1
|
Cai X, Shi X, Wang JY, Hu CH, Shen JD, Zhang B, Liu ZQ, Zheng YG. Enhancing the Thermal Stability and Enzyme Activity of Ketopantoate Hydroxymethyltransferase through Interface Modification Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13186-13195. [PMID: 38814711 DOI: 10.1021/acs.jafc.3c09589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Ketopantoate hydroxymethyltransferase (KPHMT) plays a pivotal role in d-pantothenic acid biosynthesis. Most KPHMTs are homodecamers with low thermal stability, posing challenges for protein engineering and limiting output enhancement. Previously, a high-enzyme activity KPHMT mutant (K25A/E189S) from Corynebacterium glutamicum was screened as mother strain (M0). Building upon this strain, our study focused on interface engineering modifications, employing a multifaceted approach including integrating folding-free energy calculation, B-factor analysis, and conserved site analysis. Preliminary screening led to the selection of five mutants in the interface─E106S, E98T, E98N, S247I, and S247D─showing improved thermal stability, culminating in the double-site mutant M8 (M0-E98N/S247D). M8 exhibited a T1/2 value of 288.79 min at 50 °C, showing a 3.29-fold increase compared to M0. Meanwhile, the Tm value of M8 was elevated from 53.2 to 59.6 °C. Investigations of structural and molecular dynamics simulations revealed alterations in surface electrostatic charge distribution and the formation of increased hydrogen bonds between subunits, contributing to enhanced thermal stability. This investigation corroborates the efficacy of interface engineering modifications in bolstering KPHMT stability while showing its potential for positively impacting industrial d-pantothenic acid synthesis.
Collapse
Affiliation(s)
- Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xue Shi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jia-Ying Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Cheng-Hao Hu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ji-Dong Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
2
|
Crystal structure of a novel putative sugar isomerase from the psychrophilic bacterium Paenibacillus sp. R4. Biochem Biophys Res Commun 2021; 585:48-54. [PMID: 34784551 DOI: 10.1016/j.bbrc.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022]
Abstract
Sugar isomerases (SIs) catalyze the reversible conversion of aldoses to ketoses. A novel putative SI gene has been identified from the genome sequence information on the psychrophilic bacterium Paenibacillus sp. R4. Here, we report the crystal structure of the putative SI from Paenibacillus sp. R4 (PbSI) at 2.98 Å resolution. It was found that the overall structure of PbSI adopts the triose-phosphate isomerase (TIM) barrel fold. PbSI was also identified to have two heterogeneous metal ions as its cofactors at the active site in the TIM barrel, one of which was confirmed as a Zn ion through X-ray anomalous scattering and inductively coupled plasma mass spectrometry analysis. Structural comparison with homologous SI proteins from mesophiles, hyperthermophiles, and a psychrophile revealed that key residues in the active site are well conserved and that dimeric PbSI is devoid of the extended C-terminal region, which tetrameric SIs commonly have. Our results provide novel structural information on the cold-adaptable SI, including information on the metal composition in the active site.
Collapse
|
3
|
Li L, Li W, Gong J, Xu Y, Wu Z, Jiang Z, Cheng YS, Li Q, Ni H. An effective computational-screening strategy for simultaneously improving both catalytic activity and thermostability of α-l-rhamnosidase. Biotechnol Bioeng 2021; 118:3409-3419. [PMID: 33742693 DOI: 10.1002/bit.27758] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Catalytic efficiency and thermostability are the two most important characteristics of enzymes. However, it is always tough to improve both catalytic efficiency and thermostability of enzymes simultaneously. In the present study, a computational strategy with double-screening steps was proposed to simultaneously improve both catalysis efficiency and thermostability of enzymes; and a fungal α-l-rhamnosidase was used to validate the strategy. As the result, by molecular docking and sequence alignment analysis within the binding pocket, seven mutant candidates were predicted with better catalytic efficiency. By energy variety analysis, A355N, S356Y, and D525N among the seven mutant candidates were predicted with better thermostability. The expression and characterization results showed the mutant D525N had significant improvements in both enzyme activity and thermostability. Molecular dynamics simulations indicated that the mutations located within the 5 Å range of the catalytic domain, which could improve root mean squared deviation, electrostatic, Van der Waal interaction, and polar salvation values, and formed water bridge between the substrate and the enzyme. The study indicated that the computational strategy based on the binding energy, conservation degree and mutation energy analyses was effective to develop enzymes with better catalysis and thermostability, providing practical approach for developing industrial enzymes.
Collapse
Affiliation(s)
- Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Wenjing Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Jianye Gong
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yanyan Xu
- Tan Kah Kee College, Xiamen University, Zhangzhou, China
| | - Zheyu Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yi-Sheng Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| |
Collapse
|
4
|
Chakravorty D, Khan MF, Patra S. Multifactorial level of extremostability of proteins: can they be exploited for protein engineering? Extremophiles 2017; 21:419-444. [PMID: 28283770 DOI: 10.1007/s00792-016-0908-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
Research on extremostable proteins has seen immense growth in the past decade owing to their industrial importance. Basic research of attributes related to extreme-stability requires further exploration. Modern mechanistic approaches to engineer such proteins in vitro will have more impact in industrial biotechnology economy. Developing a priori knowledge about the mechanism behind extreme-stability will nurture better understanding of pathways leading to protein molecular evolution and folding. This review is a vivid compilation about all classes of extremostable proteins and the attributes that lead to myriad of adaptations divulged after an extensive study of 6495 articles belonging to extremostable proteins. Along with detailing on the rationale behind extreme-stability of proteins, emphasis has been put on modern approaches that have been utilized to render proteins extremostable by protein engineering. It was understood that each protein shows different approaches to extreme-stability governed by minute differences in their biophysical properties and the milieu in which they exist. Any general rule has not yet been drawn regarding adaptive mechanisms in extreme environments. This review was further instrumental to understand the drawback of the available 14 stabilizing mutation prediction algorithms. Thus, this review lays the foundation to further explore the biophysical pleiotropy of extreme-stable proteins to deduce a global prediction model for predicting the effect of mutations on protein stability.
