1
|
Sherlock ME, Langeberg CJ, Kieft JS. Diversity and modularity of tyrosine-accepting tRNA-like structures. RNA (NEW YORK, N.Y.) 2024; 30:213-222. [PMID: 38164607 PMCID: PMC10870377 DOI: 10.1261/rna.079768.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Certain positive-sense single-stranded RNA viruses contain elements at their 3' termini that structurally mimic tRNAs. These tRNA-like structures (TLSs) are classified based on which amino acid is covalently added to the 3' end by host aminoacyl-tRNA synthetase. Recently, a cryoEM reconstruction of a representative tyrosine-accepting tRNA-like structure (TLSTyr) from brome mosaic virus (BMV) revealed a unique mode of recognition of the viral anticodon-mimicking domain by tyrosyl-tRNA synthetase. Some viruses in the hordeivirus genus of Virgaviridae are also selectively aminoacylated with tyrosine, yet these TLS RNAs have a different architecture in the 5' domain that comprises the atypical anticodon loop mimic. Herein, we present bioinformatic and biochemical data supporting a distinct secondary structure for the 5' domain of the hordeivirus TLSTyr compared to those in Bromoviridae Despite forming a different secondary structure, the 5' domain is necessary to achieve robust in vitro aminoacylation. Furthermore, a chimeric RNA containing the 5' domain from the BMV TLSTyr and the 3' domain from a hordeivirus TLSTyr are aminoacylated, illustrating modularity in these structured RNA elements. We propose that the structurally distinct 5' domain of the hordeivirus TLSTyrs performs the same role in mimicking the anticodon loop as its counterpart in the BMV TLSTyr Finally, these structurally and phylogenetically divergent types of TLSTyr provide insight into the evolutionary connections between all classes of viral tRNA-like structures.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
2
|
Yan ZY, Fang L, Xu XJ, Cheng DJ, Yu CM, Wang DY, Tian YP, Yuan XF, Geng C, Li XD. A Predicted Stem Loop in Coat Protein-Coding Sequence of Tobacco Vein Banding Mosaic Virus Is Required for Efficient Replication. PHYTOPATHOLOGY 2022; 112:441-451. [PMID: 34191551 DOI: 10.1094/phyto-10-20-0463-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potyviral coat protein (CP) is involved in the replication and movement of potyviruses. However, little information is available on the roles of CP-coding sequence in potyviral infection. Here, we introduced synonymous substitutions to the codon C574G575C576 coding conserved residue arginine at position 192 (R192) of tobacco vein banding mosaic virus (TVBMV) CP. Substitution of the codon C574G575C576 to A574G575A576 or A574G575G576, but not C574G575A576, C574G575T576, or C574G575G576, reduced the replication, cell-to-cell movement, and accumulation of TVBMV in Nicotiana benthamiana plants, suggesting that C574 was critical for replication of TVBMV. Nucleotides 531 to 576 of the TVBMV CP-coding sequence were predicted to form a stem-loop structure, in which four consecutive C-G base pairs (C576-G531, C532-G575, C574-G533, and C534-G573) were located at the stem. Synonymous substitutions of R178-codon C532G533C534 to A532G533A534 and A532G533G534, but not C532G533A534, C532G533T534, or C532G533G534, reduced the replication levels, cell-to-cell, and systemic movement of TVBMV, suggesting that C532 was critical for TVBMV replication. Synonymous substitutions disrupting base pairs C576-G531 and C534-G573 did not affect viral accumulation. After three serial-passage inoculations, the accumulation of spontaneous mutant viruses was restored, and codons A532G533A534, A532G533G534, A574G575A576, or A574G575G576 of mutants were each separately changed to C532G533A534, C532G533G534, C574G575A576, or C574G575G576. Synonymous mutation of R178 and R192 also reduced viral accumulation in N. tabacum plants. Therefore, we concluded that the two consecutive C532-G575 and C574-G533 base pairs played critical roles in TVBMV replication via maintaining the stability of the stem-loop structures formed by nucleotides 531 to 576 of the CP-coding sequence.
Collapse
Affiliation(s)
- Zhi-Yong Yan
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Le Fang
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Xiao-Jie Xu
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - De-Jie Cheng
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Cheng-Ming Yu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - De-Ya Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - Yan-Ping Tian
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - Xue-Feng Yuan
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - Chao Geng
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - Xiang-Dong Li
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| |
Collapse
|
3
|
Bonilla SL, Sherlock ME, MacFadden A, Kieft JS. A viral RNA hijacks host machinery using dynamic conformational changes of a tRNA-like structure. Science 2021; 374:955-960. [PMID: 34793227 PMCID: PMC9033304 DOI: 10.1126/science.abe8526] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Viruses require multifunctional structured RNAs to hijack their host’s biochemistry, but their mechanisms can be obscured by the difficulty of solving conformationally dynamic RNA structures. Using cryo–electron microscopy (cryo-EM), we visualized the structure of the mysterious viral transfer RNA (tRNA)–like structure (TLS) from the brome mosaic virus, which affects replication, translation, and genome encapsidation. Structures in isolation and those bound to tyrosyl-tRNA synthetase (TyrRS) show that this ~55-kilodalton purported tRNA mimic undergoes large conformational rearrangements to bind TyrRS in a form that differs substantially from that of tRNA. Our study reveals how viral RNAs can use a combination of static and dynamic RNA structures to bind host machinery through highly noncanonical interactions, and we highlight the utility of cryo-EM for visualizing small, conformationally dynamic structured RNAs.
Collapse
Affiliation(s)
- Steve L. Bonilla
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Madeline E. Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 10 80045, USA
| |
Collapse
|
4
|
Wu S, Li X, Wang G. tRNA-like structures and their functions. FEBS J 2021; 289:5089-5099. [PMID: 34117728 DOI: 10.1111/febs.16070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
tRNA-like structures (TLSs) were first identified in the RNA genomes of turnip yellow mosaic virus. Since then, TLSs have been found in many other species including mammals, and the RNAs harboring these structures range from viral genomic RNAs to mRNAs and noncoding RNAs. Some progress has also been made on understanding their functions that include regulation of RNA replication, translation enhancement, RNA-protein interaction, and more. In this review, we summarize the current knowledge about the regulations and functions of these TLSs. Possible future directions of the field are also briefly discussed.
Collapse
Affiliation(s)
- Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| |
Collapse
|
5
|
de Wispelaere M, Sivanandam V, Rao ALN. Regulation of Positive-Strand Accumulation by Capsid Protein During Brome mosaic virus Infection In Planta. PHYTOPATHOLOGY 2020; 110:228-236. [PMID: 31411546 DOI: 10.1094/phyto-07-19-0236-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A hallmark feature of (+)-strand RNA viruses of eukaryotic cells is that progeny (+)-strands are accumulated 100-fold over (-)-strands. Previous experimental evidence suggests that, in Brome mosaic virus (BMV), a plant-infecting member of the alphavirus-like superfamily, the addition of RNA3 and, specifically, translation of the wild-type (WT) coat protein (CP) gene contributes to increased accumulation of (+)-strands. It is unclear whether this stimulation of (+)-strand accumulation by CP is due to direct regulation of viral RNA replication or RNA stabilization via encapsidation. Analysis of BMV progeny RNA in Nicotiana benthamiana plants revealed that expression of RNA3 variants that did not express WT CP led to a severe defect in BMV (+)-strand accumulation. The (+)-strand accumulation could be rescued when CP was complemented in trans. To verify whether stimulation of (+)-strand accumulation is coupled with encapsidation, two independent mutations were engineered into CP open reading frames. An N-terminal deletion that prevented CP binding to the viral RNAs resulted in a severe reduction of BMV (+)-strand accumulation but stimulated (-)-strand accumulation over the WT. On the other hand, a C-terminal mutation affecting CP dimerization caused a significant decrease in (+)-strand accumulation but had no detectable effect on (-)-strand accumulation. Nucleotide sequences in the movement protein-coding region were also found to contribute to (+)-strand accumulation, in part by providing packaging signals for efficient RNA3 encapsidation. Overall, these results show that RNA encapsidation is a significant determinant of BMV RNA intracellular accumulation.
Collapse
Affiliation(s)
- Mélissanne de Wispelaere
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521-0122
| | - Venkatesh Sivanandam
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521-0122
| | - A L N Rao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521-0122
| |
Collapse
|
6
|
Bakshi A, Savithri HS. Functional insights into the role of C-terminal disordered domain of Sesbania mosaic virus RNA-dependent RNA polymerase and the coat protein in viral replication in vivo. Virus Res 2019; 267:26-35. [PMID: 31054934 DOI: 10.1016/j.virusres.2019.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
The C-terminal disordered domain of sesbania mosaic virus (SeMV) RNA-dependent RNA polymerase (RdRp) interacts with the viral protein P10. The functional significance of this interaction in viral replication was examined by a comparative analysis of genomic and sub-genomic RNA levels (obtained by quantitative real time PCR) in the total RNA extracted from Cyamopsis plants agro-infiltrated with wild-type or mutant forms of SeMV infectious cDNA (icDNA). The sgRNA copy numbers were found to be significantly higher than those of gRNA in the wild-type icDNA transfected plants. Transfection of a mutant icDNA expressing an RdRp lacking the C-terminal disordered domain led to a drastic reduction in the copy numbers of both forms of viral RNA. This could be due to the loss of interaction between the disordered domain of RdRp and P10 and possibly other viral/host proteins that might be required for the assembly of viral replicase. The C-terminal disordered domain also harbours the motif E which is essential for the catalytic function of RdRp. Mutation of the conserved tyrosine within this motif in the full length icDNA resulted in complete inhibition of progeny RNA synthesis in the transfected plants confirming the importance of motif E in the polymerase function in vivo. The role of coat protein (CP) in viral infection was also investigated by agro-infiltration of a CP start codon mutant icDNA which suggested that CP is essential for the encapsidation of viral progeny RNAs at later stages of infection.
