1
|
Li F, Luo Y, Xi G, Fu J, Tu J. Single-Molecule Analysis of DNA structures using nanopore sensors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Giassa IC, Rynes J, Fessl T, Foldynova-Trantirkova S, Trantirek L. Advances in the cellular structural biology of nucleic acids. FEBS Lett 2018; 592:1997-2011. [PMID: 29679394 DOI: 10.1002/1873-3468.13054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/09/2018] [Indexed: 01/01/2023]
Abstract
Conventional biophysical and chemical biology approaches for delineating relationships between the structure and biological function of nucleic acids (NAs) abstract NAs from their native biological context. However, cumulative experimental observations have revealed that the structure, dynamics and interactions of NAs might be strongly influenced by a broad spectrum of specific and nonspecific physical-chemical environmental factors. This consideration has recently sparked interest in the development of novel tools for structural characterization of NAs in the native cellular context. Here, we review the individual methods currently being employed for structural characterization of NA structure in a native cellular environment with a focus on recent advances and developments in the emerging fields of in-cell NMR and electron paramagnetic resonance spectroscopy and in-cell single-molecule FRET of NAs.
Collapse
Affiliation(s)
- Ilektra-Chara Giassa
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Rynes
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tomas Fessl
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Silvie Foldynova-Trantirkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Institute of Biophysics, Academy of Science of the Czech Republic, Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Bhattacharyya D, Mirihana Arachchilage G, Basu S. Metal Cations in G-Quadruplex Folding and Stability. Front Chem 2016; 4:38. [PMID: 27668212 PMCID: PMC5016522 DOI: 10.3389/fchem.2016.00038] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/25/2016] [Indexed: 12/23/2022] Open
Abstract
This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.
Collapse
Affiliation(s)
| | | | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State UniversityKent, OH, USA
| |
Collapse
|
4
|
Giraud-Panis MJ, Pisano S, Benarroch-Popivker D, Pei B, Le Du MH, Gilson E. One identity or more for telomeres? Front Oncol 2013; 3:48. [PMID: 23509004 PMCID: PMC3598436 DOI: 10.3389/fonc.2013.00048] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/23/2013] [Indexed: 12/19/2022] Open
Abstract
A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. The fact that different types of nucleoprotein complexes have been described at the telomeres of different organisms raises the question of whether they have in common a structural identity that explains their role in chromosome protection. We will review here how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA, and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guarantee the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We will also discuss the recent notion that telomeres have evolved specific systems to overcome the DNA topological stress generated during their replication and transcription. This will lead to revisit the way we envisage the functioning of telomeric complexes since the regulation of topology is central to DNA stability, replication, recombination, and transcription as well as to chromosome higher-order organization.
Collapse
Affiliation(s)
- Marie-Josèphe Giraud-Panis
- Faculté de Médecine de Nice, Université de Nice-Sophia Antipolis, Institute for Research on Cancer and Aging Nice, UMR 7284 CNRS, U1081 INSERM Nice, France
| | | | | | | | | | | |
Collapse
|
5
|
Palacký J, Vorlíčková M, Kejnovská I, Mojzeš P. Polymorphism of human telomeric quadruplex structure controlled by DNA concentration: a Raman study. Nucleic Acids Res 2013; 41:1005-16. [PMID: 23193257 PMCID: PMC3553954 DOI: 10.1093/nar/gks1135] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/22/2012] [Indexed: 01/16/2023] Open
Abstract
DNA concentration has been recently suggested to be the reason why different arrangements are revealed for K(+)-stabilized human telomere quadruplexes by experimental methods requiring DNA concentrations differing by orders of magnitude. As Raman spectroscopy can be applied to DNA samples ranging from those accessible by absorption and CD spectroscopies up to extremely concentrated solutions, gels and even crystals; it has been used here to clarify polymorphism of a core human telomeric sequence G(3)(TTAG(3))(3) in the presence of K(+) and Na(+) ions throughout wide range of DNA concentrations. We demonstrate that the K(+)-structure of G(3)(TTAG(3))(3) at low DNA concentration is close to the antiparallel fold of Na(+)-stabilized quadruplex. On the increase of G(3)(TTAG(3))(3) concentration, a gradual transition from antiparallel to intramolecular parallel arrangement was observed, but only for thermodynamically equilibrated K(+)-stabilized samples. The transition is synergically supported by increased K(+) concentration. However, even for extremely high G(3)(TTAG(3))(3) and K(+) concentrations, an intramolecular antiparallel quadruplex is spontaneously formed from desalted non-quadruplex single-strand after addition of K(+) ions. Thermal destabilization or long dwell time are necessary to induce interquadruplex transition. On the contrary, Na(+)-stabilized G(3)(TTAG(3))(3) retains its antiparallel folding regardless of the extremely high DNA and/or Na(+) concentrations, thermal destabilization or annealing.
