high flexibility of this loop. This structural feature is in line with thermodynamic data from isothermic titration calorimetry.
Collapse
Affiliation(s)
- Norbert Krauss
- Institut für Biochemie, Charité, Universitätsmedizin Berlin, Monbijoustr. 2, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Apostolovic B, Klok HA. pH-Sensitivity of the E3/K3 Heterodimeric Coiled Coil. Biomacromolecules 2008; 9:3173-80. [DOI: 10.1021/bm800746e] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bojana Apostolovic
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Laboratoire des Polymères Bâtiment MXD, Station 12, 1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Laboratoire des Polymères Bâtiment MXD, Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Cholesterol binding is a prerequisite for the activity of the steroidogenic acute regulatory protein (StAR). Biochem J 2008; 412:553-62. [PMID: 18341481 DOI: 10.1042/bj20071264] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Steroidogenesis depends on the delivery of cholesterol from the outer to the inner mitochondrial membrane by StAR (steroidogenic acute regulatory protein). However, the mechanism by which StAR binds to cholesterol and its importance in cholesterol transport are under debate. According to our proposed molecular model, StAR possesses a hydrophobic cavity, which can accommodate one cholesterol molecule. In the bound form, cholesterol interacts with hydrophobic side-chains located in the C-terminal alpha-helix 4, thereby favouring the folding of this helix. To verify this model experimentally, we have characterized the in vitro activity, overall structure, thermodynamic stability and cholesterol-binding affinity of StAR lacking the N-terminal 62 amino acid residues (termed N-62 StAR). This mature form is biologically active and has a well-defined tertiary structure. Addition of cholesterol to N-62 StAR led to an increase in the alpha-helical content and T degrees (melting temperature), indicating the formation of a stable complex. However, the mutation F267Q, which is located in the C-terminal helix interface lining the cholesterol-binding site, reduced the biological activity of StAR. Furthermore, the cholesterol-induced thermodynamic stability and the binding capacity of StAR were significantly diminished in the F267Q mutant. Titration of StAR with cholesterol yielded a 1:1 complex with an apparent K(D) of 3 x 10(-8). These results support our model and indicate that StAR can readily bind to cholesterol with an apparent affinity that commensurates with monomeric cholesterol solubility in water. The proper function of the C-terminal alpha-helix is essential for the binding process.
Collapse
|
45
|
Kim JY, Kim MK, Kang GB, Park CS, Eom SH. Crystal structure of the leucine zipper domain of small-conductance Ca2+-activated K+ (SK(Ca)) channel from Rattus norvegicus. Proteins 2008; 70:568-71. [PMID: 17910055 DOI: 10.1002/prot.21634] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ji-Yoen Kim
- Department of Life Science, Gwangju Institute of Science & Technology, Gwangju 500-712, Korea
| | | | | | | | | |
Collapse
|
46
|
Pande AH, Scaglione P, Taylor M, Nemec KN, Tuthill S, Moe D, Holmes RK, Tatulian SA, Teter K. Conformational instability of the cholera toxin A1 polypeptide. J Mol Biol 2007; 374:1114-28. [PMID: 17976649 DOI: 10.1016/j.jmb.2007.10.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 12/22/2022]
Abstract
Cholera toxin (CT) moves from the cell surface to the endoplasmic reticulum (ER) by vesicular transport. In the ER, the catalytic CTA1 subunit dissociates from the holotoxin and enters the cytosol by exploiting the quality control system of ER-associated degradation (ERAD). It is hypothesized that CTA1 triggers its ERAD-mediated translocation into the cytosol by masquerading as a misfolded protein, but the process by which CTA1 activates the ERAD system remains unknown. Here, we directly assess the thermal stability of the isolated CTA1 polypeptide by biophysical and biochemical methods and correlate its temperature-dependent conformational state with susceptibility to degradation by the 20S proteasome. Measurements with circular dichroism and fluorescence spectroscopy demonstrated that CTA1 is a thermally unstable protein with a disordered tertiary structure and a disturbed secondary structure at 37 degrees C. A protease sensitivity assay likewise detected the temperature-induced loss of native CTA1 structure. This protease-sensitive conformation was not apparent when CTA1 remained covalently associated with the CTA2 subunit. Thermal instability in the dissociated CTA1 polypeptide could thus allow it to appear as a misfolded protein for ERAD-mediated export to the cytosol. In vitro, the disturbed conformation of CTA1 at 37 degrees C rendered it susceptible to ubiquitin-independent degradation by the core 20S proteasome. In vivo, CTA1 was also susceptible to degradation by a ubiquitin-independent proteasomal mechanism. ADP-ribosylation factor 6, a cytosolic eukaryotic protein that enhances the enzymatic activity of CTA1, stabilized the heat-labile conformation of CTA1 and protected it from in vitro degradation by the 20S proteasome. Thermal instability in the reduced CTA1 polypeptide has not been reported before, yet both the translocation and degradation of CTA1 may depend upon this physical property.