Collapse
Affiliation(s)
- Arindam Bakshi
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
7
|
Vieweger M, Nesbitt DJ. Synergistic SHAPE/Single-Molecule Deconvolution of RNA Conformation under Physiological Conditions. Biophys J 2018; 114:1762-1775. [PMID: 29694857 PMCID: PMC5937115 DOI: 10.1016/j.bpj.2018.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 11/24/2022] Open
Abstract
Structural RNA domains are widely involved in the regulation of biological functions, such as gene expression, gene modification, and gene repair. Activity of these dynamic regions depends sensitively on the global fold of the RNA, in particular, on the binding affinity of individual conformations to effector molecules in solution. Consequently, both the 1) structure and 2) conformational dynamics of noncoding RNAs prove to be essential in understanding the coupling that results in biological function. Toward this end, we recently reported observation of three conformational states in the metal-induced folding pathway of the tRNA-like structure domain of Brome Mosaic Virus, via single-molecule fluorescence resonance energy transfer studies. We report herein selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE)-directed structure predictions as a function of metal ion concentrations ([Mn+]) to confirm the three-state folding model, as well as test 2° structure models from the literature. Specifically, SHAPE reactivity data mapped onto literature models agrees well with the secondary structures observed at 0-10 mM [Mg2+], with only minor discrepancies in the E hairpin domain at low [Mg2+]. SHAPE probing and SHAPE-directed structure predictions further confirm the stepwise unfolding pathway previously observed in our single-molecule studies. Of special relevance, this means that reduction in the metal-ion concentration unfolds the 3' pseudoknot interaction before unfolding the long-range stem interaction. This work highlights the synergistic power of combining 1) single-molecule Förster resonance energy transfer and 2) SHAPE-directed structure-probing studies for detailed analysis of multiple RNA conformational states. In particular, single-molecule guided deconvolution of the SHAPE reactivities permits 2° structure predictions of isolated RNA conformations, thereby substantially improving on traditional limitations associated with current structure prediction algorithms.
Collapse
Affiliation(s)
- Mario Vieweger
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - David J Nesbitt
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; Department of Physics, University of Colorado, Boulder, Colorado.
| |
Collapse
|
8
|
Watters KE, Choudhary K, Aviran S, Lucks JB, Perry KL, Thompson JR. Probing of RNA structures in a positive sense RNA virus reveals selection pressures for structural elements. Nucleic Acids Res 2018; 46:2573-2584. [PMID: 29294088 PMCID: PMC5861449 DOI: 10.1093/nar/gkx1273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
In single stranded (+)-sense RNA viruses, RNA structural elements (SEs) play essential roles in the infection process from replication to encapsidation. Using selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) and covariation analysis, we explore the structural features of the third genome segment of cucumber mosaic virus (CMV), RNA3 (2216 nt), both in vitro and in plant cell lysates. Comparing SHAPE-Seq and covariation analysis results revealed multiple SEs in the coat protein open reading frame and 3' untranslated region. Four of these SEs were mutated and serially passaged in Nicotiana tabacum plants to identify biologically selected changes to the original mutated sequences. After passaging, loop mutants showed partial reversion to their wild-type sequence and SEs that were structurally disrupted by mutations were restored to wild-type-like structures via synonymous mutations in planta. These results support the existence and selection of virus open reading frame SEs in the host organism and provide a framework for further studies on the role of RNA structure in viral infection. Additionally, this work demonstrates the applicability of high-throughput chemical probing in plant cell lysates and presents a new method for calculating SHAPE reactivities from overlapping reverse transcriptase priming sites.
Collapse
Affiliation(s)
- Kyle E Watters
- Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Krishna Choudhary
- Department of Biomedical Engineering and Genome Center, University of California Davis, Davis, CA, USA
| | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California Davis, Davis, CA, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60201, USA
| | - Keith L Perry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Jeremy R Thompson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Jacobs A, Hoover H, Smith E, Clemmer DE, Kim CH, Kao CC. The intrinsically disordered N-terminal arm of the brome mosaic virus coat protein specifically recognizes the RNA motif that directs the initiation of viral RNA replication. Nucleic Acids Res 2018; 46:324-335. [PMID: 29140480 PMCID: PMC5758871 DOI: 10.1093/nar/gkx1087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/28/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022] Open
Abstract
In the brome mosaic virus (BMV) virion, the coat protein (CP) selectively contacts the RNA motifs that regulate translation and RNA replication (Hoover et al., 2016. J. Virol. 90, 7748). We hypothesize that the unstructured N-terminal arm (NTA) of the BMV CP can specifically recognize RNA motifs. Using ion mobility spectrometry-mass spectrometry, we demonstrate that peptides containing the NTA of the CP were found to preferentially bind to an RNA hairpin motif that directs the initiation of BMV RNA synthesis. RNA binding causes the peptide to change from heterogeneous structures to a single family of structures. Fluorescence anisotropy, fluorescence quenching and size exclusion chromatography experiments all confirm that the NTA can specific recognize the RNA motif. The peptide introduced into plants along with BMV virion increased accumulation of the BMV CP and accelerated the rate of minus-strand RNA synthesis. The intrinsically disordered BMV NTA could thus specifically recognize BMV RNAs to affect viral infection.
Collapse
Affiliation(s)
- Alexander Jacobs
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Haley Hoover
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Edward Smith
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Chul-Hyun Kim
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - C Cheng Kao
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Miras M, Miller WA, Truniger V, Aranda MA. Non-canonical Translation in Plant RNA Viruses. FRONTIERS IN PLANT SCIENCE 2017; 8:494. [PMID: 28428795 PMCID: PMC5382211 DOI: 10.3389/fpls.2017.00494] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
Viral protein synthesis is completely dependent upon the host cell's translational machinery. Canonical translation of host mRNAs depends on structural elements such as the 5' cap structure and/or the 3' poly(A) tail of the mRNAs. Although many viral mRNAs are devoid of one or both of these structures, they can still translate efficiently using non-canonical mechanisms. Here, we review the tools utilized by positive-sense single-stranded (+ss) RNA plant viruses to initiate non-canonical translation, focusing on cis-acting sequences present in viral mRNAs. We highlight how these elements may interact with host translation factors and speculate on their contribution for achieving translational control. We also describe other translation strategies used by plant viruses to optimize the usage of the coding capacity of their very compact genomes, including leaky scanning initiation, ribosomal frameshifting and stop-codon readthrough. Finally, future research perspectives on the unusual translational strategies of +ssRNA viruses are discussed, including parallelisms between viral and host mRNAs mechanisms of translation, particularly for host mRNAs which are translated under stress conditions.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
| | - W. Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State UniversityAmes, IA, USA
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
- *Correspondence: Miguel A. Aranda
| |
Collapse
|
11
|
Phosphorylation of the Brome Mosaic Virus Capsid Regulates the Timing of Viral Infection. J Virol 2016; 90:7748-60. [PMID: 27334588 DOI: 10.1128/jvi.00833-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/10/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The four brome mosaic virus (BMV) RNAs (RNA1 to RNA4) are encapsidated in three distinct virions that have different disassembly rates in infection. The mechanism for the differential release of BMV RNAs from virions is unknown, since 180 copies of the same coat protein (CP) encapsidate each of the BMV genomic RNAs. Using mass spectrometry, we found that the BMV CP contains a complex pattern of posttranslational modifications. Treatment with phosphatase was found to not significantly affect the stability of the virions containing RNA1 but significantly impacted the stability of the virions that encapsidated BMV RNA2 and RNA3/4. Cryo-electron microscopy reconstruction revealed dramatic structural changes in the capsid and the encapsidated RNA. A phosphomimetic mutation in the flexible N-terminal arm of the CP increased BMV RNA replication and virion production. The degree of phosphorylation modulated the interaction of CP with the encapsidated RNA and the release of three of the BMV RNAs. UV cross-linking and immunoprecipitation methods coupled to high-throughput sequencing experiments showed that phosphorylation of the BMV CP can impact binding to RNAs in the virions, including sequences that contain regulatory motifs for BMV RNA gene expression and replication. Phosphatase-treated virions affected the timing of CP expression and viral RNA replication in plants. The degree of phosphorylation decreased when the plant hosts were grown at an elevated temperature. These results show that phosphorylation of the capsid modulates BMV infection. IMPORTANCE How icosahedral viruses regulate the release of viral RNA into the host is not well understood. The selective release of viral RNA can regulate the timing of replication and gene expression. Brome mosaic virus (BMV) is an RNA virus, and its three genomic RNAs are encapsidated in separate virions. Through proteomic, structural, and biochemical analyses, this work shows that posttranslational modifications, specifically, phosphorylation, on the capsid protein regulate the capsid-RNA interaction and the stability of the virions and affect viral gene expression. Mutational analysis confirmed that changes in modification affected virion stability and the timing of viral infection. The mechanism for modification of the virion has striking parallels to the mechanism of regulation of chromatin packaging by nucleosomes.