Collapse
Affiliation(s)
- Jan Palacký
- Charles University in Prague, Faculty of Mathematics and Physics, Institute of Physics, Ke Karlovu 5, CZ-121 16 Prague 2, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno and CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michaela Vorlíčková
- Charles University in Prague, Faculty of Mathematics and Physics, Institute of Physics, Ke Karlovu 5, CZ-121 16 Prague 2, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno and CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Iva Kejnovská
- Charles University in Prague, Faculty of Mathematics and Physics, Institute of Physics, Ke Karlovu 5, CZ-121 16 Prague 2, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno and CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Peter Mojzeš
- Charles University in Prague, Faculty of Mathematics and Physics, Institute of Physics, Ke Karlovu 5, CZ-121 16 Prague 2, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno and CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
6
|
Taqi MM, Wärmländer SKTS, Yamskova O, Madani F, Bazov I, Luo J, Zubarev R, Verbeek D, Gräslund A, Bakalkin G. Conformation effects of CpG methylation on single-stranded DNA oligonucleotides: analysis of the opioid peptide dynorphin-coding sequences. PLoS One 2012; 7:e39605. [PMID: 22768096 PMCID: PMC3387154 DOI: 10.1371/journal.pone.0039605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022] Open
Abstract
Single-stranded DNA (ssDNA) is characterized by high conformational flexibility that allows these molecules to adopt a variety of conformations. Here we used native polyacrylamide gel electrophoresis (PAGE), circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy to show that cytosine methylation at CpG sites affects the conformational flexibility of short ssDNA molecules. The CpG containing 37-nucleotide PDYN (prodynorphin) fragments were used as model molecules. The presence of secondary DNA structures was evident from differences in oligonucleotide mobilities on PAGE, from CD spectra, and from formation of A-T, G-C, and non-canonical G-T base pairs observed by NMR spectroscopy. The oligonucleotides displayed secondary structures at 4°C, and some also at 37°C. Methylation at CpG sites prompted sequence-dependent formation of novel conformations, or shifted the equilibrium between different existing ssDNA conformations. The effects of methylation on gel mobility and base pairing were comparable in strength to the effects induced by point mutations in the DNA sequences. The conformational effects of methylation may be relevant for epigenetic regulatory events in a chromatin context, including DNA-protein or DNA-DNA recognition in the course of gene transcription, and DNA replication and recombination when double-stranded DNA is unwinded to ssDNA.
Collapse
Affiliation(s)
- Malik Mumtaz Taqi
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sebastian K. T. S. Wärmländer
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Olga Yamskova
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Fatemeh Madani
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jinghui Luo
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dineke Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
7
|
Rusciano G, De Luca AC, Pesce G, Sasso A, Oliviero G, Amato J, Borbone N, D'Errico S, Piccialli V, Piccialli G, Mayol L. Label-free probing of G-quadruplex formation by surface-enhanced Raman scattering. Anal Chem 2011; 83:6849-55. [PMID: 21780762 DOI: 10.1021/ac201783h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this work, we establish the use of surface-enhanced Raman scattering (SERS) as a label-free analytical technique for the direct detection of G-quadruplex formation. In particular, we demonstrate that SERS analysis allows the evaluation of the relative stability of G quadruplexes that differ for the number of G tetrads and investigate several structural features of quadruplexes, such as the orientation of glycosidic bonds, the identification of distortions in the sugar-phosphate backbone, and the degree of hydrogen-bond solvation. Herein, the fluctuation of the SERS spectra, due to the specific interaction of vibrational modes with the SERS-active substrate, is quantitatively analyzed before and after quadruplex formation. The results of this study suggest a perpendicular orientation of the quadruplexes (with or without the 3'-tetra end linker) with respect to the silver colloidal surface, which opens new perspectives for the use of SERS as a label-free analytical tool for the study of the binding mode between quadruplexes and their ligands.