Collapse
Affiliation(s)
- Debamitra Chakravorty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohd Faheem Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Fatima B, Aftab MN, Haq IU. Cloning, purification, and characterization of xylose isomerase fromThermotoga naphthophilaRKU-10. J Basic Microbiol 2016; 56:949-62. [DOI: 10.1002/jobm.201500589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/30/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Bilqees Fatima
- Institute of Industrial Biotechnology (IIB); GC University; Lahore Pakistan
| | | | - Ikram-ul Haq
- Institute of Industrial Biotechnology (IIB); GC University; Lahore Pakistan
| |
Collapse
|
6
|
Lee CW, Wang HJ, Hwang JK, Tseng CP. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study. PLoS One 2014; 9:e112751. [PMID: 25393107 PMCID: PMC4231051 DOI: 10.1371/journal.pone.0112751] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 10/18/2014] [Indexed: 11/21/2022] Open
Abstract
Protein thermal stability is an important factor considered in medical and industrial applications. Many structural characteristics related to protein thermal stability have been elucidated, and increasing salt bridges is considered as one of the most efficient strategies to increase protein thermal stability. However, the accurate simulation of salt bridges remains difficult. In this study, a novel method for salt-bridge design was proposed based on the statistical analysis of 10,556 surface salt bridges on 6,493 X-ray protein structures. These salt bridges were first categorized based on pairing residues, secondary structure locations, and Cα–Cα distances. Pairing preferences generalized from statistical analysis were used to construct a salt-bridge pair index and utilized in a weighted electrostatic attraction model to find the effective pairings for designing salt bridges. The model was also coupled with B-factor, weighted contact number, relative solvent accessibility, and conservation prescreening to determine the residues appropriate for the thermal adaptive design of salt bridges. According to our method, eight putative salt-bridges were designed on a mesophilic β-glucosidase and 24 variants were constructed to verify the predictions. Six putative salt-bridges leaded to the increase of the enzyme thermal stability. A significant increase in melting temperature of 8.8, 4.8, 3.7, 1.3, 1.2, and 0.7°C of the putative salt-bridges N437K–D49, E96R–D28, E96K–D28, S440K–E70, T231K–D388, and Q277E–D282 was detected, respectively. Reversing the polarity of T231K–D388 to T231D–D388K resulted in a further increase in melting temperatures by 3.6°C, which may be caused by the transformation of an intra-subunit electrostatic interaction into an inter-subunit one depending on the local environment. The combination of the thermostable variants (N437K, E96R, T231D and D388K) generated a melting temperature increase of 15.7°C. Thus, this study demonstrated a novel method for the thermal adaptive design of salt bridges through inference of suitable positions and substitutions.
Collapse
Affiliation(s)
- Chi-Wen Lee
- Institute of Bioinformatics and Systems Biology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Hsiu-Jung Wang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Jenn-Kang Hwang
- Institute of Bioinformatics and Systems Biology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
- * E-mail: (JKH); (CPT)
| | - Ching-Ping Tseng
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
- * E-mail: (JKH); (CPT)
| |
Collapse
|
7
|
Probing the role of helix α1 in the acid-tolerance and thermal stability of the Streptomyces sp. SK Glucose Isomerase by site-directed mutagenesis. J Biotechnol 2014; 173:1-6. [PMID: 24440634 DOI: 10.1016/j.jbiotec.2014.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/26/2013] [Accepted: 01/03/2014] [Indexed: 11/20/2022]
Abstract
In order to investigate the role of helix α1 in the different biochemical properties between class I and class II Glucose Isomerases, a histidine and a phenylalanine residue were inserted at position 17 and 19 of Streptomyces sp. SK Glucose Isomerase (SKGI). In addition, W16 was substituted by a histidine. The H17/F19 insertion displaced the optimal pH of SKGI from 6.5 to 7-8 and slightly decreased the thermostability. As for the W16H mutant, a shift in optimal pH of SKGI from 6.5 to 6 was observed along with a decrease in the enzyme thermostability at 85°C with a half-life time reduced twice compared to the wild-type enzyme. Three-dimensional structure analysis suggested that the insertion of a histidine at position 17 results in the formation of new hydrogen bond with D287, thereby preventing it from deprotonating the O2 hydroxyl of the sugar at low pH, while the substitution W16H induced opposite effect by preventing hydrogen bond formation between D287 and W16 and thereby probably facilitating the hydrogen transfer during the isomerization reaction. The findings highlight the essential role of helix α1, which bears the three introduced mutations, in the acid-tolerance and the thermostability of SKGI and of glucose isomerases in general.
Collapse
|
8
|
Cho JW, Han BG, Park SY, Kim SJ, Kim MD, Lee BI. Overexpression, crystallization and preliminary X-ray crystallographic analysis of a putative xylose isomerase from Bacteroides thetaiotaomicron. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1127-30. [PMID: 24100564 PMCID: PMC3792672 DOI: 10.1107/s1744309113023877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/25/2013] [Indexed: 11/10/2022]
Abstract
Bacteroides thetaiotaomicron BT0793, a putative xylose isomerase, was overexpressed in Escherichia coli, purified and crystallized using polyethylene glycol monomethyl ether 550 as the precipitant. X-ray diffraction data were collected to 2.10 Å resolution at 100 K using synchrotron X-rays. The crystal was found to belong to space group P1, with unit-cell parameters a=96.3, b=101.7, c=108.3 Å, α=82.8, β=68.2, γ=83.0°. The asymmetric unit contained eight subunits of xylose isomerase with a crystal volume per protein weight (VM) of 2.38 Å3 Da(-1) and a solvent content of 48.3%.
Collapse
Affiliation(s)
- Jea-Won Cho
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
- Biomolecular Function Research Branch, Division of Convergence Technology, Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Byeong-Gu Han
- Biomolecular Function Research Branch, Division of Convergence Technology, Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Sang Youn Park
- School of Systems Biomedical Science, Soongsil University, Seoul 156-743, Republic of Korea
| | - Seung Jun Kim
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea
| | - Myoung-Dong Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Byung Il Lee
- Biomolecular Function Research Branch, Division of Convergence Technology, Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| |
Collapse
|
9
|
dos Reis CV, Bernardes A, Polikarpov I. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Bifidobacterium adolescentis xylose isomerase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:588-91. [PMID: 23695585 PMCID: PMC3660909 DOI: 10.1107/s174430911301110x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/23/2013] [Indexed: 11/10/2022]
Abstract
Xylose isomerase (EC 5.3.1.5) is a key enzyme in xylose metabolism which is industrially important for the transformation of glucose and xylose into fructose and xylulose, respectively. The Bifidobacterium adolescentis xylA gene (NC_008618.1) encoding xylose isomerase (XI) was cloned and the enzyme was overexpressed in Escherichia coli. Purified recombinant XI was crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol 3350 as the precipitating agent. A complete native data set was collected to 1.7 Å resolution using a synchrotron-radiation source. The crystals belonged to the orthorhombic space group P21212, with unit-cell parameters a = 88.78, b = 123.98, c = 78.63 Å.