Collapse
|
12
|
Vieweger M, Holmstrom ED, Nesbitt DJ. Single-Molecule FRET Reveals Three Conformations for the TLS Domain of Brome Mosaic Virus Genome. Biophys J 2015; 109:2625-2636. [PMID: 26682819 PMCID: PMC4699858 DOI: 10.1016/j.bpj.2015.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022] Open
Abstract
Metabolite-dependent conformational switching in RNA riboswitches is now widely accepted as a critical regulatory mechanism for gene expression in bacterial systems. More recently, similar gene regulation mechanisms have been found to be important for viral systems as well. One of the most abundant and best-studied systems is the tRNA-like structure (TLS) domain, which has been found to occur in many plant viruses spread across numerous genera. In this work, folding dynamics for the TLS domain of Brome Mosaic Virus have been investigated using single-molecule fluorescence resonance energy transfer techniques. In particular, burst fluorescence methods are exploited to observe metal-ion ([M(n+)])-induced folding in freely diffusing RNA constructs resembling the minimal TLS element of brome mosaic virus RNA3. The results of these experiments reveal a complex equilibrium of at least three distinct populations. A stepwise, or consecutive, thermodynamic model for TLS folding is developed, which is in good agreement with the [M(n+)]-dependent evolution of conformational populations and existing structural information in the literature. Specifically, this folding pathway explains the metal-ion dependent formation of a functional TLS domain from unfolded RNAs via two consecutive steps: 1) hybridization of a long-range stem interaction, followed by 2) formation of a 3'-terminal pseudoknot. These two conformational transitions are well described by stepwise dissociation constants for [Mg(2+)] (K1 = 328 ± 30 μM and K2 = 1092 ± 183 μM) and [Na(+)] (K1 = 74 ± 6 mM and K2 = 243 ± 52 mM)-induced folding. The proposed thermodynamic model is further supported by inhibition studies of the long-range stem interaction using a complementary DNA oligomer, which effectively shifts the dynamic equilibrium toward the unfolded conformation. Implications of this multistep conformational folding mechanism are discussed with regard to regulation of virus replication.
Collapse
Affiliation(s)
- Mario Vieweger
- Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Erik D Holmstrom
- Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - David J Nesbitt
- Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado.
| |
Collapse
|
13
|
Newburn LR, White KA. Cis-acting RNA elements in positive-strand RNA plant virus genomes. Virology 2015; 479-480:434-43. [PMID: 25759098 DOI: 10.1016/j.virol.2015.02.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 11/25/2022]
Abstract
Positive-strand RNA viruses are the most common type of plant virus. Many aspects of the reproductive cycle of this group of viruses have been studied over the years and this has led to the accumulation of a significant amount of insightful information. In particular, the identification and characterization of cis-acting RNA elements within these viral genomes have revealed important roles in many fundamental viral processes such as virus disassembly, translation, genome replication, subgenomic mRNA transcription, and packaging. These functional cis-acting RNA elements include primary sequences, secondary and tertiary structures, as well as long-range RNA-RNA interactions, and they typically function by interacting with viral or host proteins. This review provides a general overview and update on some of the many roles played by cis-acting RNA elements in positive-strand RNA plant viruses.
Collapse
Affiliation(s)
- Laura R Newburn
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - K Andrew White
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
14
|
Rao ALN, Cheng Kao C. The brome mosaic virus 3' untranslated sequence regulates RNA replication, recombination, and virion assembly. Virus Res 2015; 206:46-52. [PMID: 25687214 DOI: 10.1016/j.virusres.2015.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/18/2022]
Abstract
The 3' untranslated region in each of the three genomic RNAs of Brome mosaic virus (BMV) is highly homologous and contains a sequence that folds into a tRNA-like structure (TLS). Experiments performed over the past four decades revealed that the BMV 3' TLS regulates many important steps in BMV infection. This review summarizes in vitro and in vivo studies of the roles of the BMV 3' TLS functioning as a minus-strand promoter, in RNA recombination, and to nucleate virion assembly.
Collapse
Affiliation(s)
- A L N Rao
- Department of Plant Pathology, University of California, Riverside, CA 925210-0122, USA.
| | - C Cheng Kao
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
15
|
Lin X, Thorne L, Jin Z, Hammad LA, Li S, Deval J, Goodfellow IG, Kao CC. Subgenomic promoter recognition by the norovirus RNA-dependent RNA polymerases. Nucleic Acids Res 2014; 43:446-60. [PMID: 25520198 PMCID: PMC4288183 DOI: 10.1093/nar/gku1292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The replication enzyme of RNA viruses must preferentially recognize their RNAs in an environment that contains an abundance of cellular RNAs. The factors responsible for specific RNA recognition are not well understood, in part because viral RNA synthesis takes place within enzyme complexes associated with modified cellular membrane compartments. Recombinant RNA-dependent RNA polymerases (RdRps) from the human norovirus and the murine norovirus (MNV) were found to preferentially recognize RNA segments that contain the promoter and a short template sequence for subgenomic RNA synthesis. Both the promoter and template sequence contribute to stable RdRp binding, accurate initiation of the subgenomic RNAs and efficient RNA synthesis. Using a method that combines RNA crosslinking and mass spectrometry, residues near the template channel of the MNV RdRp were found to contact the hairpin RNA motif. Mutations in the hairpin contact site in the MNV RdRp reduced MNV replication and virus production in cells. This work demonstrates that the specific recognition of the norovirus subgenomic promoter is through binding by the viral RdRp.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Lucy Thorne
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road CB2 2QQ, UK
| | - Zhinan Jin
- Alios BioPharma, Inc., 260 East Grand Avenue South, San Francisco, CA 94080, USA
| | - Loubna A Hammad
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, IN 47405, USA
| | - Serena Li
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jerome Deval
- Alios BioPharma, Inc., 260 East Grand Avenue South, San Francisco, CA 94080, USA
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road CB2 2QQ, UK
| | - C Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
16
|
Ni P, Vaughan RC, Tragesser B, Hoover H, Kao CC. The plant host can affect the encapsidation of brome mosaic virus (BMV) RNA: BMV virions are surprisingly heterogeneous. J Mol Biol 2014; 426:1061-76. [PMID: 24036424 PMCID: PMC3944473 DOI: 10.1016/j.jmb.2013.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/02/2013] [Accepted: 09/08/2013] [Indexed: 01/05/2023]
Abstract
Brome mosaic virus (BMV) packages its genomic and subgenomic RNAs into three separate viral particles. BMV purified from barley, wheat, and tobacco have distinct relative abundances of the encapsidated RNAs. We seek to identify the basis for the host-dependent differences in viral RNA encapsidation. Sequencing of the viral RNAs revealed recombination events in the 3' untranslated region of RNA1 of BMV purified from barley and wheat, but not from tobacco. However, the relative amounts of the BMV RNAs that accumulated in barley and wheat are similar and RNA accumulation is not sufficient to account for the difference in RNA encapsidation. Virions purified from barley and wheat were found to differ in their isoelectric points, resistance to proteolysis, and contacts between the capsid residues and the RNA. Mass spectrometric analyses revealed that virions from the three hosts had different post-translational modifications that should impact the physiochemical properties of the virions. Another major source of variation in RNA encapsidation was due to the purification of BMV particles to homogeneity. Highly enriched BMV present in lysates had a surprising range of sizes, buoyant densities, and distinct relative amounts of encapsidated RNAs. These results show that the encapsidated BMV RNAs reflect a combination of host effects on the physiochemical properties of the viral capsids and the enrichment of a subset of virions. The previously unexpected heterogeneity in BMV should influence the timing of the infection and also the host innate immune responses.
Collapse
Affiliation(s)
- Peng Ni
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Robert C Vaughan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Brady Tragesser
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Haley Hoover
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - C Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
17
|
Hull R. Replication of Plant Viruses. PLANT VIROLOGY 2014. [PMCID: PMC7184227 DOI: 10.1016/b978-0-12-384871-0.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses co-infecting cells. Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses coinfecting cells.
Collapse
|
18
|
Pita JS, Roossinck MJ. Fixation of emerging interviral recombinants in cucumber mosaic virus populations. J Virol 2013; 87:1264-9. [PMID: 23115282 PMCID: PMC3554057 DOI: 10.1128/jvi.01892-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/23/2012] [Indexed: 11/20/2022] Open
Abstract
Interstrain recombinants were observed in the progenies of the Cucumber mosaic virus (CMV) reassortant L(1)L(2)F(3) containing RNAs 1 and 2 from LS-CMV and RNA 3 from Fny-CMV. We characterized these recombinants, and we found that their fixation was controlled by the nature of the replicating RNAs 1 and 2. We demonstrate that the 2b gene partially affects this fixation process, but only in the context of homologous RNAs 1 and 2.