Collapse
Affiliation(s)
- Giulia Rusciano
- Dipartimento di Scienze Fisiche, Complesso Universitario, Universitá di Napoli Federico II, Monte S. Angelo, Via Cinthia, I-80126 Napoli, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Blose JM, Lloyd KP, Bevilacqua PC. Portability of the GN(R)A Hairpin Loop Motif between RNA and DNA. Biochemistry 2009; 48:8787-94. [DOI: 10.1021/bi901038s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Joshua M. Blose
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
- Present Address: School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Kenneth P. Lloyd
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Worcester, Massachusetts 01605
| | - Philip C. Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
9
|
Wei C, Jia G, Yuan J, Feng Z, Li C. A Spectroscopic Study on the Interactions of Porphyrin with G-Quadruplex DNAs. Biochemistry 2006; 45:6681-91. [PMID: 16716079 DOI: 10.1021/bi052356z] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Free-base porphyrin (5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine) (H(2)TMPyP4) has been shown to be an effective telomerase inhibitor by an in vitro assay. Here, we examined the interactions of the H(2)TMPyP4 with three distinct G-quadruplex DNAs, the parallel-stranded (TG(4)T)4, dimer-hairpin-folded (G(4)T(4)G(4))2, and monomer-folded AG(3)(T(2)AG(3))(3), by ultraviolet resonance Raman spectroscopy (UVRR), UV-vis absorption spectroscopy, fluorescence spectroscopy, and surface-enhanced Raman spectroscopy (SERS). The data obtained by the continuous variation titration method show that the binding stoichiometry of H(2)TMPyP4/G-quadruplex is 2:1 for (TG(4)T)4 and 4:1 for (G(4)T(4)G(4))2 or AG(3)(T(2)AG(3))(3). The results of SERS spectra, UV-vis absorption titration, and fluorescence emission spectra together with the binding stoichiometries reveal that two H(2)TMPyP4 molecules are externally stacked at two ends of the parallel (TG(4)T)4 G-quadruplex, whereas H(2)TMPyP4 molecules can intercalate within their diagonal or lateral loop regions and intervals between two G-tetrads for (G(4)T(4)G(4))2 and AG(3)(T(2)AG(3))(3) G-quadruplexes. The binding of H(2)TMPyP4 to (TG(4)T)4 G-quadruplex results in the hypochromicity of the UV Raman signal of (TG(4)T)4, indicating that the stacking effects between H(2)TMPyP4 and DNA bases are significant. The Raman hyperchromicities and shifts are observed after the binding of H(2)TMPyP4 to both (G(4)T(4)G(4))2 and AG(3)(T(2)AG(3))(3) G-quadruplexes. This indicates that the intercalative H(2)TMPyP4 can lengthen the vertical distance between adjacent G-tetrads of (G(4)T(4)G(4))2 and AG(3)(T(2)AG(3))(3) and change their conformations. The present study provides new insights into the effect of H(2)TMPyP4 binding on the structures of G-quadruplexes and also demonstrates that Raman spectroscopy is an ideal method for examining the interaction between drugs and G-quadruplexes.
Collapse
Affiliation(s)
- Chunying Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | | | |
Collapse
|
10
|
Buczek P, Horvath MP. Thermodynamic characterization of binding Oxytricha nova single strand telomere DNA with the alpha protein N-terminal domain. J Mol Biol 2006; 359:1217-34. [PMID: 16678852 PMCID: PMC2953474 DOI: 10.1016/j.jmb.2006.02.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/06/2006] [Accepted: 02/17/2006] [Indexed: 11/26/2022]
Abstract
The Oxytricha nova telemere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (DeltaH), entropy (DeltaS), and dissociation constant (K(D-DNA)) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T(2)G(4)), d(T(4)G(4)), d(G(3)T(4)G(4)), and d(G(4)T(4)G(4)) each formed monovalent protein complexes. In the case of d(T(4)G(4)T(4)G(4)), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity "A site" has a dissociation constant, K(D-DNA(A)) = 13(+/-4) nM, while the low-affinity "B site" is characterized by K(D-DNA(B)) = 5600(+/-600) nM at 25 degrees C. Nucleotide substitution variants verified that the A site corresponds principally with the 3'-terminal portion of d(T(4)G(4)T(4)G(4)). The relative contributions of entropy (DeltaS) and enthalpy (DeltaH) for binding reactions were DNA length-dependent as was heat capacity (DeltaCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA-protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology.