Collapse
Affiliation(s)
- Caio Vinicius dos Reis
- Instituto de Física de São Carlos, Universidade de São Paulo, Trabalhador São Carlense 400, 13566-590 São Carlos-SP, Brazil
| | - Amanda Bernardes
- Instituto de Física de São Carlos, Universidade de São Paulo, Trabalhador São Carlense 400, 13566-590 São Carlos-SP, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Trabalhador São Carlense 400, 13566-590 São Carlos-SP, Brazil
| |
Collapse
|
10
|
Identification of critical residues for the activity and thermostability of Streptomyces sp. SK glucose isomerase. Appl Microbiol Biotechnol 2013; 97:9715-26. [PMID: 23463249 DOI: 10.1007/s00253-013-4784-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
The role of residue 219 in the physicochemical properties of D-glucose isomerase from Streptomyces sp. SK strain (SKGI) was investigated by site-directed mutagenesis and structural studies. Mutants G219A, G219N, and G219F were generated and characterized. Comparative studies of their physicochemical properties with those of the wild-type enzyme highlighted that mutant G219A displayed increased specific activity and thermal stability compared to that of the wild-type enzyme, while for G219N and G219F, these properties were considerably decreased. A double mutant, SKGI F53L/G219A, displayed a higher optimal temperature and a higher catalytic efficiency than both the G219A mutant and the wild-type enzyme and showed a half-life time of about 150 min at 85 °C as compared to 50 min for wild-type SKGI. Crystal structures of SKGI wild-type and G219A enzymes were solved to 1.73 and 2.15 Å, respectively, and showed that the polypeptide chain folds into two structural domains. The larger domain consists of a (β/α)8 unit, and the smaller domain forms a loop of α helices. Detailed analyses of the three-dimensional structures highlighted minor but important changes in the active site region as compared to that of the wild-type enzyme leading to a displacement of both metal ions, and in particular that in site M2. The structural analyses moreover revealed how the substitution of G219 by an alanine plays a crucial role in improving the thermostability of the mutant enzyme.
Collapse
|
11
|
Patel DH, Cho EJ, Kim HM, Choi IS, Bae HJ. Engineering of the catalytic site of xylose isomerase to enhance bioconversion of a non-preferential substrate. Protein Eng Des Sel 2012; 25:331-6. [DOI: 10.1093/protein/gzs022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
12
|
Ben Hlima H, Aghajari N, Ben Ali M, Haser R, Bejar S. Engineered glucose isomerase from Streptomyces sp. SK is resistant to Ca2+ inhibition and Co2+ independent. ACTA ACUST UNITED AC 2012; 39:537-46. [DOI: 10.1007/s10295-011-1061-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/08/2011] [Indexed: 11/24/2022]
Abstract
Abstract
The role of two amino acid residues linked to the two catalytic histidines His54 and His220 in kinetics and physicochemical properties of the Streptomyces sp. SK glucose isomerase (SKGI) was investigated by site-directed mutagenesis and molecular modeling. Two single mutations, F53L and G219D, and a double mutation F53L/G219D was introduced into the xylA SKGI gene. The F53L mutation increases the thermostability and the catalytic efficiency and also slightly shifts the optimum pH from 6.5 to 7, but displays a profile being similar to that of the wild-type enzyme concerning the effect of various metal ions. The G219D mutant is resistant to calcium inhibition retaining about 80% of its residual activity in 10 mM Ca2+ instead of 10% for the wild-type. This variant is activated by Mn2+ ions, but not Co2+, as seen for the wild-type enzyme. It does not require the latter for its thermostability, but has its half-life time displaced from 50 to 20 min at 85°C. The double mutation F53L/G219D restores the thermostability as seen for the wild-type enzyme while maintaining the resistance to the calcium inhibition. Molecular modeling suggests that the increase in thermostability is due to new hydrophobic interactions stabilizing α2 helix and that the resistance to calcium inhibition is a result of narrowing the binding site of catalytic ion.
Collapse
Affiliation(s)
- Hajer Ben Hlima
- grid.412124.0 0000000123235644 Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax Université de Sfax B.P 1177 Route de Sidi Mansour Km 6 3018 Sfax Tunisia
| | - Nushin Aghajari
- grid.25697.3f 0000 0001 2172 4233 Laboratoire de BioCristallographie et Biologie Structurale des Cibles Thérapeutiques, Bases Moléculaires et Structurales des Systèmes Infectieux UMR 5086–CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines FR3302, 7 Passage du Vercors 69367 Lyon cedex 07 France
| | - Mamdouh Ben Ali
- grid.412124.0 0000000123235644 Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax Université de Sfax B.P 1177 Route de Sidi Mansour Km 6 3018 Sfax Tunisia
| | - Richard Haser
- grid.25697.3f 0000 0001 2172 4233 Laboratoire de BioCristallographie et Biologie Structurale des Cibles Thérapeutiques, Bases Moléculaires et Structurales des Systèmes Infectieux UMR 5086–CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines FR3302, 7 Passage du Vercors 69367 Lyon cedex 07 France
| | - Samir Bejar
- grid.412124.0 0000000123235644 Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax Université de Sfax B.P 1177 Route de Sidi Mansour Km 6 3018 Sfax Tunisia
| |
Collapse
|
13
|
Yoshida H, Takeda K, Izumori K, Kamitori S. Elucidation of the role of Ser329 and the C-terminal region in the catalytic activity of Pseudomonas stutzeri L-rhamnose isomerase. Protein Eng Des Sel 2010; 23:919-27. [PMID: 20977999 DOI: 10.1093/protein/gzq077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas stutzeri l-rhamnose isomerase (l-RhI) is capable of catalyzing the isomerization between various aldoses and ketoses, showing high catalytic activity with broad substrate-specificity compared with Escherichia coli l-RhI. In a previous study, the crystal structure of P. stutzeri l-RhI revealed an active site comparable with that of E. coli l-RhI and d-xylose isomerases (d-XIs) with structurally conserved amino acids, but also with a different residue seemingly responsible for the specificity of P. stutzeri l-RhI, though the residue itself does not interact with the bound substrate. This residue, Ser329, corresponds to Phe336 in E. coli l-RhI and Lys294 in Actinoplanes missouriensis d-XI. To elucidate the role of Ser329 in P. stutzeri l-RhI, we constructed mutants, S329F (E. coli l-RhI type), S329K (A. missouriensis d-XI type), S329L and S329A. Analyses of the catalytic activity and crystal structure of the mutants revealed a hydroxyl group of Ser329 to be crucial for catalytic activity via interaction with a water molecule. In addition, in complexes with substrate, the mutants S329F and S329L exhibited significant electron density in the C-terminal region not observed in the wild-type P. stutzeri l-RhI. The C-terminal region of P. stutzeri l-RhI has flexibility and shows a flip-flop movement at the inter-molecular surface of the dimeric form.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Division of Structural Biology, Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | |
Collapse
|
14
|