Collapse
Affiliation(s)
- Abhay H Pande
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pietrosemoli N, Crespo A, Fernandez A. Dehydration Propensity of Order−Disorder Intermediate Regions in Soluble Proteins. J Proteome Res 2007; 6:3519-26. [PMID: 17672484 DOI: 10.1021/pr070208k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Soluble folded proteins maintain their structural integrity by properly shielding most backbone amides and carbonyls from full hydration. This structure "wrapping" entails a proper packing of the intramolecular hydrogen bonds. Thus, a poorly wrapped hydrogen bond constitutes an identifiable packing defect. Such defects are promoters of protein associations since they favor the removal of hydrating molecules. In this work we show that large clusters of packing defects generate the most significant dehydration hot spots on the protein surface, inducing a strong dielectric modulation that is reflected by a local quenching of the dielectric permittivity. The PDB-reported proteins with the largest clusters of packing defects are found to be three cancer-related transcription factors, four highly interactive proteins related to cell signaling and cytoskeleton, and a cellular prion protein. A large concentration of packing defects in a soluble protein constitutes a structural singularity that is intermediate between order and disorder. The functional implications of this singularity are investigated to delineate diverse interrelated roles. The presence of these large clusters signals a structural vulnerability, a pronounced dehydration propensity, and a strong electrostatic enhancement.
Collapse
|
48
|
Yoon MK, Kim HM, Choi G, Lee JO, Choi BS. Structural Basis for the Conformational Integrity of the Arabidopsis thaliana HY5 Leucine Zipper Homodimer. J Biol Chem 2007; 282:12989-3002. [PMID: 17261584 DOI: 10.1074/jbc.m611465200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leucine zipper (LZ) domain of the HY5 transcription factor from Arabidopsis thaliana has unique primary structural properties, including major occupation by the Leu residues as well as two buried polar residues in the a positions and a localized distribution of charged and polar residues in the first three heptad repeats. In this study, we solved the crystal structure of the HY5 LZ domain and show that the peculiarities in the primary sequence yield unusual structural characteristics. For example, the HY5 LZ domain exhibits a bipartite charge distribution characterized by a highly negative electrostatic surface potential in its N-terminal half and a nearly neutral potential in its C-terminal half. The LZ N-terminal region also contains two consecutive putative trigger sites for dimerization of the coiled coils. In addition, two buried asparagines at a positions 19 and 33 in the HY5 LZ domain display distinct modes of polar interaction. Whereas Asn(19) shows a conformational flip-flop, Asn(33) is engaged in a permanent hydrogen bond network. CD spectropolarimetry and analytical ultracentrifugation experiments performed with versions of the HY5 LZ domain containing mutations in the a positions yielded further evidence that position a amino acid residues are crucial for achieving an oligomeric state and maintaining stability. However, a low correlation between position a amino acid preference, core packing geometry, and rotamer conformations suggests that the oligomeric state of the LZ domain is not governed entirely by known structural properties. Taken together, our results suggest structural factors conferring conformational integrity of the HY5 LZ homodimer that are more complicated than proposed previously.