Collapse
Affiliation(s)
- Justin S Pita
- Department of Plant Pathology and Environmental Biology, and The Huck Institutes of The Life Sciences, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
19
|
Coat proteins, host factors and plant viral replication. Curr Opin Virol 2012; 2:712-8. [DOI: 10.1016/j.coviro.2012.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 11/24/2022]
|
20
|
Sztuba-Solińska J, Fanning SW, Horn JR, Bujarski JJ. Mutations in the coat protein-binding cis-acting RNA motifs debilitate RNA recombination of Brome mosaic virus. Virus Res 2012; 170:138-49. [PMID: 23079110 PMCID: PMC7114393 DOI: 10.1016/j.virusres.2012.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/14/2022]
Abstract
We have previously described the efficient homologous recombination system between 5' subgenomic RNA3a (sgRNA3a) and genomic RNA3 of Brome mosaic virus (BMV) in barley protoplasts (Sztuba-Solińska et al., 2011a). Here, we demonstrated that sequence alterations in the coat protein (CP)-binding cis-acting RNA motifs, the Bbox region (in the intercistronic RNA3 sequence) and the RNA3 packaging element (PE, in the movement protein ORF), reduced crossover frequencies in protoplasts. Additionally, the modification of Bbox-like element in the 5' UTR region strongly debilitated crossovers. Along the lines of these observations, RNA3 mutants not expressing CP or expressing mutated CPs also reduced recombination. A series of reciprocal transfections demonstrated a functional crosstalk between the Bbox and PE elements. Altogether, our data imply the role of CP in sgRNA3a-directed recombination by either facilitating the interaction of the RNA substrates and/or by creating roadblocks for the viral replicase.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | |
Collapse
|
21
|
Prasanth KR, Huang YW, Liou MR, Wang RYL, Hu CC, Tsai CH, Meng M, Lin NS, Hsu YH. Glyceraldehyde 3-phosphate dehydrogenase negatively regulates the replication of Bamboo mosaic virus and its associated satellite RNA. J Virol 2011; 85:8829-40. [PMID: 21715476 PMCID: PMC3165797 DOI: 10.1128/jvi.00556-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/21/2011] [Indexed: 01/24/2023] Open
Abstract
The identification of cellular proteins associated with virus replicase complexes is crucial to our understanding of virus-host interactions, influencing the host range, replication, and virulence of viruses. A previous in vitro study has demonstrated that partially purified Bamboo mosaic virus (BaMV) replicase complexes can be employed for the replication of both BaMV genomic and satellite BaMV (satBaMV) RNAs. In this study, we investigated the BaMV and satBaMV 3' untranslated region (UTR) binding proteins associated with these replicase complexes. Two cellular proteins with molecular masses of ∼35 and ∼55 kDa were specifically cross-linked with RNA elements, whereupon the ∼35-kDa protein was identified as the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Gel mobility shift assays confirmed the direct interaction of GAPDH with the 3' UTR sequences, and competition gel shift analysis revealed that GAPDH binds preferentially to the positive-strand BaMV and satBaMV RNAs over the negative-strand RNAs. It was observed that the GAPDH protein binds to the pseudoknot poly(A) tail of BaMV and stem-loop-C poly(A) tail of satBaMV 3' UTR RNAs. It is important to note that knockdown of GAPDH in Nicotiana benthamiana enhances the accumulation of BaMV and satBaMV RNA; conversely, transient overexpression of GAPDH reduces the accumulation of BaMV and satBaMV RNA. The recombinant GAPDH principally inhibits the synthesis of negative-strand RNA in exogenous RdRp assays. These observations support the contention that cytosolic GAPDH participates in the negative regulation of BaMV and satBaMV RNA replication.
Collapse
Affiliation(s)
- K. Reddisiva Prasanth
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Ming-Ru Liou
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Robert Yung-Liang Wang
- Department of Biomedical Sciences and Research Center for Emerging Viral Infections, Chang Gung University, Tao Yuan 33302, Taiwan, Republic of China
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
22
|
Kao CC, Ni P, Hema M, Huang X, Dragnea B. The coat protein leads the way: an update on basic and applied studies with the Brome mosaic virus coat protein. MOLECULAR PLANT PATHOLOGY 2011; 12:403-12. [PMID: 21453435 PMCID: PMC6640235 DOI: 10.1111/j.1364-3703.2010.00678.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Brome mosaic virus (BMV) coat protein (CP) accompanies the three BMV genomic RNAs and the subgenomic RNA into and out of cells in an infection cycle. In addition to serving as a protective shell for all of the BMV RNAs, CP plays regulatory roles during the infection process that are mediated through specific binding of RNA elements in the BMV genome. One regulatory RNA element is the B box present in the 5' untranslated region (UTR) of BMV RNA1 and RNA2 that play important roles in the formation of the BMV replication factory, as well as the regulation of translation. A second element is within the tRNA-like 3' UTR of all BMV RNAs that is required for efficient RNA replication. The BMV CP can also encapsidate ligand-coated metal nanoparticles to form virus-like particles (VLPs). This update summarizes the interaction between the BMV CP and RNAs that can regulate RNA synthesis, translation and RNA encapsidation, as well as the formation of VLPs.
Collapse
Affiliation(s)
- C Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Plant viruses exploit cellular factors, including host proteins, membranes and metabolites, for their replication in infected cells and to establish systemic infections. Besides traditional genetic, molecular, cellular and biochemical methods studying plant-virus interactions, both global and specialized proteomics methods are emerging as useful approaches for the identification of all the host proteins that play roles in virus infections. The various proteomics approaches include measuring differential protein expression in virus infected versus noninfected cells, analysis of viral and host protein components in the viral replicase or other virus-induced complexes, as well as proteome-wide screens to identify host protein - viral protein interactions using protein arrays or yeast two-hybrid assays. In this review, we will discuss the progress made in plant virology using various proteomics methods, and highlight the functions of some of the identified host proteins during viral infections. Since global proteomics approaches do not usually identify the molecular mechanism of the identified host factors during viral infections, additional experiments using genetics, biochemistry, cell biology and other approaches should also be performed to characterize the functions of host factors. Overall, the ever-improving proteomics approaches promise further understanding of plant-virus interactions that will likely result in new strategies for viral disease control in plants.
Collapse
Affiliation(s)
- Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, KY
| | | |
Collapse
|
24
|
Dreher TW. Viral tRNAs and tRNA-like structures. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:402-14. [PMID: 21956939 DOI: 10.1002/wrna.42] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viruses commonly exploit or modify some aspect of tRNA biology. Large DNA viruses, especially bacteriophages, phycodnaviruses, and mimiviruses, produce their own tRNAs, apparently to adjust translational capacity during infection. Retroviruses recruit specific host tRNAs for use in priming the reverse transcription of their genome. Certain positive-strand RNA plant viral genomes possess 3'-tRNA-like structures (TLSs) that are built quite differently from authentic tRNAs, and yet efficiently recapitulate several properties of tRNAs. The structures and roles of these TLSs are discussed, emphasizing the variety in both structure and function.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology and Center for Genome Research and Bioinformatics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
25
|
A Y-shaped RNA structure in the 3′ untranslated region together with the trans-activator and core promoter of Red clover necrotic mosaic virus RNA2 is required for its negative-strand RNA synthesis. Virology 2010; 405:100-9. [DOI: 10.1016/j.virol.2010.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/01/2010] [Accepted: 05/19/2010] [Indexed: 11/23/2022]
|
26
|
Chen IH, Lin JW, Chen YJ, Wang ZC, Liang LF, Meng M, Hsu YH, Tsai CH. The 3'-terminal sequence of Bamboo mosaic virus minus-strand RNA interacts with RNA-dependent RNA polymerase and initiates plus-strand RNA synthesis. MOLECULAR PLANT PATHOLOGY 2010; 11:203-12. [PMID: 20447270 PMCID: PMC6640325 DOI: 10.1111/j.1364-3703.2009.00597.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A 3'-terminal, 77-nucleotide sequence of Bamboo mosaic virus (BaMV) minus-strand RNA (Ba-77), comprising a 5' stem-loop, a spacer and a 3'-CUUUU sequence, can be used to initiate plus-strand RNA synthesis in vitro. To understand the mechanism of plus-strand RNA synthesis, mutations were introduced in the 5' untranslated region of BaMV RNA, resulting in changes at the 3' end of minus-strand RNA. The results showed that at least three uridylate residues in 3'-CUUUU are required and the changes at the penultimate U are deleterious to viral accumulation in Nicotiana benthamiana protoplasts. Results from UV-crosslinking and in vitro RNA-dependent RNA polymerase competition assays suggested that the replicase preferentially interacts with the stem structure of Ba-77. Finally, CMV/83 + UUUUC, a heterologus RNA, which possesses about 80 nucleotides containing the 3'-CUUUU pentamer terminus, and which folds into a secondary structure similar to that of Ba-77, could be used as template for RNA production by the BaMV replicase complex in vitro.
Collapse
Affiliation(s)
- I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rosskopf JJ, Upton JH, Rodarte L, Romero TA, Leung MY, Taufer M, Johnson KL. A 3' terminal stem-loop structure in Nodamura virus RNA2 forms an essential cis-acting signal for RNA replication. Virus Res 2010; 150:12-21. [PMID: 20176063 DOI: 10.1016/j.virusres.2010.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/07/2010] [Accepted: 02/09/2010] [Indexed: 12/22/2022]
Abstract
Nodamura virus (NoV; family Nodaviridae) contains a bipartite positive-strand RNA genome that replicates via negative-strand intermediates. The specific structural and sequence determinants for initiation of nodavirus RNA replication have not yet been identified. For the related nodavirus Flock House virus (FHV) undefined sequences within the 3'-terminal 50 nucleotides (nt) of FHV RNA2 are essential for its replication. We previously showed that a conserved stem-loop structure (3'SL) is predicted to form near the 3' end of the RNA2 segments of seven nodaviruses, including NoV. We hypothesized that the 3'SL structure from NoV RNA2 is an essential cis-acting element for RNA replication. To determine whether the structure can actually form within RNA2, we analyzed the secondary structure of NoV RNA2 in vitro transcripts using nuclease mapping. The resulting nuclease maps were 86% consistent with the predicted 3'SL structure, suggesting that it can form in solution. We used a well-defined reverse genetic system for launch of NoV replication in yeast cells to test the function of the 3'SL in the viral life cycle. Deletion of the nucleotides that comprise the 3'SL from a NoV2-GFP chimeric replicon resulted in a severe defect in RNA2 replication. A minimal replicon containing the 5'-terminal 17 nt and the 3'-terminal 54 nt of RNA2 (including the predicted 3'SL) retained the ability to replicate in yeast, suggesting that this region is able to direct replication of a heterologous mRNA. These data suggest that the 3'SL plays an essential role in replication of NoV RNA2. The conservation of the predicted 3'SL suggests that this common motif may play a role in RNA replication for the other members of the Nodaviridae.