Xu W, Cai P, Yan M, Xu L, Ouyang PK. Molecular Dynamics Simulation of Temperature-dependent Flexibility of Thermophilic Xylose Isomerase. CHINESE J CHEM PHYS 2009. [DOI: 10.1088/1674-0068/22/05/467-472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Involvement of cysteine 306 and alanine 63 in the thermostability and oligomeric organization of glucose isomerase from Streptomyces sp. SK. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0155-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Crystal structure of theBacillus anthracisnucleoside diphosphate kinase and its characterization reveals an enzyme adapted to perform under stress conditions. Proteins 2009; 76:496-506. [DOI: 10.1002/prot.22364] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Xu W, Yan M, Xu L, Ding L, Ouyang P. Engineering the activity of thermophilic xylose isomerase by site-directed mutation at subunit interfaces. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2008.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Differential selectivity of the Escherichia coli cell membrane shifts the equilibrium for the enzyme-catalyzed isomerization of galactose to tagatose. Appl Environ Microbiol 2008; 74:2307-13. [PMID: 18263746 DOI: 10.1128/aem.02691-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An Escherichia coli galactose kinase gene knockout (DeltagalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the DeltagalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37 degrees C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A DeltamglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions.
Collapse
|
19
|
Oh DK. Tagatose: properties, applications, and biotechnological processes. Appl Microbiol Biotechnol 2007; 76:1-8. [PMID: 17492284 DOI: 10.1007/s00253-007-0981-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/30/2007] [Accepted: 04/01/2007] [Indexed: 10/23/2022]
Abstract
D-Tagatose has attracted a great deal of attention in recent years due to its health benefits and similar properties to sucrose. D-Tagatose can be used as a low-calorie sweetener, as an intermediate for synthesis of other optically active compounds, and as an additive in detergent, cosmetic, and pharmaceutical formulation. Biotransformation of D-tagatose has been produced using several biocatalyst sources. Among the biocatalysts, L-arabinose isomerase has been mostly applied for D-tagatose production because of the industrial feasibility for the use of D-galactose as a substrate. In this article, the characterization of many L-arabinose isomerases and their D-tagatose production is compared. Protein engineering and immobilization of the enzyme for increasing the conversion rate of D-galactose to D-tagatose are also reviewed.
Collapse
Affiliation(s)
- Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-Dong Gwangjin-Gu, Seoul, 143-701, South Korea.
| |
Collapse
|
20
|
Yoshida H, Yamada M, Ohyama Y, Takada G, Izumori K, Kamitori S. The structures of L-rhamnose isomerase from Pseudomonas stutzeri in complexes with L-rhamnose and D-allose provide insights into broad substrate specificity. J Mol Biol 2006; 365:1505-16. [PMID: 17141803 DOI: 10.1016/j.jmb.2006.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/27/2006] [Accepted: 11/01/2006] [Indexed: 11/26/2022]
Abstract
Pseudomonas stutzeri L-rhamnose isomerase (P. stutzeri L-RhI) can efficiently catalyze the isomerization between various aldoses and ketoses, showing a broad substrate specificity compared to L-RhI from Escherichia coli (E. coli L-RhI). To understand the relationship between structure and substrate specificity, the crystal structures of P. stutzeri L-RhI alone and in complexes with L-rhamnose and D-allose which has different configurations of C4 and C5 from L-rhamnose, were determined at a resolution of 2.0 A, 1.97 A, and 1.97 A, respectively. P. stutzeri L-RhI has a large domain with a (beta/alpha)(8) barrel fold and an additional small domain composed of seven alpha-helices, forming a homo tetramer, as found in E. coli L-RhI and D-xylose isomerases (D-XIs) from various microorganisms. The beta1-alpha1 loop (Gly60-Arg76) of P. stutzeri L-RhI is involved in the substrate binding of a neighbouring molecule, as found in D-XIs, while in E. coli L-RhI, the corresponding beta1-alpha1 loop is extended (Asp52-Arg78) and covers the substrate-binding site of the same molecule. The complex structures of P. stutzeri L-RhI with L-rhamnose and D-allose show that both substrates are nicely fitted to the substrate-binding site. The part of the substrate-binding site interacting with the substrate at the 1, 2, and 3 positions is equivalent to E. coli L-RhI, and the other part interacting with the 4, 5, and 6 positions is similar to D-XI. In E. coli L-RhI, the beta1-alpha1 loop creates an unique hydrophobic pocket at the the 4, 5, and 6 positions, leading to the strictly recognition of L-rhamnose as the most suitable substrate, while in P. stutzeri L-RhI, there is no corresponding hydrophobic pocket where Phe66 from a neighbouring molecule merely forms hydrophobic interactions with the substrate, leading to the loose substrate recognition at the 4, 5, and 6 positions.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Molecular Structure Research Group, Information Technology Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Häusler H, Weber H, Stütz* AE. D-XYLOSE (D-GLUCOSE) ISOMERASE (EC 5.3.1.5): OBSERVATIONS AND COMMENTS CONCERNING STRUCTURAL REQUIREMENTS OF SUBSTRATES AS WELL AS MECHANISTIC FEATURES. J Carbohydr Chem 2006. [DOI: 10.1081/car-100104860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Herwig Häusler
- a Glycogroup, Institut für Organische Chemie, Technische Universität Graz , Stremayrgasse 16, Graz, A-8010, Austria
| | - Hansjörg Weber
- a Glycogroup, Institut für Organische Chemie, Technische Universität Graz , Stremayrgasse 16, Graz, A-8010, Austria
| | - Arnold E. Stütz*
- a Glycogroup, Institut für Organische Chemie, Technische Universität Graz , Stremayrgasse 16, Graz, A-8010, Austria
| |
Collapse
|
22
|
Chan CH, Liang HK, Hsiao NW, Ko MT, Lyu PC, Hwang JK. Relationship between local structural entropy and protein thermostability. Proteins 2006; 57:684-91. [PMID: 15532068 DOI: 10.1002/prot.20263] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We developed a technique to compute structural entropy directly from protein sequences. We explored the possibility of using structural entropy to identify residues involved in thermal stabilization of various protein families. Examples include methanococcal adenylate kinase, Ribonuclease HI and holocytochrome c(551). Our results show that the positions of the largest structural entropy differences between wild type and mutant usually coincide with the residues relevant to thermostability. We also observed a good linear relationship between the average structural entropy and the melting temperatures for adenylate kinase and its chimeric constructs. To validate this linear relationship, we compiled a large dataset comprised of 1153 sequences and found that most protein families still display similar linear relationships. Our results suggest that the multitude of interactions involved in thermal stabilization may be generalized into the tendency of proteins to maintain local structural conservation. The linear relationship between structural entropy and protein thermostability should be useful in the study of protein thermal stabilization.