Collapse
|
11
|
Tolstonog GV, Li G, Shoeman RL, Traub P. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA. DNA Cell Biol 2005; 24:85-110. [PMID: 15699629 DOI: 10.1089/dna.2005.24.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoplasmic intermediate filament (cIF) proteins interact strongly with single-stranded (ss) DNAs and RNAs, particularly with G-rich sequences. To test the hypothesis that this interaction depends on special nucleotide sequences and, possibly, higher order structures of ssDNA, a random mixture of mouse genomic ssDNA fragments generated by a novel "whole ssDNA genome PCR" technique via RNA intermediates was subjected to three rounds of affinity binding to in vitro reconstituted vimentin IFs at physiological ionic strength with intermediate PCR amplification of the bound ssDNA segments. Nucleotide sequence and computer folding analysis of the vimentin-selected fragments revealed an enrichment in microsatellites, predominantly of the (GT)n type, telomere DNA, and C/T-rich sequences, most of which, however, were incapable of folding into stable stem-loop structures. Because G-rich sequences were underrepresented in the vimentin-bound fraction, it had to be assumed that such sequences require intramolecular folding or lateral assembly into multistrand structures to be able to stably interact with vimentin, but that this requirement was inadequately fulfilled under the conditions of the selection experiment. For that reason, the few vimentin-selected G-rich ssDNA fragments and a number of telomere models were analyzed for their capacity to form inter- and intramolecular Gquadruplexes (G4 DNAs) under optimized conditions and to interact as such with vimentin and its type III relatives, glial fibrillary acidic protein, and desmin. Band shift assays indeed demonstrated differential binding of the cIF proteins to parallel four-stranded G4 DNAs and, with lower affinity, to bimolecular G'2 and unimolecular G'4 DNA configurations, whereby the transition regions from four- to single-strandedness played an additional role in the binding reaction. In this respect, the binding activity of cIF proteins was comparable with that toward other noncanonical DNA structures, like ds/ss DNA forks, triplex DNA, four-way junction DNA and Z-DNA, which also involve configurational transitions in their interaction with the filament proteins. Association of the cIF proteins with the corresponding nonfolded G-rich ssDNAs was negligible. Considering the almost universal involvement of ssDNA regions and G-quadruplexes in nuclear processes, including DNA transcription and recombination as well as telomere maintenance and dynamics, it is plausible to presume that cIF proteins as complementary constituents of the nuclear matrix participate in the cell- and tissue-specific regulation of these processes.
Collapse
|
12
|
Serban D, Benevides JM, Thomas GJ. HU protein employs similar mechanisms of minor-groove recognition in binding to different B-DNA sites: demonstration by Raman spectroscopy. Biochemistry 2003; 42:7390-9. [PMID: 12809494 DOI: 10.1021/bi030050r] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sequence isomers d(CGCAAATTTGCG) and d(TCAAGGCCTTGA) form self-complementary duplexes that present distinct targets for binding of the homodimeric architectural protein HU of Bacillus stearothermophilus (HUBst). Raman spectroscopy shows that although each duplex structure is of the B-DNA type, there are subtle conformational dissimilarities between them, involving torsion angles of the phosphodiester backbone and the arrangements of stacked bases. Each DNA duplex forms a stable stoichiometric (1:1) complex with HUBst, in which the structure of the HUBst dimer is largely conserved. However, the Raman signature of each DNA duplex is perturbed significantly and similarly with HUBst binding, as reflected in marker bands assigned to localized vibrations of the phosphodiester moieties and base residues. The spectral perturbations identify a reorganization of the DNA backbone and partial unstacking of bases with HUBst binding, which is consistent with non-sequence-specific minor-groove recognition. Prominent among the HUBst-induced perturbations of B-DNA are a conversion of approximately one-third of the alpha/beta/gamma torsions from the canonical g(-)/t/g(+) conformation to an alternative conformation, an equivalent conversion of deoxyadenosyl moieties from the C2'-endo/anti to the C3'-endo/anti conformation, and appreciable unstacking of purines. The results imply that each solution complex is characterized by structural perturbations extending throughout the 12-bp sequence. Comparison with previously studied protein/DNA complexes suggests that binding of HUBst bends DNA by approximately 70 degrees.