Collapse
Affiliation(s)
- John J Rosskopf
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Weng Z, Xiong Z. Three discontinuous loop nucleotides in the 3' terminal stem-loop are required for Red clover necrotic mosaic virus RNA-2 replication. Virology 2009; 393:346-54. [PMID: 19733887 DOI: 10.1016/j.virol.2009.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 07/29/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
The genome of Red clover necrotic mosaic virus (RCNMV) consists of positive-sense, single-stranded RNA-1 and RNA-2. The 29 nucleotides at the 3' termini of both RNAs are nearly identical and are predicted to form a stable stem-loop (SL) structure, which is required for RCNMV RNA replication. Here we performed a systematic mutagenesis of the RNA-2 3' SL to identify the nucleotides critical for replication. Infectivity and RNA replication assays indicated that the secondary structure of the 3' SL and its loop sequence UAUAA were required for RNA replication. Single-nucleotide substitution analyses of the loop further pinpointed three discontinuous nucleotides (L1U, L2A, and L4A) that were vital for RNA replication. A 3-D model of the 3' SL predicted the existence of a pocket formed by these three nucleotides that could be involved in RNA-protein interaction. The functional groups of the bases participating in this interaction at these positions are discussed.
Collapse
Affiliation(s)
- Ziming Weng
- Department of Plant Sciences, Division of Plant Pathology and Microbiology, and BIO5 Institute, Forbes 303, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
29
|
Yi G, Vaughan RC, Yarbrough I, Dharmaiah S, Kao CC. RNA binding by the brome mosaic virus capsid protein and the regulation of viral RNA accumulation. J Mol Biol 2009; 391:314-26. [PMID: 19481091 PMCID: PMC2774812 DOI: 10.1016/j.jmb.2009.05.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 05/12/2009] [Accepted: 05/20/2009] [Indexed: 12/20/2022]
Abstract
Viral capsid proteins (CPs) can regulate gene expression and encapsulate viral RNAs. Low-level expression of the brome mosaic virus (BMV) CP was found to stimulate viral RNA accumulation, while higher levels inhibited translation and BMV RNA replication. Regulation of translation acts through an RNA element named the B box, which is also critical for the replicase assembly. The BMV CP has also been shown to preferentially bind to an RNA element named SLC that contains the core promoter for genomic minus-strand RNA synthesis. To further elucidate CP interaction with RNA, we used a reversible cross-linking-peptide fingerprinting assay to identify peptides in the capsid that contact the SLC, the B-box RNA, and the encapsidated RNA. Transient expression of three mutations made in residues within or close by the cross-linked peptides partially released the normal inhibition of viral RNA accumulation in agroinfiltrated Nicotiana benthamiana. Interestingly, two of the mutants, R142A and D148A, were found to retain the ability to down-regulate reporter RNA translation. These two mutants formed viral particles in inoculated leaves, but only R142A was able to move systemically in the inoculated plant. The R142A CP was found to have higher affinities for SLC and the B box compared with those of wild-type CP and to alter contacts to the RNA in the virion. These results better define how the BMV CP can interact with RNA and regulate different viral processes.
Collapse
Affiliation(s)
- Guanghui Yi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
30
|
Basnayake VR, Sit TL, Lommel SA. The Red clover necrotic mosaic virus origin of assembly is delimited to the RNA-2 trans-activator. Virology 2008; 384:169-78. [PMID: 19062064 DOI: 10.1016/j.virol.2008.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/01/2008] [Accepted: 11/05/2008] [Indexed: 11/25/2022]
Abstract
The bipartite RNA genome of Red clover necrotic mosaic virus (RCNMV) is encapsidated into icosahedral virions that exist as two populations: i) virions that co-package both genomic RNAs and ii) virions packaging multiple copies of RNA-2. To elucidate the packaging mechanism, we sought to identify the RCNMV origin of assembly sequence (OAS). RCNMV RNA-1 cannot package in the absence of RNA-2 suggesting that it does not contain an independent packaging signal. A 209 nt RNA-2 element expressed from the Tomato bushy stunt virus CP subgenomic promoter is co-assembled with genomic RNA-1 into virions. Deletion mutagenesis delimited the previously characterized 34 nt trans-activator (TA) as the minimal RCNMV OAS. From this study we hypothesize that RNA-1 must be base-paired with RNA-2 at the TA to initiate co-packaging. The addition of viral assembly illustrates the critical importance of the multifunctional TA element as a key regulatory switch in the RCNMV life cycle.
Collapse
Affiliation(s)
- Veronica R Basnayake
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7342, USA
| | | | | |
Collapse
|
31
|
Karran RA, Hudak KA. Depurination within the intergenic region of Brome mosaic virus RNA3 inhibits viral replication in vitro and in vivo. Nucleic Acids Res 2008; 36:7230-9. [PMID: 19004869 PMCID: PMC2602774 DOI: 10.1093/nar/gkn896] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a glycosidase of plant origin that has been shown to depurinate some viral RNAs in vitro. We have demonstrated previously that treatment of Brome mosaic virus (BMV) RNAs with PAP inhibited their translation in a cell-free system and decreased their accumulation in barley protoplasts. In the current study, we map the depurination sites on BMV RNA3 and describe the mechanism by which replication of the viral RNA is inhibited by depurination. Specifically, we demonstrate that the viral replicase exhibited reduced affinity for depurinated positive-strand RNA3 compared with intact RNA3, resulting in less negative-strand product. This decrease was due to depurination within the intergenic region of RNA3, between ORF3 and 4, and distant from the 3′ terminal core promoter required for initiation of negative-strand RNA synthesis. Depurination within the intergenic region alone inhibited the binding of the replicase to full-length RNA3, whereas depurination outside the intergenic region permitted the replicase to initiate negative-strand synthesis; however, elongation of the RNA product was stalled at the abasic nucleotide. These results support a role of the intergenic region in controlling negative-strand RNA synthesis and contribute new insight into the effect of depurination by PAP on BMV replication.
Collapse
Affiliation(s)
- Rajita A Karran
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Huang YW, Hu CC, Lin NS, Tsai CH, Hsu YH. In vitro replication of Bamboo mosaic virus satellite RNA. Virus Res 2008; 136:98-106. [PMID: 18538884 DOI: 10.1016/j.virusres.2008.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 04/13/2008] [Accepted: 04/28/2008] [Indexed: 01/17/2023]
Abstract
An in vitro system was applied to analyze the replication of a satellite RNA of Bamboo mosaic virus (BaMV), designated satBaMV RNA, using solubilized membrane-bound RNA-dependent RNA polymerase (RdRp) complexes isolated from BaMV-infected Nicotiana benthamiana. After removal of endogenous templates, the RdRp complexes of BaMV catalyzed RNA synthesis upon the addition of the full-length positive (+)- or negative (-)-strand satBaMV RNA transcripts used as templates. Both (+)- and (-)-satBaMV RNA products were detected when only the (+)-satBaMV RNA was used as a template in the in vitro RdRp assays, which further demonstrated the capability of the RdRp preparation to complete the replication cycles of satBaMV RNAs. In addition, use of 5' rapid amplification of cDNA ends and DNA sequencing showed that the BaMV RdRp preparation could specifically recognize the promoter sequences in the (-)-satBaMV RNA for accurate initiation of (+)-satBaMV RNA synthesis. The results suggested that the same enzyme complexes could be used for the replication of both BaMV genomic and satBaMV RNAs. The soluble and template-dependent RdRp could be further used in mechanistic studies, such as those analyzing the cis-elements and candidate host factors required for satBaMV RNA replication in vitro.
Collapse
Affiliation(s)
- Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, ROC
| | | | | | | | | |
Collapse
|
33
|
Dreher TW. Role of tRNA-like structures in controlling plant virus replication. Virus Res 2008; 139:217-29. [PMID: 18638511 DOI: 10.1016/j.virusres.2008.06.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 06/14/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Transfer RNA-like structures (TLSs) that are sophisticated functional mimics of tRNAs are found at the 3'-termini of the genomes of a number of plant positive strand RNA viruses. Three natural aminoacylation identities are represented: valine, histidine, and tyrosine. Paralleling this variety in structure, the roles of TLSs vary widely between different viruses. For Turnip yellow mosaic virus, the TLS must be capable of valylation in order to support infectivity, major roles being the provision of translational enhancement and down-regulation of minus strand initiation. In contrast, valylation of the Peanut clump virus TLS is not essential. An intermediate situation seems to exist for Brome mosaic virus, whose RNAs 1 and 2, but not RNA 3, need to be capable of tyrosylation to support infectivity. Other known roles for certain TLSs include: (i) the recruitment of host CCA nucleotidyltransferase as a telomerase to maintain intact 3' CCA termini, (ii) involvement in the encapsidation of viral RNAs, and (iii) presentation of minus strand promoter elements for replicase recognition. In the latter role, the promoter elements reside within the TLS but are not functionally dependent on tRNA mimicry. The phylogenetic distribution of TLSs indicates that their evolutionary history includes frequent horizontal exchange, as has been observed for protein-coding regions of plant positive strand RNA viruses.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology and Center for Genome Research & Bioinformatics, 220 Nash Hall, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
34
|
Kim YC, Cheng Kao C. Biochemical analyses of the interactions between viral polymerases and RNAs. Methods Mol Biol 2008; 451:185-200. [PMID: 18370256 DOI: 10.1007/978-1-59745-102-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The interaction between viral polymerases and their cognate RNAs is vital to regulate the timing and abundance of viral replication products. Despite this, only minimal detailed information is available for the interaction between viral polymerases and cognate RNAs. We study the biochemical interactions using two viral polymerases that could serve as models for other plus-strand RNA viruses: the replicase from the tripartite brome mosaic virus (BMV), and the recombinant RNA-dependent RNA polymerase (RdRp) from hepatitis C virus (HCV). Replicase binding sites in the BMV RNAs were mapped using a template competition assay. The minimal length of RNA required for RNA binding by the HCV RdRp was determined using fluorescence spectroscopy. Lastly, regions of the HCV RdRp that contact the RNA were determined by a method coupling reversible protein-RNA crosslinking, affinity purification, and mass spectrometry. These analyses of RdRp-RNA interaction will be presented as three topics in this chapter.