Collapse
Affiliation(s)
- Chen-Hsiung Chan
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Mezghani M, Borgi MA, Kammoun R, Aouissaoui H, Bejar S. Construction of new stable strain over-expressing the glucose isomerase of the Streptomyces sp. SK strain. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2005.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Epting KL, Vieille C, Zeikus JG, Kelly RM. Influence of divalent cations on the structural thermostability and thermal inactivation kinetics of class II xylose isomerases. FEBS J 2005; 272:1454-64. [PMID: 15752361 DOI: 10.1111/j.1742-4658.2005.04577.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of divalent metal cations on structural thermostability and the inactivation kinetics of homologous class II d-xylose isomerases (XI; EC 5.3.1.5) from mesophilic (Escherichia coli and Bacillus licheniformis), thermophilic (Thermoanaerobacterium thermosulfurigenes), and hyperthermophilic (Thermotoga neapolitana) bacteria were examined. Unlike the three less thermophilic XIs that were substantially structurally stabilized in the presence of Co2+ or Mn2+ (and Mg2+ to a lesser extent), the melting temperature [(Tm) approximately 100 degrees C] of T. neapolitana XI (TNXI) varied little in the presence or absence of a single type of metal. In the presence of any two of these metals, TNXI exhibited a second melting transition between 110 degrees C and 114 degrees C. TNXI kinetic inactivation, which was non-first order, could be modeled as a two-step sequential process. TNXI inactivation in the presence of 5 mm metal at 99-100 degrees C was slowest in the presence of Mn2+[half-life (t(1/2)) of 84 min], compared to Co2+ (t(1/2) of 14 min) and Mg2+ (t(1/2) of 2 min). While adding Co2+ to Mg2+ increased TNXI's t(1/2) at 99-100 degrees C from 2 to 7.5 min, TNXI showed no significant activity at temperatures above the first melting transition. The results reported here suggest that, unlike the other class II XIs examined, single metals are required for TNXI activity, but are not essential for its structural thermostability. The structural form corresponding to the second melting transition of TNXI in the presence of two metals is not known, but likely results from cooperative interactions between dissimilar metals in the two metal binding sites.
Collapse
Affiliation(s)
- Kevin L Epting
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Structural analysis is useful in elucidating structural features responsible for enhanced thermal stability of proteins. However, due to the rapid increase of sequenced genomic data, there are far more protein sequences than the corresponding three-dimensional (3D) structures. The usual sequence-based amino acid composition analysis provides useful but simplified clues about the amino acid types related to thermal stability of proteins. In this work, we developed a statistical approach to identify the significant amino acid coupling sequence patterns in thermophilic proteins. The amino acid coupling sequence pattern is defined as any 2 types of amino acids separated by 1 or more amino acids. Using this approach, we construct the rho profiles for the coupling patterns. The rho value gives a measure of the relative occurrence of a coupling pattern in thermophiles compared with mesophiles. We found that thermophiles and mesophiles exhibit significant bias in their amino acid coupling patterns. We showed that such bias is mainly due to temperature adaptation instead of species or GC content variations. Though no single outstanding coupling pattern can adequately account for protein thermostability, we can use a group of amino acid coupling patterns having strong statistical significance (p values < 10(-7)) to distinguish between thermophilic and mesophilic proteins. We found a good correlation between the optimal growth temperatures of the genomes and the occurrences of the coupling patterns (the correlation coefficient is 0.89). Furthermore, we can separate the thermophilic proteins from their mesophilic orthologs using the amino acid coupling patterns. These results may be useful in the study of the enhanced stability of proteins from thermophiles-especially when structural information is scarce. Proteins 2005. (c) 2005 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Han-Kuen Liang
- Institute of Bioinformatics, National Chiao Tung University, HsinChu, Taiwan
| | | | | | | |
Collapse
|
26
|
Abstract
The genes (xylA) encoding xylose isomerase (XI) from two Lactococcus lactis subsp. lactis strains, 210 (Xyl(-)) and IO-1 (Xyl(+)), were cloned, and the activities of their expressed proteins in recombinant strains of Escherichia coli were investigated. The nucleotide and amino acid sequence homologies between the xylA genes were 98.4 and 98.6%, respectively, and only six amino acid residues differed between the two XIs. The purified IO-1 XI was soluble with K(m) and k(cat) being 2.25 mM and 184/s, respectively, while the 210 XI was insoluble and inactive. Site-directed mutagenesis on 210 xylA showed that a triple mutant possessing R202M/Y218D/V275A mutations regained XI activity and was soluble. The K(m) and k(cat) of this mutant were 4.15 mM and 141/s, respectively. One of the IO-1 XI mutants, S388T, was insoluble and showed negligible activity similar to that of 210 XI. The introduction of a K407E mutation to the IO-1 S388T XI mutant restored its activity and solubility. The dissolution of XI activity in L. lactis subsp. lactis involves a series of mutations that collectively eliminate enzyme activity by reducing the solubility of the enzyme.