Collapse
Affiliation(s)
- Doinita Serban
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | |
Collapse
|
13
|
Oleinikov V, Sukhanova A, Mochalov K, Ustinova O, Kudelina I, Bronstein I, Nabiev I. DNA binding induces conformational transition within human DNA topoisomerase I in solution. Biopolymers 2002; 67:369-75. [PMID: 12209444 DOI: 10.1002/bip.10141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We employed Raman and circular dichroism (CD) spectroscopy to probe the molecular structure of 68-kDa recombinant human DNA topoisomerase I (TopoI) in solution, in a complex with a 16-bp DNA fragment containing a camptothecin-enhanced TopoI cleavage site, and in a ternary complex with this oligonucleotide and topotecan. Raman spectroscopy reveals a TopoI secondary structure transition and significant changes in the hydrogen bonding of the tyrosine residues induced by the DNA binding. CD spectroscopy confirms the Raman data and identifies a DNA-induced (>7%) decrease of the TopoI alpha helix accompanied by at least a 6% increase of the beta structure. The Raman DNA molecular signatures demonstrated a bandshift that is expected for a net change in the environment of guanine C6 [double bond] O groups from pairing to solvent exposure. The formation of a ternary cleavage complex with TopoI, DNA, and topotecan as probed by CD spectroscopy reveals neither additional modifications of the TopoI secondary structure nor of the oligonucleotide structure, compared to the TopoI-oligonucleotide complex.
Collapse
Affiliation(s)
- Vladimir Oleinikov
- EA3306, Institut Fédératif de Recherche 53 Biomolécules, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay, 51100 Reims, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Krafft C, Benevides JM, Thomas GJ. Secondary structure polymorphism in Oxytricha nova telomeric DNA. Nucleic Acids Res 2002; 30:3981-91. [PMID: 12235382 PMCID: PMC137102 DOI: 10.1093/nar/gkf517] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2002] [Revised: 07/23/2002] [Accepted: 07/23/2002] [Indexed: 11/14/2022] Open
Abstract
Tandem repeats of the telomeric DNA sequence d(T4G4) of Oxytricha nova are capable of forming unusually stable secondary structures incorporating Hoogsteen hydrogen bonding interactions. The biological significance of such DNA structures is supported by evidence of specific recognition of telomere end-binding proteins in the crystal state. To further characterize structural polymorphism of Oxytricha telomeric DNAs, we have obtained and interpreted Raman, ultraviolet resonance Raman (UVRR) and circular dichroism (CD) spectra of the tandem repeats d(G4T4G4) (Oxy1.5), d(T4G4)2 (Oxy2) and dT6(T4G4)2 (T6Oxy2) and related non-telomeric isomers in aqueous salt solutions. Raman markers of Oxy1.5 identify both C2'-endo/anti and C2'-endo/syn conformations of the deoxyguanosine residues and Hoogsteen hydrogen bonded guanine quartets, consistent with the quadruplex fold determined previously by solution NMR spectroscopy. Raman, UVRR and CD signatures and Raman dynamic measurements, to monitor imino NH-->ND exchanges, show that the Oxy1.5 antiparallel quadruplex fold is distinct from the hairpin structures of Oxy2 and T6Oxy2, single-stranded structures of d(TG)8 and dT6(TG)8 and previously reported quadruplex structures of d(T4G4)4 (Oxy4) and dG12. Spectral markers of the telomeric and telomere-related DNA structures are tabulated and novel Raman and UVRR indicators of thymidine and deoxyguanosine conformations are identified. The results will be useful for probing structures of Oxytricha telomeric repeats in complexes with telomere end-binding proteins.