Collapse
Affiliation(s)
- Mi-Kyung Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea
| | | | | | | | | |
Collapse
|
49
|
Straussman R, Ben-Ya'acov A, Woolfson DN, Ravid S. Kinking the coiled coil--negatively charged residues at the coiled-coil interface. J Mol Biol 2006; 366:1232-42. [PMID: 17207815 DOI: 10.1016/j.jmb.2006.11.083] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/26/2006] [Accepted: 11/29/2006] [Indexed: 11/30/2022]
Abstract
The coiled coil is one of the most common protein-structure motifs. It is believed to be adopted by 3-5% of all amino acids in proteins. It comprises two or more alpha-helical chains wrapped around one another. The sequences of most coiled coils are characterized by a seven-residue (heptad) repeat, denoted (abcdefg)(n). Residues at the a and d positions define the helical interface (core) and are usually hydrophobic, though about 20% are polar or charged. We show that parallel coiled-coils have a unique pattern of their negatively charged residues at the core positions: aspartic acid is excluded from these positions while glutamic acid is not. In contrast the antiparallel structures are more permissive in their amino acid usage. We show further, and for the first time, that incorporation of Asp but not Glu into the a positions of a parallel coiled coil creates a flexible hinge and that the maximal hinge angle is being directly related to the number of incorporated mutations. These new computational and experimental observations will be of use in improving protein-structure predictions, and as rules to guide rational design of novel coiled-coil motifs and coiled coil-based materials.
Collapse
Affiliation(s)
- Ravid Straussman
- Department of Biochemistry, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
50
|
Pande AH, Moe D, Jamnadas M, Tatulian SA, Teter K. The Pertussis Toxin S1 Subunit Is a Thermally Unstable Protein Susceptible to Degradation by the 20S Proteasome†. Biochemistry 2006; 45:13734-40. [PMID: 17105192 PMCID: PMC2518456 DOI: 10.1021/bi061175+] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pertussis toxin (PT) is an AB-type protein toxin that consists of a catalytic A subunit (PT S1) and an oligomeric, cell-binding B subunit. It belongs to a subset of AB toxins that move from the cell surface to the endoplasmic reticulum (ER) before the A chain passes into the cytosol. Toxin translocation is thought to involve A chain unfolding in the ER and the quality control mechanism of ER-associated degradation (ERAD). The absence of lysine residues in PT S1 may allow the translocated toxin to avoid ubiquitin-dependent degradation by the 26S proteasome, which is the usual fate of exported ERAD substrates. As the conformation of PT S1 appears to play an important role in toxin translocation, we used biophysical and biochemical methods to examine the structural properties of PT S1. Our in vitro studies found that the isolated PT S1 subunit is a thermally unstable protein that can be degraded in a ubiquitin-independent fashion by the core 20S proteasome. The thermal denaturation of PT S1 was inhibited by its interaction with NAD, a donor molecule used by PT S1 for the ADP ribosylation of target G proteins. These observations support a model of intoxication in which toxin translocation, degradation, and activity are all influenced by the heat-labile nature of the isolated toxin A chain.
Collapse
Affiliation(s)
- Abhay H. Pande
- Department of Molecular Biology and Microbiology, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826
- Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826
| | - David Moe
- Department of Molecular Biology and Microbiology, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826
- Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826
| | - Maneesha Jamnadas
- Department of Molecular Biology and Microbiology, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826
| | - Suren A. Tatulian
- Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826
| | - Ken Teter
- Department of Molecular Biology and Microbiology, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826
- Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826
- To whom correspondence should be addressed: Tel. (407) 882-2247; Fax: (407) 384-2062;
| |
Collapse
|