Collapse
Affiliation(s)
- Joo-Heon Park
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
27
|
Borgi MA, Srih-Belguith K, Ben Ali M, Mezghani M, Tranier S, Haser R, Bejar S. Glucose isomerase of the Streptomyces sp. SK strain: purification, sequence analysis and implication of alanine 103 residue in the enzyme thermostability and acidotolerance. Biochimie 2004; 86:561-8. [PMID: 15388233 DOI: 10.1016/j.biochi.2004.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 07/08/2004] [Indexed: 11/29/2022]
Abstract
The glucose isomerase gene (xylA) from the Streptomyces sp. SK strain encodes a 386-amino-acid protein (42.7 kDa) showing extensive identities with many other bacterial glucose isomerases. We have shown by gel filtration chromatography and SDS-PAGE analysis that the purified recombinant glucose isomerase (SKGI) is a 180 kDa tetramer of four 43 kDa subunits. Sequence inspection revealed that this protein, present some special characteristics like the abundance of hydrophobic residues and some original amino-acid substitutions, which distinguish SKGI from the other GIs previously reported. The presence of an Ala residue at position 103 in SKGI is especially remarkable, since the same amino-acid was found at the equivalent position in the extremely thermostable GIs from Thermus thermophilus and Thermotoga neapolitana; whereas a Gly was found in the majority of less thermostable GIs from Streptomyces. The Ala103Gly mutation, introduced in SKGI, significantly decreases the half-life time at 90 degrees C from 80 to 50 min and also shifts the optimum pH from 6.5 to 7.5. This confirms the implication of the Ala103 residue on SKGI thermostability and activity at low pH. A homology model of SKGI based on the SOGI (that of Streptomyces olivochromogenes) crystal structure has been constructed in order to understand the mutational effects on a molecular scale. Hence, the Ala103Gly mutation, affecting enzyme properties, is presumed to increase molecular flexibility and to destabilize, in particular at elevated temperature, the 91-109 loop that includes the important catalytic residue, Phe94.
Collapse
Affiliation(s)
- Mohamed Ali Borgi
- Laboratoire d'Enzymes et de Métabolites des Procaryotes, Centre de Biotechnologie de Sfax BP K 3038 Sfax, Tunisie
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang G, Guo R, Bartlam M, Yang H, Xue H, Liu Y, Huang L, Rao Z. Crystal structure of a DNA binding protein from the hyperthermophilic euryarchaeon Methanococcus jannaschii. Protein Sci 2004; 12:2815-22. [PMID: 14627741 PMCID: PMC2366989 DOI: 10.1110/ps.03325103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Sac10b family consists of a group of highly conserved DNA binding proteins from both the euryarchaeotal and the crenarchaeotal branches of Archaea. The proteins have been suggested to play an architectural role in the chromosomal organization in these organisms. Previous studies have mainly focused on the Sac10b proteins from the crenarchaeota. Here, we report the 2.0 A resolution crystal structure of Mja10b from the euryarchaeon Methanococcus jannaschii. The model of Mja10b has been refined to an R-factor of 20.9%. The crystal structure of an Mja10b monomer reveals an alpha/beta structure of four beta-strands and two alpha-helices, and Mja10b assembles into a dimer via an extensive hydrophobic interface. Mja10b has a similar topology to that of its crenarchaeota counterpart Sso10b (also known as Alba). Structural comparison between the two proteins suggests that structural features such as hydrophobic inner core, acetylation sites, dimer interface, and DNA binding surface are conserved among Sac10b proteins. Structural differences between the two proteins were found in the loops. To understand the structural basis for the thermostability of Mja10b, the Mja10b structure was compared to other proteins with similar topology. Our data suggest that extensive ion-pair networks, optimized accessible surface area and the dimerization via hydrophobic interactions may contribute to the enhanced thermostability of Mja10b.
Collapse
Affiliation(s)
- Ganggang Wang
- MOE Laboratory of Protein Science and Laboratory of Structural Biology, Department of Biological Science and Biotechnology, Tsinghua University, Beijing, 100084, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tendulkar AV, Wangikar PP, Sohoni MA, Samant VV, Mone CY. Parameterization and Classification of the Protein Universe via Geometric Techniques. J Mol Biol 2003; 334:157-72. [PMID: 14596807 DOI: 10.1016/j.jmb.2003.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a scheme for the classification of 3487 non-redundant protein structures into 1207 non-hierarchical clusters by using recurring structural patterns of three to six amino acids as keys of classification. This results in several signature patterns, which seem to decide membership of a protein in a functional category. The patterns provide clues to the key residues involved in functional sites as well as in protein-protein interaction. The discovered patterns include a "glutamate double bridge" of superoxide dismutase, the functional interface of the serine protease and inhibitor, interface of homo/hetero dimers, and functional sites of several enzyme families. We use geometric invariants to decide superimposability of structural patterns. This allows the parameterization of patterns and discovery of recurring patterns via clustering. The geometric invariant-based approach eliminates the computationally explosive step of pair-wise comparison of structures. The results provide a vast resource for the biologists for experimental validation of the proposed functional sites, and for the design of synthetic enzymes, inhibitors and drugs.
Collapse
Affiliation(s)
- Ashish V Tendulkar
- Kanwal Rekhi School of Information Technology, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Gárdonyi M, Hahn-Hägerdal B. The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(02)00285-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Charron C, Vitoux B, Aubry A. Comparative analysis of thermoadaptation within the archaeal glyceraldehyde-3-phosphate dehydrogenases from mesophilic Methanobacterium bryantii and thermophilic Methanothermus fervidus. Biopolymers 2002; 65:263-73. [PMID: 12382287 DOI: 10.1002/bip.10235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To gain insight into the molecular determinants of thermoadaptation within the family of archaeal glyceraldehyde-3-phosphate dehydrogenases (GAPDH), a homology-based 3-D model of the mesophilic GAPDH from Methanobacterium bryantii was built and compared with the crystal structure of the thermophilic GAPDH from Methanothermus fervidus. The homotetrameric model of the holoenzyme was initially assembled from identical subunits completed with NADP molecules. The structure was then refined by energy minimization and simulated-annealing procedures. PROCHECK and the 3-D profile method were used to appraise the model reliability. Striking molecular features underlying the difference in stability between the enzymes were deduced from their structural comparison. First, both the increase in hydrophobic contacts and the decrease in accessibility to the protein core were shown to discriminate in favor of the thermophilic enzyme. Besides, but to a lesser degree, the number of ion pairs involved in cooperative clusters appeared to correlate with thermostability. Finally, the decreased stability of the mesophilic enzyme was also predicted to proceed from both the lack of charge-dipole interactions within alpha-helices and the enhanced entropy of unfolding due to an increase in chain flexibility. Thus, archaeal GAPDHs appear to be governed by thermoadaptation rules that differ in some aspects from those previously observed within their eubacterial counterparts.