Collapse
Affiliation(s)
- Young-Chan Kim
- Department of Biochemistry & Biophysics, 103 Biochemistry/Biophysics Building, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | |
Collapse
|
35
|
Beerens N, Selisko B, Ricagno S, Imbert I, van der Zanden L, Snijder EJ, Canard B. De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J Virol 2007; 81:8384-95. [PMID: 17537850 PMCID: PMC1951334 DOI: 10.1128/jvi.00564-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
All plus-strand RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that functions as the catalytic subunit of the viral replication/transcription complex, directing viral RNA synthesis in concert with other viral proteins and, sometimes, host proteins. RNA synthesis essentially can be initiated by two different mechanisms, de novo initiation and primer-dependent initiation. Most viral RdRps have been identified solely on the basis of comparative sequence analysis, and for many viruses the mechanism of initiation is unknown. In this study, using the family prototype equine arteritis virus (EAV), we address the mechanism of initiation of RNA synthesis in arteriviruses. The RdRp domains of the members of the arterivirus family, which are part of replicase subunit nsp9, were compared to coronavirus RdRps that belong to the same order of Nidovirales, as well as to other RdRps with known initiation mechanisms and three-dimensional structures. We report here the first successful expression and purification of an arterivirus RdRp that is catalytically active in the absence of other viral or cellular proteins. The EAV nsp9/RdRp initiates RNA synthesis by a de novo mechanism on homopolymeric templates in a template-specific manner. In addition, the requirements for initiation of RNA synthesis from the 3' end of the viral genome were studied in vivo using a reverse genetics approach. These studies suggest that the 3'-terminal nucleotides of the EAV genome play a critical role in viral RNA synthesis.
Collapse
Affiliation(s)
- Nancy Beerens
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC P4-26, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Li W, Wong SM. Host-dependent effects of the 3' untranslated region of turnip crinkle virus RNA on accumulation in Hibiscus and Arabidopsis. J Gen Virol 2007; 88:680-687. [PMID: 17251587 DOI: 10.1099/vir.0.82536-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 3' untranslated region (UTR) of turnip crinkle virus (TCV) RNA is 253 nt long (nt 3798-4050) with a 27 nt hairpin structure near its 3' terminus. In this study, the roles of the 3' UTR in virus accumulation were investigated in protoplasts of Hibiscus cannabinus L. and Arabidopsis thaliana (L.) Heynh. Our results showed that, in Hibiscus protoplasts, the minimal 3' UTR essential for TCV accumulation extends from nt 3922 to 4050, but that maintenance of virus accumulation at wild-type (wt) levels requires the full-length 3' UTR. However, in Arabidopsis protoplasts, only 33 nt (nt 4018-4050) at the 3' extremity of the UTR is required for wt levels of accumulation, whereas other parts of the 3' UTR are dispensable. The 27 nt hairpin within the 33 nt region is essential for virus accumulation in both Hibiscus and Arabidopsis protoplasts. However, transposition of nucleotides in base pairs within the upper or lower stems has no effect on virus accumulation in either Hibiscus or Arabidopsis protoplasts, and alterations of the loop sequence also fail to affect replication. Disruption of the upper or lower stems and deletion of the loop sequence reduce viral accumulation in Arabidopsis protoplasts, but abolish virus accumulation in Hibiscus protoplasts completely. These results indicate that strict conservation of the hairpin structure is more important for replication in Hibiscus than in Arabidopsis protoplasts. In conclusion, both the 3' UTR primary sequence and the 3'-terminal hairpin structure influence TCV accumulation in a host-dependent manner.
Collapse
Affiliation(s)
- Weimin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Kent Ridge, Singapore 117543
| | - Sek-Man Wong
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Kent Ridge, Singapore 117543
| |
Collapse
|
37
|
Zhu J, Gopinath K, Murali A, Yi G, Hayward SD, Zhu H, Kao C. RNA-binding proteins that inhibit RNA virus infection. Proc Natl Acad Sci U S A 2007; 104:3129-34. [PMID: 17360619 PMCID: PMC1805585 DOI: 10.1073/pnas.0611617104] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Indexed: 12/30/2022] Open
Abstract
Arrays of >5,000 Saccharomyces cerevisiae proteins were screened to identify proteins that can preferentially bind a small RNA hairpin that contains a clamped adenine motif (CAM). A CAM is required for the replication of Brome Mosaic Virus (BMV), a plant-infecting RNA virus that can replicate in S. cerevisiae. Several hits were selected for further characterization in Nicotiana benthamiana. Pseudouridine Synthase 4 (Pus4) and the Actin Patch Protein 1 (App1) modestly reduced BMV genomic plus-strand RNA accumulation, but dramatically inhibited BMV systemic spread in plants. Pus4 also prevented the encapsidation of a BMV RNA in plants and the reassembly of BMV virions in vitro. These results demonstrate the feasibility of using proteome arrays to identify specific RNA-binding proteins for antiviral activities. Furthermore, the effects of Pus4 suggest that the CAM-containing RNA motif provides a regulatory link between RNA replication and encapsidation.
Collapse
Affiliation(s)
- Jian Zhu
- *Department of Pharmacology and Molecular Sciences and
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Kodetham Gopinath
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Ayaluru Murali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Guanghui Yi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | | | - Heng Zhu
- *Department of Pharmacology and Molecular Sciences and
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Cheng Kao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| |
Collapse
|
38
|
Hu B, Pillai-Nair N, Hemenway C. Long-distance RNA-RNA interactions between terminal elements and the same subset of internal elements on the potato virus X genome mediate minus- and plus-strand RNA synthesis. RNA (NEW YORK, N.Y.) 2007; 13:267-80. [PMID: 17185361 PMCID: PMC1781375 DOI: 10.1261/rna.243607] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Potexvirus genomes contain conserved terminal elements that are complementary to multiple internal octanucleotide elements. Both local sequences and structures at the 5' terminus and long-distance interactions between this region and internal elements are important for accumulation of potato virus X (PVX) plus-strand RNA in vivo. In this study, the role of the conserved hexanucleotide motif within SL3 of the 3' NTR and internal conserved octanucleotide elements in minus-strand RNA synthesis was analyzed using both a template-dependent, PVX RNA-dependent RNA polymerase (RdRp) extract and a protoplast replication system. Template analyses in vitro indicated that 3' terminal templates of 850 nucleotides (nt), but not 200 nt, supported efficient, minus-strand RNA synthesis. Mutational analyses of the longer templates indicated that optimal transcription requires the hexanucleotide motif in SL3 within the 3' NTR and the complementary CP octanucleotide element 747 nt upstream. Additional experiments to disrupt interactions between one or more internal conserved elements and the 3' hexanucleotide element showed that long-distance interactions were necessary for minus-strand RNA synthesis both in vitro and in vivo. Additionally, multiple internal octanucleotide elements could serve as pairing partners with the hexanucleotide element in vivo. These cis-acting elements and interactions correlate in several ways to those previously observed for plus-strand RNA accumulation in vivo, suggesting that dynamic interactions between elements at both termini and the same subset of internal octanucleotide elements are required for both minus- and plus-strand RNA synthesis and potentially other aspects of PVX replication.
Collapse
Affiliation(s)
- Bin Hu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | | | |
Collapse
|
39
|
Osman TAM, Coutts RHA, Buck KW. In vitro synthesis of minus-strand RNA by an isolated cereal yellow dwarf virus RNA-dependent RNA polymerase requires VPg and a stem-loop structure at the 3' end of the virus RNA. J Virol 2006; 80:10743-51. [PMID: 16928757 PMCID: PMC1641740 DOI: 10.1128/jvi.01050-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cereal yellow dwarf virus (CYDV) RNA has a 5'-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3'-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3' terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3' end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3'-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.