Collapse
Affiliation(s)
- Christoph Krafft
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA
| | | | | |
Collapse
|
15
|
Abstract
Among the many unusual conformations of DNA and RNA, quadruplex structures, based on the guanine quartet, possess several unique properties. These properties, along with the general features of guanine quadruplexes, are described in the context of possible roles for these structures in biological systems. A variety of experimental observations supporting the notion that quadruplexes are important in vivo is presented, including proteins known to specifically bind to quadruplex structures, guanine-rich DNA, and RNA sequences endowed with the potential for forming quartet-based structures in telomeres and regulatory regions, such as gene promoters, quadruplexes as DNA aptamer folding motifs arising from in vitro selection experiments, and potential chemotherapeutic, quadruplex-forming oligonucleotides. Taken together, all of these observations argue cogently not only for the presence of quadruplexes in biological systems but also for their significance in terms of their roles in various biological processes.
Collapse
Affiliation(s)
- R H Shafer
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143-0446, USA.
| | | |
Collapse
|
16
|
Horvath MP, Schultz SC. DNA G-quartets in a 1.86 A resolution structure of an Oxytricha nova telomeric protein-DNA complex. J Mol Biol 2001; 310:367-77. [PMID: 11428895 DOI: 10.1006/jmbi.2001.4766] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Oxytricha nova telomere end binding protein (OnTEBP) recognizes, binds and protects the single-stranded 3'-terminal DNA extension found at the ends of macronuclear chromosomes. The structure of this complex shows that the single strand GGGGTTTTGGGG DNA binds in a deep cleft between the two protein subunits of OnTEBP, adopting a non-helical and irregular conformation. In extending the resolution limit of this structure to 1.86 A, we were surprised to find a G-quartet linked dimer of the GGGGTTTTGGGG DNA also packing within the crystal lattice and interacting with the telomere end binding protein. The G-quartet DNA exhibits the same structure and topology as previously observed in solution by NMR with diagonally crossing d(TTTT) loops at either end of the four-stranded helix. Additionally, the crystal structure reveals clearly visible Na(+), and specific patterns of bound water molecules in the four non-equivalent grooves. Although the G-quartet:protein contact surfaces are modest and might simply represent crystal packing interactions, it is interesting to speculate that the two types of telomeric DNA-protein interactions observed here might both be important in telomere biology.
Collapse
Affiliation(s)
- M P Horvath
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA.
| | | |
Collapse
|
17
|
Thomas GJ. Raman spectroscopy of protein and nucleic acid assemblies. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 28:1-27. [PMID: 10410793 DOI: 10.1146/annurev.biophys.28.1.1] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Raman spectrum of a protein or nucleic acid consists of numerous discrete bands representing molecular normal modes of vibration and serves as a sensitive and selective fingerprint of three-dimensional structure, intermolecular interactions, and dynamics. Recent improvements in instrumentation, coupled with innovative approaches in experimental design, dramatically increase the power and scope of the method, particularly for investigations of large supramolecular assemblies. Applications are considered that involve the use of (a) time-resolved Raman spectroscopy to elucidate assembly pathways in icosahedral viruses, (b) polarized Raman microspectroscopy to determine detailed structural parameters in filamentous viruses, (c) ultraviolet-resonance Raman spectroscopy to probe selective DNA and protein residues in nucleoprotein complexes, and (d) difference Raman methods to understand mechanisms of protein/DNA recognition in gene regulatory and chromosomal complexes.
Collapse
Affiliation(s)
- G J Thomas
- School of Biological Sciences, University of Missouri-Kansas City 64110, USA.
| |
Collapse
|
18
|
Miura T, Okada A, Kaneta M, Urayama Y, Takeuchi H. The third zinc finger of TFIIIA stabilizes a hairpin structure of the non-coding strand in the internal control region of 5S RNA gene. J Inorg Biochem 2000; 82:207-13. [PMID: 11132629 DOI: 10.1016/s0162-0134(00)00150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structures of non-coding and coding strands in box C of the internal control region (ICR) of Xenopus laevis somatic 5S RNA gene have been examined by circular dichroism (CD) and Raman spectroscopy in the absence and presence of the third zinc finger of transcription factor IIIA (TFIIIA), which binds to the ICR. The non-coding strand exhibits CD signals assignable to a hairpin and an unfolded structure. The presence of the hairpin structure is supported by Raman spectra, gel electrophoresis, and nucleotide deletion experiments. Binding of the zinc finger to the non-coding strand increases the CD signal of hairpin structure, indicating stabilization of the hairpin structure by the zinc finger. In contrast, the corresponding coding strand remains unfolded even in the presence of the zinc finger. The TFIIIA-ICR complex is not only required for initiation of transcription but also lasts during many rounds of transcription of the 5S RNA gene including the ICR (Bogenhagen et al., Cell 28 (1982) 413). TFIIIA may play a role in promoting the transcription by maintaining the unwound non-coding strand in the hairpin structure and leaving the coding strand available for transcription by RNA polymerase.