Collapse
Affiliation(s)
- Christophe Charron
- Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, Groupe Biocristallographie, UMR CNRS 7036, Université Henri Poincaré, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy, Cedex, France
| | | | | |
Collapse
|
33
|
Bandlish RK, Michael Hess J, Epting KL, Vieille C, Kelly RM. Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases from Streptomyces murinus and two hyperthermophilic Thermotoga species. Biotechnol Bioeng 2002; 80:185-94. [PMID: 12209774 DOI: 10.1002/bit.10362] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The conversion of glucose to fructose at elevated temperatures, as catalyzed by soluble and immobilized xylose (glucose) isomerases from the hyperthermophiles Thermotoga maritima (TMGI) and Thermotoga neapolitana 5068 (TNGI) and from the mesophile Streptomyces murinus (SMGI), was examined. At pH 7.0 in the presence of Mg(2+), the temperature optima for the three soluble enzymes were 85 degrees C (SMGI), 95 degrees to 100 degrees C (TNGI), and >100 degrees C (TMGI). Under certain conditions, soluble forms of the three enzymes exhibited an unusual, multiphasic inactivation behavior in which the decay rate slowed considerably after an initial rapid decline. However, the inactivation of the enzymes covalently immobilized to glass beads, monophasic in most cases, was characterized by a first-order decay rate intermediate between those of the initial rapid and slower phases for the soluble enzymes. Enzyme productivities for the three immobilized GIs were determined experimentally in the presence of Mg(2+). The highest productivities measured were 750 and 760 kg fructose per kilogram SMGI at 60 degrees C and 70 degrees C, respectively. The highest productivity for both TMGI and TNGI in the presence of Mg(2+) occurred at 70 degrees C, pH 7.0, with approximately 230 and 200 kg fructose per kilogram enzyme for TNGI and TMGI, respectively. At 80 degrees C and in the presence of Mg(2+), productivities for the three enzymes ranged from 31 to 273. A simple mathematical model, which accounted for thermal effects on kinetics, glucose-fructose equilibrium, and enzyme inactivation, was used to examine the potential for high-fructose corn syrup (HFCS) production at 80 degrees C and above using TNGI and SMGI under optimal conditions, which included the presence of both Co(2+) and Mg(2+). In the presence of both cations, these enzymes showed the potential to catalyze glucose-to-fructose conversion at 80 degrees C with estimated lifetime productivities on the order of 2000 kg fructose per kilogram enzyme, a value competitive with enzymes currently used at 55 degrees to 65 degrees C, but with the additional advantage of higher fructose concentrations. At 90 degrees C, the estimated productivity for SMGI dropped to 200, whereas, for TNGI, lifetime productivities on the order of 1000 were estimated. Assuming that the most favorable biocatalytic and thermostability features of these enzymes can be captured in immobilized form and the chemical lability of substrates and products can be minimized, HFCS production at high temperatures could be used to achieve higher fructose concentrations as well as create alternative processing strategies.
Collapse
Affiliation(s)
- Rockey K Bandlish
- Department of Chemical Engineering, North Carolina State University, Stinson Drive, Box 7905, Raleigh, North Carolina 27695-7905, USA
| | | | | | | | | |
Collapse
|
34
|
Dalhus B, Saarinen M, Sauer UH, Eklund P, Johansson K, Karlsson A, Ramaswamy S, Bjørk A, Synstad B, Naterstad K, Sirevåg R, Eklund H. Structural basis for thermophilic protein stability: structures of thermophilic and mesophilic malate dehydrogenases. J Mol Biol 2002; 318:707-21. [PMID: 12054817 DOI: 10.1016/s0022-2836(02)00050-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The three-dimensional structure of four malate dehydrogenases (MDH) from thermophilic and mesophilic phototropic bacteria have been determined by X-ray crystallography and the corresponding structures compared. In contrast to the dimeric quaternary structure of most MDHs, these MDHs are tetramers and are structurally related to tetrameric malate dehydrogenases from Archaea and to lactate dehydrogenases. The tetramers are dimers of dimers, where the structures of each subunit and the dimers are similar to the dimeric malate dehydrogenases. The difference in optimal growth temperature of the corresponding organisms is relatively small, ranging from 32 to 55 degrees C. Nevertheless, on the basis of the four crystal structures, a number of factors that are likely to contribute to the relative thermostability in the present series have been identified. It appears from the results obtained, that the difference in thermostability between MDH from the mesophilic Chlorobium vibrioforme on one hand and from the moderate thermophile Chlorobium tepidum on the other hand is mainly due to the presence of polar residues that form additional hydrogen bonds within each subunit. Furthermore, for the even more thermostable Chloroflexus aurantiacus MDH, the use of charged residues to form additional ionic interactions across the dimer-dimer interface is favored. This enzyme has a favorable intercalation of His-Trp as well as additional aromatic contacts at the monomer-monomer interface in each dimer. A structural alignment of tetrameric and dimeric prokaryotic MDHs reveal that structural elements that differ among dimeric and tetrameric MDHs are located in a few loop regions.