Collapse
Affiliation(s)
- Toba A M Osman
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
40
|
Sun X, Simon AE. A cis-replication element functions in both orientations to enhance replication of Turnip crinkle virus. Virology 2006; 352:39-51. [PMID: 16757010 PMCID: PMC2937274 DOI: 10.1016/j.virol.2006.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/14/2005] [Accepted: 03/14/2006] [Indexed: 01/10/2023]
Abstract
Turnip crinkle virus (TCV) (family Tombusviridae, genus Carmovirus) is a positive-sense RNA virus containing a 4054-base genome. Previous results indicated that insertion of Hairpin 4 (H4) into a TCV-associated satellite RNA enhanced replication 6-fold in vivo (Nagy, P., Pogany, J., Simon, A. E., 1999. EMBO J. 18:5653-5665). A detailed structural and functional analysis of H4 has now been performed to investigate its role in TCV replication. RNA structural probing of H4 in full-length TCV supported the sequence forming hairpin structures in both orientations in vitro. Deletion and mutational analyses determined that H4 is important for efficient accumulation of TCV in protoplasts, with a 98% reduction of genomic RNA levels when H4 was deleted. In vitro transcription using p88 [the TCV RNA-dependent RNA polymerase] demonstrated that H4 in its plus-sense orientation [H4(+)] caused a nearly 2-fold increase in RNA synthesis from a core hairpin promoter located on TCV plus-strands. H4 in its minus-sense orientation [H4(-)] stimulated RNA synthesis by 100-fold from a linear minus-strand promoter. Gel mobility shift assays indicated that p88 binds H4(+) and H4(-) with equal affinity, which was substantially greater than the binding affinity to the core promoters. These results support roles for H4(+) and H4(-) in TCV replication by enhancing syntheses of both strands through attracting the RdRp to the template.
Collapse
Affiliation(s)
| | - Anne E. Simon
- Corresponding Author: Department of Cell Biology and Molecular Genetics, Microbiology Building, University of Maryland College Park, College Park, MD 20742, Phone: 301-405-8975, Fax: 301-805-1318,
| |
Collapse
|
41
|
Ranjith-Kumar CT, Kao CC. Recombinant viral RdRps can initiate RNA synthesis from circular templates. RNA (NEW YORK, N.Y.) 2006; 12:303-12. [PMID: 16373481 PMCID: PMC1370910 DOI: 10.1261/rna.2163106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The crystal structure of the recombinant hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) revealed extensive interactions between the fingers and the thumb subdomains, resulting in a closed conformation with an established template channel that should specifically accept single-stranded templates. We made circularized RNA templates and found that they were efficiently used by the HCV RdRp to synthesize product RNAs that are significantly longer than the template, suggesting that RdRp could exist in an open conformation prior to template binding. RNA synthesis using circular RNA templates had properties similar to those previously documented for linear RNA, including a need for higher GTP concentration for initiation, usage of GTP analogs, sensitivity to salt, and involvement of active-site residues for product formation. Some products were resistant to challenge with the template competitor heparin, indicating that the elongation complexes remain bound to template and are competent for RNA synthesis. Other products were not elongated in the presence of heparin, indicating that the elongation complex was terminated. Lastly, recombinant RdRps from two other flaviviruses and from the Pseudomonas phage phi6 also could use circular RNA templates for RNA-dependent RNA synthesis, although the phi6 RdRp could only use circular RNAs made from the 3'-terminal sequence of the phi6 genome.
Collapse
Affiliation(s)
- C T Ranjith-Kumar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| | | |
Collapse
|
42
|
Zhang G, Zhang J, George AT, Baumstark T, Simon AE. Conformational changes involved in initiation of minus-strand synthesis of a virus-associated RNA. RNA (NEW YORK, N.Y.) 2006; 12:147-62. [PMID: 16301603 PMCID: PMC1370894 DOI: 10.1261/rna.2166706] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Synthesis of wild-type levels of turnip crinkle virus (TCV)-associated satC complementary strands by purified, recombinant TCV RNA-dependent RNA polymerase (RdRp) in vitro was previously determined to require 3' end pairing to the large symmetrical internal loop of a phylogenetically conserved hairpin (H5) located upstream from the hairpin core promoter. However, wild-type satC transcripts, which fold into a single detectable conformation in vitro as determined by temperature-gradient gel electrophoresis, do not contain either the phylogenetically inferred H5 structure or the 3' end/H5 interaction. This implies that conformational changes are required to produce the phylogenetically inferred H5 structure for its pairing with the 3' end, which takes place subsequent to the initial conformation assumed by the RNA and prior to transcription initiation. The DR region, located 140 nucleotides upstream from the 3' end and previously determined to be important for transcription in vitro and replication in vivo, is proposed to have a role in the conformational switch, since stabilizing the phylogenetically inferred H5 structure decreases the negative effects of a DR mutation in vivo. In addition, high levels of aberrant transcription correlate with a specific conformational change in the Pr while maintaining the same conformation of the 3' terminus. These results suggest that a series of events that promote conformational changes is needed to expose the 3' terminus to the RdRp for accurate synthesis of wild-type levels of complementary strands in vitro.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
43
|
Gopinath K, Dragnea B, Kao C. Interaction between Brome mosaic virus proteins and RNAs: effects on RNA replication, protein expression, and RNA stability. J Virol 2005; 79:14222-34. [PMID: 16254357 PMCID: PMC1280218 DOI: 10.1128/jvi.79.22.14222-14234.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/20/2005] [Indexed: 11/20/2022] Open
Abstract
Brome mosaic virus (BMV) RNA replication has been examined in a number of systems, including Saccharomyces cerevisiae. We developed an efficient T-DNA-based gene delivery system using Agrobacterium tumefaciens to transiently express BMV RNAs in Nicotiana benthamiana. The expressed RNAs can systemically infect plants and provide material to extract BMV replicase that can perform template-dependent RNA-dependent RNA synthesis in vitro. We also expressed the four BMV-encoded proteins from nonreplicating RNAs and analyzed their effects on BMV RNA accumulation. The capsid protein that coinfiltrated with constructs expressing RNA1 and RNA2 suppressed minus-strand levels but increased plus-strand RNA accumulation. The replication proteins 1a and 2a could function in trans to replicate and transcribe the BMV RNAs. None of the BMV proteins or RNA could efficiently suppress posttranscriptional silencing. However, 1a expressed in trans will suppress the production of a recombinant green fluorescent protein expressed from the nontranslated portions of BMV RNA1 and RNA2, suggesting that 1a may regulate translation from BMV RNAs. BMV replicase proteins 1a did not affect the accumulation of the BMV RNAs in the absence of RNA replication, unlike the situation reported for S. cerevisiae. This work demonstrates that the Agrobacterium-mediated gene delivery system can be used to study the cis- and trans-acting requirements for BMV RNA replication in plants and that significant differences can exist for BMV RNA replication in different hosts.
Collapse
Affiliation(s)
- K Gopinath
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
44
|
Yu L, Markoff L. The topology of bulges in the long stem of the flavivirus 3' stem-loop is a major determinant of RNA replication competence. J Virol 2005; 79:2309-24. [PMID: 15681432 PMCID: PMC546603 DOI: 10.1128/jvi.79.4.2309-2324.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
All flavivirus genomes contain a 3'terminal stem-loop secondary structure (3'SL) formed by the most downstream approximately 100 nucleotides (nt) of the viral RNA. The 3'SL is required for virus replication and has been shown to bind both virus-coded and cellular proteins. Results of the present study using an infectious DNA for WN virus strain 956 initially demonstrated that the dengue virus serotype 2 (DEN2) 3'SL nucleotide sequence could not substitute for that of the WN 3'SL to support WN genome replication. To determine what WN virus-specific 3'SL nucleotide sequences were required for WN virus replication, WN virus 3'SL nucleotide sequences were selectively deleted and replaced by analogous segments of the DEN2 3'SL nucleotide sequence such that the overall 3'SL secondary structure was not disrupted. Top and bottom portions of the WN virus 3'SL were defined according to previous studies (J. L. Blackwell and M. A. Brinton, J. Virol. 71:6433-6444, 1997; L. Zeng, L., B. Falgout, and L. Markoff, J. Virol. 72:7510-7522, 1998). A bulge in the top portion of the long stem of the WN 3'SL was essential for replication of mutant WN RNAs, and replication-defective RNAs failed to produce negative strands in transfected cells. Introduction of a second bulge into the bottom portion of the long stem of the wild-type WN 3'SL markedly enhanced the replication competence of WN virus in mosquito cells but had no effect on replication in mammalian cells. This second bulge was identified as a host cell-specific enhancer of flavivirus replication. Results suggested that bulges and their topological location within the long stem of the 3'SL are primary determinants of replication competence for flavivirus genomes.
Collapse
Affiliation(s)
- Li Yu
- Laboratory Vector-Borne Viruse Disease, Division of Viral Products, FDA, Bethesda, MD 20892, USA
| | | |
Collapse
|
45
|
Guogas LM, Laforest SM, Gehrke L. Coat protein activation of alfalfa mosaic virus replication is concentration dependent. J Virol 2005; 79:5752-61. [PMID: 15827190 PMCID: PMC1082755 DOI: 10.1128/jvi.79.9.5752-5761.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alfalfa mosaic virus (AMV) and ilarvirus RNAs are infectious only in the presence of the viral coat protein; therefore, an understanding of coat protein's function is important for defining viral replication mechanisms. Based on in vitro replication experiments, the conformational switch model states that AMV coat protein blocks minus-strand RNA synthesis (R. C. Olsthoorn, S. Mertens, F. T. Brederode, and J. F. Bol, EMBO J. 18:4856-4864, 1999), while another report states that coat protein present in an inoculum is required to permit minus-strand synthesis (L. Neeleman and J. F. Bol, Virology 254:324-333, 1999). Here, we report on experiments that address these contrasting results with a goal of defining coat protein's function in the earliest stages of AMV replication. To detect coat-protein-activated AMV RNA replication, we designed and characterized a subgenomic luciferase reporter construct. We demonstrate that activation of viral RNA replication by coat protein is concentration dependent; that is, replication was strongly stimulated at low coat protein concentrations but decreased progressively at higher concentrations. Genomic RNA3 mutations preventing coat protein mRNA translation or disrupting coat protein's RNA binding domain diminished replication. The data indicate that RNA binding and an ongoing supply of coat protein are required to initiate replication on progeny genomic RNA transcripts. The data do not support the conformational switch model's claim that coat protein inhibits the initial stages of viral RNA replication. Replication activation may correlate with low local coat protein concentrations and low coat protein occupancy on the multiple binding sites present in the 3' untranslated regions of the viral RNAs.