Collapse
Affiliation(s)
- T Miura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai, Japan
| | | | | | | | | |
Collapse
|
19
|
Eversole A, Maizels N. In vitro properties of the conserved mammalian protein hnRNP D suggest a role in telomere maintenance. Mol Cell Biol 2000; 20:5425-32. [PMID: 10891483 PMCID: PMC85994 DOI: 10.1128/mcb.20.15.5425-5432.2000] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian chromosomes terminate with a 3' tail which consists of reiterations of the G-rich repeat, d(TTAGGG). The telomeric tail is the primer for replication by telomerase, and it may also invade telomeric duplex DNA to form terminal lariat structures, or T loops. Here we show that the ubiquitous and highly conserved mammalian protein hnRNP D interacts specifically with the G-rich strand of the telomeric repeat. A single gene encodes multiple isoforms of hnRNP D. All isoforms bind comparably to the G-rich strand, and certain isoforms can also bind tightly and specifically to the C-rich telomeric strand. G-rich telomeric sequences readily form structures stabilized by G-G pairing, which can interfere with telomere replication by telomerase. We show that hnRNP D binding to the G-rich strand destabilizes intrastrand G-G pairing and that hnRNP D interacts specifically with telomerase in human cell extracts. This biochemical analysis suggest that hnRNP D could function in vivo to destabilize structures formed by telomeric G-rich tails and facilitate their extension by telomerase.
Collapse
Affiliation(s)
- A Eversole
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-8024, USA
| | | |
Collapse
|
20
|
Weisz K, Leitner D, Krafft C, Welfle H. Structural heterogeneity in intramolecular DNA triple helices. Biol Chem 2000; 381:275-83. [PMID: 10839455 DOI: 10.1515/bc.2000.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oligodeoxynucleotides designed to form intramolecular triple helices are widely used as model systems in thermodynamic and structural studies. We now report results from UV, Raman and NMR experiments demonstrating that the strand polarity, which also determines the orientation of the connecting loops, has a considerable impact on the formation and stability of pyr x pur x pyr triple helices. There are two types of monomolecular triplexes that can be defined by the location of their purine tract at either the 5'- or 3'-end of the sequence. We have examined four pairs of oligonucleotides with the same base composition but with reversed polarity that can fold into intramolecular triple helices with seven base triplets and two T4 loops under appropriate conditions. UV spectroscopic monitoring of thermal denaturation indicates a consistently higher thermal stability for the 5'-sequences at pH 5.0 in the absence of Mg2+ ions. Raman spectra provide evidence for the formation of triple helices at pH 5 for oligomers with purine tracts located at either the 5'- or 3'-end of the sequence. However, NMR measurements reveal considerable differences in the secondary structures formed by the two types of oligonucleotides. Thus, at acidic pH significant structural heterogeneity is observed for the 3'-sequences. Employing selectively 15N-labeled oligomers, NMR experiments indicate a folding pattern for the competing structures that at least partially changes both Hoogsteen and Watson-Crick base-base interactions.