Collapse
Affiliation(s)
- Bjørn Dalhus
- Department of Chemistry, University of Oslo, Box 1033, Blindern, N-0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lönn A, Gárdonyi M, van Zyl W, Hahn-Hägerdal B, Otero RC. Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:157-63. [PMID: 11784309 DOI: 10.1046/j.0014-2956.2002.02631.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Random PCR mutagenesis was applied to the Thermus thermophilus xylA gene encoding xylose isomerase. Three cold-adapted mutants were isolated with the following amino-acid substitutions: E372G, V379A (M-1021), E372G, F163L (M-1024) and E372G (M-1026). The wild-type and mutated xylA genes were cloned and expressed in Escherichia coli HB101 using the vector pGEM-T Easy, and their physicochemical and catalytic properties were determined. The optimum pH for xylose isomerization activity for the mutants was approximately 7.0, which is similar to the wild-type enzyme. Compared with the wild-type, the mutants were active over a broader pH range. The mutants exhibited up to nine times higher catalytic rate constants (k(cat)) for d-xylose compared with the wild-type enzyme at 60 degrees C, but they did not show any increase in catalytic efficiency (k(cat)/K(m)). For d-glucose, both the k(cat) and the k(cat)/K(m) values for the mutants were increased compared with the wild-type enzyme. Furthermore, the mutant enzymes exhibited up to 255 times higher inhibition constants (K(i)) for xylitol than the wild-type, indicating that they are less inhibited by xylitol. The thermal stability of the mutated enzymes was poorer than that of the wild-type enzyme. The results are discussed in terms of increased molecular flexibility of the mutant enzymes at low temperatures.
Collapse
Affiliation(s)
- Anna Lönn
- Department of Applied Microbiology, Lund University, Sweden
| | | | | | | | | |
Collapse
|
36
|
Gromiha MM. Factors influencing the stability of alpha-helices and beta-strands in thermophilic ribonuclease H. Prep Biochem Biotechnol 2001; 31:103-12. [PMID: 11426698 DOI: 10.1081/pb-100103376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding the influence of structural parameters is crucial to enhance the thermal stability of proteins. In this work, the stability (deltaG) of residues in different secondary structures of Ribonuclease H (RNase H) has been analyzed with 48 amino acid properties. The properties reflecting hydrophobicity show a good correlation with stability. Further, the linear distribution of surrounding hydrophobicity in alpha-helices, obtained from the three dimensional structure of thermophilic RNase H, agrees well with experimental deltaG values. Moreover, the stability parameters correlate better in alpha-helices than those did in beta-strand segments. Multiple regression analysis, incorporating combinations of three properties from among all possible combinations of the 48 properties, increased the correlation coefficient to 0.77.
Collapse
Affiliation(s)
- M M Gromiha
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| |
Collapse
|
37
|
Raykovska V, Dolashka-Angelova P, Paskaleva D, Stoeva S, Abashev J, Kirkov L, Voelter W. Isolation and characterization of a xylose-glucose isomerase from a new strain Streptomyces thermovulgaris 127, var. 7-86. Biochem Cell Biol 2001. [DOI: 10.1139/o00-100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A thermostable D-xyloseglucose isomerase was isolated from the thermophilic strain Streptomyces thermovulgaris 127, var. 7-86, as a result of mutagenic treatment by γ-irradiation of the parent strain, by precipitation and sequential chromatographies on DEAESephadex A50, TSK-gel, FPLC-Mono Q/HR, and Superose 12 columns. The N-terminal amino acid sequence and amino acid analysis shows 7392% homology with xyloseglucose isomerases from other sources. The native molecular mass, determined by gel filtration on a Superose 12 column, is 180 kDa, and 44.6 and 45 kDa were calculated, based on amino acid analysis and 10% SDS-PAGE, respectively. Both, the activity and stability of the enzyme were investigated toward pH, temperature, and denaturation with guanidine hydrochloride. The enzyme activity showed a clear pH optimum between pH 7.2 and 9.0 with D-glucose and 7.4 and 8.3 with D-xylose as substrates, respectively. The enzyme is active up to 6085°C at pH 7.0, using D-glucose, and up to 5060°C at pH 7.6, using D-xylose as substrates. The activation energy (Ea = 46 kJ·mol1) and the critical temperature (Tc = 60°C) were determined by fluorescence spectroscopy. Tc is in close coincidence with the melting temperature of denaturation (Tm = 59°C), determined by circular dichroism (CD) spectroscopy. The free energy of stabilization in water after denaturation with Gdn.HCl was calculated to be 12 kJ·mol1. The specific activity (km values) for D-xylose-glucose isomerase at 70°C toward different substrates, D-xylose, D-glucose, and D-ribose, were determined to be 4.4, 55.5, and 13.3 mM, recpectively.Key words: D-xylose-glucose isomerase, protein sequencing, protein stability, protein denaturation.
Collapse
|
38
|
Walden H, Bell GS, Russell RJ, Siebers B, Hensel R, Taylor GL. Tiny TIM: a small, tetrameric, hyperthermostable triosephosphate isomerase. J Mol Biol 2001; 306:745-57. [PMID: 11243785 DOI: 10.1006/jmbi.2000.4433] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative structural studies on proteins derived from organisms with growth optima ranging from 15 to 100 degrees C are beginning to shed light on the mechanisms of protein thermoadaptation. One means of sustaining hyperthermostability is for proteins to exist in higher oligomeric forms than their mesophilic homologues. Triosephosphate isomerase (TIM) is one of the most studied enzymes, whose fold represents one of nature's most common protein architectures. Most TIMs are dimers of approximately 250 amino acid residues per monomer. Here, we report the 2.7 A resolution crystal structure of the extremely thermostable TIM from Pyrococcus woesei, a hyperthermophilic archaeon growing optimally at 100 degrees C, representing the first archaeal TIM structure. P. woesei TIM exists as a tetramer comprising monomers of only 228 amino acid residues. Structural comparisons with other less thermostable TIMs show that although the central beta-barrel is largely conserved, severe pruning of several helices and truncation of some loops give rise to a much more compact monomer in the small hyperthermophilic TIM. The classical TIM dimer formation is conserved in P. woesei TIM. The extreme thermostability of PwTIM appears to be achieved by the creation of a compact tetramer where two classical TIM dimers interact via an extensive hydrophobic interface. The tetramer is formed through largely hydrophobic interactions between some of the pruned helical regions. The equivalent helical regions in less thermostable dimeric TIMs represent regions of high average temperature factor. The PwTIM seems to have removed these regions of potential instability in the formation of the tetramer. This study of PwTIM provides further support for the role of higher oligomerisation states in extreme thermal stabilisation.
Collapse
Affiliation(s)
- H Walden
- Centre for Biomolecular Sciences, The University of St Andrews, Fife, KY16 9ST, Scotland
| | | | | | | | | | | |
Collapse
|
39
|
|