Collapse
Affiliation(s)
- Laura M Guogas
- HST Division, MIT E25-545, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
46
|
Zhang J, Simon AE. Importance of sequence and structural elements within a viral replication repressor. Virology 2005; 333:301-15. [PMID: 15721364 DOI: 10.1016/j.virol.2004.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/17/2004] [Accepted: 12/09/2004] [Indexed: 11/21/2022]
Abstract
Efficient replication of plus-strand RNA viruses requires a 3' proximal core promoter and an increasingly diverse inventory of supporting elements such as enhancers, repressors, and 5' terminal sequences. While core promoters have been well characterized, much less is known about structure-functional relationships of these supporting elements. Members of the genus Carmovirus family Tombusviridae contain a hairpin (H5) proximal to the core promoter that functions as a repressor of minus-strand synthesis in vitro through an interaction between its large symmetrical internal loop (LSL) and 3' terminal bases. Turnip crinkle virus satellite RNA satC with the H5 of carmovirus Japanese iris necrosis virus or Cardamine chlorotic fleck virus (CCFV) did not accumulate to detectable levels even though 3' end base-pairing would be maintained. Replacement of portions of the satC H5 with analogous portions from CCFV revealed that the cognate LSL and lower stem were of greater importance for satC accumulation than the upper stem. In vivo selex of the H5 upper stem and terminal GNRA tetraloop revealed considerable plasticity in the upper stem, including the presence of three- to six-base terminal loops, allowed for H5 function. In vivo selex of the lower stem revealed that both a stable stem and specific base pairs contributed to satC fitness. Surprisingly, mutations in H5 had a disproportionate effect on plus-strand accumulation that was unrelated to the stability of the mutant plus-strands. In addition, fitness to accumulate in plants did not always correlate with enhanced ability to accumulate in protoplasts, suggesting that H5 may be multifunctional.
Collapse
Affiliation(s)
- Jiuchun Zhang
- Department of Cell Biology and Molecular Genetics, 1109 Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
47
|
Grdzelishvili VZ, Garcia-Ruiz H, Watanabe T, Ahlquist P. Mutual interference between genomic RNA replication and subgenomic mRNA transcription in brome mosaic virus. J Virol 2005; 79:1438-51. [PMID: 15650170 PMCID: PMC544081 DOI: 10.1128/jvi.79.3.1438-1451.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Replication by many positive-strand RNA viruses includes genomic RNA amplification and subgenomic mRNA (sgRNA) transcription. For brome mosaic virus (BMV), both processes occur in virus-induced, membrane-associated compartments, require BMV replication factors 1a and 2a, and use negative-strand RNA3 as a template for genomic RNA3 and sgRNA syntheses. To begin elucidating their relations, we examined the interaction of RNA3 replication and sgRNA transcription in Saccharomyces cerevisiae expressing 1a and 2a, which support the full RNA3 replication cycle. Blocking sgRNA transcription stimulated RNA3 replication by up to 350%, implying that sgRNA transcription inhibits RNA3 replication. Such inhibition was independent of the sgRNA-encoded coat protein and operated in cis. We further found that sgRNA transcription inhibited RNA3 replication at a step or steps after negative-strand RNA3 synthesis, implying competition with positive-strand RNA3 synthesis for negative-strand RNA3 templates, viral replication factors, or common host components. Consistent with this, sgRNA transcription was stimulated by up to 400% when mutations inhibiting positive-strand RNA3 synthesis were introduced into the RNA3 5'-untranslated region. Thus, BMV subgenomic and genomic RNA syntheses mutually interfered with each other, apparently by competition for one or more common factors. In plant protoplasts replicating all three BMV genomic RNAs, mutations blocking sgRNA transcription often had lesser effects on RNA3 accumulation, possibly because RNA3 also competed with RNA1 and RNA2 replication templates and because any increase in RNA3 replication at the expense of RNA1 and RNA2 would be self-limited by decreased 1a and 2a expression from RNA1 and RNA2.
Collapse
Affiliation(s)
- Valery Z Grdzelishvili
- Institute for Molecular Virology, University of Wisconsin-Madison, 1525 Linden Dr., Madison, WI 53706-1596, USA
| | | | | | | |
Collapse
|
48
|
Hema M, Gopinath K, Kao C. Repair of the tRNA-like CCA sequence in a multipartite positive-strand RNA virus. J Virol 2005; 79:1417-27. [PMID: 15650168 PMCID: PMC544147 DOI: 10.1128/jvi.79.3.1417-1427.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The 3' portions of plus-strand brome mosaic virus (BMV) RNAs mimic cellular tRNAs. Nucleotide substitutions or deletions in the 3'CCA of the tRNA-like sequence (TLS) affect minus-strand initiation unless repaired. We observed that 2-nucleotide deletions involving the CCA 3' sequence in one or all BMV RNAs still allowed RNA accumulation in barley protoplasts at significant levels. Alterations of CCA to GGA in only BMV RNA3 also allowed RNA accumulation at wild-type levels. However, substitutions in all three BMV RNAs severely reduced RNA accumulation, demonstrating that substitutions have different repair requirements than do small deletions. Furthermore, wild-type BMV RNA1 was required for the repair and replication of RNAs with nucleotide substitutions. Results from sequencing of progeny viral RNA from mutant input RNAs demonstrated that RNA1 did not contribute its sequence to the mutant RNAs. Instead, the repaired ends were heterogeneous, with one-third having a restored CCA and others having sequences with the only commonality being the restoration of one cytidylate. The role of BMV RNA1 in increased repair was examined.
Collapse
Affiliation(s)
- M Hema
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
49
|
Guogas LM, Filman DJ, Hogle JM, Gehrke L. Cofolding organizes alfalfa mosaic virus RNA and coat protein for replication. Science 2005; 306:2108-11. [PMID: 15604410 PMCID: PMC1500904 DOI: 10.1126/science.1103399] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alfalfa mosaic virus genomic RNAs are infectious only when the viral coat protein binds to the RNA 3' termini. The crystal structure of an alfalfa mosaic virus RNA-peptide complex reveals that conserved AUGC repeats and Pro-Thr-x-Arg-Ser-x-x-Tyr coat protein amino acids cofold upon interacting. Alternating AUGC residues have opposite orientation, and they base pair in different adjacent duplexes. Localized RNA backbone reversals stabilized by arginine-guanine interactions place the adenosines and guanines in reverse order in the duplex. The results suggest that a uniform, organized 3' conformation, similar to that found on viral RNAs with transfer RNA-like ends, may be essential for replication.
Collapse
Affiliation(s)
- Laura M Guogas
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
50
|
Choi SK, Hema M, Gopinath K, Santos J, Kao C. Replicase-binding sites on plus- and minus-strand brome mosaic virus RNAs and their roles in RNA replication in plant cells. J Virol 2004; 78:13420-9. [PMID: 15564452 PMCID: PMC533945 DOI: 10.1128/jvi.78.24.13420-13429.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cis-acting elements for Brome mosaic virus (BMV) RNA synthesis have been characterized primarily for RNA3. To identify additional replicase-binding elements, nested fragments of all three of the BMV RNAs, both plus- and minus-sense fragments, were constructed and tested for binding enriched BMV replicase in a template competition assay. Ten RNA fragments containing replicase-binding sites were identified; eight were characterized further because they were more effective competitors. All eight mapped to noncoding regions of BMV RNAs, and the positions of seven localized to sequences containing previously characterized core promoter elements (C. C. Kao, Mol. Plant Pathol. 3:55-62, 2001), thus suggesting the identities of the replicase-binding sites. Three contained the tRNA-like structures that direct minus-strand RNA synthesis, three were within the 3' region of each minus-strand RNA that contained the core promoter for genomic plus-strand initiation, and one was in the core subgenomic promoter. Single-nucleotide mutations known previously to abolish RNA synthesis in vitro prevented replicase binding. When tested in the context of the respective full-length RNAs, the same mutations abolished BMV RNA synthesis in transfected barley protoplasts. The eighth site was within the intercistronic region (ICR) of plus-strand RNA3. Further mapping showed that a sequence of 22 consecutive adenylates was responsible for binding the replicase, with 16 being the minimal required length. Deletion of the poly(A) sequence was previously shown to severely debilitate BMV RNA replication in plants (E. Smirnyagina, Y. H. Hsu, N. Chua, and P. Ahlquist, Virology 198:427-436, 1994). Interestingly, the B box motif in the ICR of RNA3, which has previously been determined to bind the 1a protein, does not bind the replicase. These results identify the replicase-binding sites in all of the BMV RNAs and suggest that the recognition of RNA3 is different from that of RNA1 and RNA2.
Collapse
Affiliation(s)
- S-K Choi
- Department of Biochemistry & Biophysics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|