Collapse
Affiliation(s)
- K Weisz
- Institut für Chemie der Freien Universität Berlin, Germany
| | | | | | | |
Collapse
|
21
|
Wen ZQ, Armstrong A, Thomas GJ. Demonstration by ultraviolet resonance Raman spectroscopy of differences in DNA organization and interactions in filamentous viruses Pf1 and fd. Biochemistry 1999; 38:3148-56. [PMID: 10074370 DOI: 10.1021/bi981965m] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pf1, a class II filamentous virus, has been investigated by ultraviolet resonance Raman (UVRR) spectroscopy with excitation wavelengths of 257, 244, 238, and 229 nm. The 257-nm UVRR spectrum is rich in Raman bands of the packaged single-stranded DNA (ssDNA) genome, despite the low DNA mass (6%) of the virion. Conversely, the 229-nm UVRR spectrum is dominated by tyrosines (Tyr 25 and Tyr 40) of the 46-residue alpha-helical coat subunit. UVRR spectra excited at 244 and 238 nm exhibit Raman bands diagnostic of both viral DNA and coat protein tyrosines. Raman markers of packaged Pf1 DNA contrast sharply with those of the DNA packaged in the class I filamentous virus fd [Wen, Z. Q., Overman, S. A., and Thomas, G. J., Jr. (1997) Biochemistry 36, 7810-7820]. Interestingly, deoxynucleotides of Pf1 DNA exhibit sugars in the C2'-endo/anti conformation and bases that are largely unstacked, compared with C3'-endo/anti conformers and very strong base stacking in fd DNA; hydrogen-bonding interactions of thymine carbonyls are also different in Pf1 and fd. On the other hand, coat protein tyrosines of Pf1 exhibit Raman markers of ring environment identical to those of fd, including an anomalous singlet at 853 cm-1 in lieu of the canonical Fermi doublet (850/830 cm-1) found in globular proteins. The results indicate markedly different modes of organization of ssDNA in Pf1 and fd virions, despite similar environments for coat protein tyrosines, and suggest strong hydrogen-bonding interactions between DNA bases and coat subunits of Pf1 but not between those of fd. We propose that structural relationships between the protein coat and encapsidated ssDNA genome are also fundamentally different in the two assemblies.
Collapse
Affiliation(s)
- Z Q Wen
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City 64110, USA
| | | | | |
Collapse
|
22
|
Laporte L, Benevides JM, Thomas GJ. Molecular mechanism of DNA recognition by the alpha subunit of the Oxytricha telomere binding protein. Biochemistry 1999; 38:582-8. [PMID: 9888797 DOI: 10.1021/bi9819024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions between telomeric DNA and the alpha subunit of the heterodimeric telomere binding protein of Oxytricha nova have been probed by Raman spectroscopy, CD spectroscopy, and nondenaturing gel electrophoresis. Telomeric sequences investigated include the Oxytricha 3' overhang, d(T4G4)2, and the related sequence dT6(T4G4)2, which incorporates a 5'-thymidylate leader. Corresponding nontelomeric isomers, d(TG)8 and dT6(TG)8, have also been investigated. Both d(T4G4)2 and dT6(T4G4)2 form stable hairpins that contain Hoogsteen G.G base pairs [Laporte, L., and Thomas, G. J., Jr. (1998) J. Mol. Biol. 281, 261-270]. The alpha subunit binds specifically and stoichiometrically to the dT6(T4G4)2 hairpin and alters its secondary structure by inducing conformational changes in the 5'-thymidylate leader without extensive disruption of G.G base pairing. Conversely, binding of the alpha subunit to d(T4G4)2 eliminates G.G pairing and unfolds the hairpin. DNA unfolding is accompanied by conformational changes affecting both the backbone and dG residues, as evidenced by Raman and CD spectra. Interestingly, the alpha subunit also forms complexes with the nontelomeric isomers, d(TG)8 and dT6(TG)8, evidenced by altered electrophoretic mobility in nondenaturing gels; however, Raman and CD spectra of complexes of the alpha subunit with nontelomeric DNA suggest no significant changes in backbone or deoxynucleoside conformations. Similarly, the alpha subunit binds to but does not appreciably alter the secondary structure of duplex DNA. The present results show that while the alpha subunit has the capacity to bind to Watson-Crick and different non-Watson-Crick motifs, DNA refolding is specific to the Oxytricha telomeric hairpin and the retention of G.G pairing is specific to the telomeric sequence incorporating the 5' leading sequence. A model is proposed for alpha subunit binding to telomeric DNA, and the physiological role of the alpha subunit in telomere organization is discussed.
Collapse
Affiliation(s)
- L Laporte
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City 64110-2499, USA
| | | | | |
Collapse
|