1
|
Shekhar AC, Wu WJ, Chen HT. Mutational and biophysical analyses reveal a TFIIIC binding region in the TFIIF-related Rpc53 subunit of RNA polymerase III. J Biol Chem 2023; 299:104859. [PMID: 37230389 PMCID: PMC10404625 DOI: 10.1016/j.jbc.2023.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
The TFIIF-like Rpc53/Rpc37 heterodimer of RNA polymerase (pol) III is involved in various stages of transcription. The C-terminal region of Rpc53 dimerizes with Rpc37 to anchor on the lobe domain of the pol III cleft. However, structural and functional features of the Rpc53 N-terminal region had not been characterized previously. Here, we conducted site-directed alanine replacement mutagenesis on the Rpc53 N-terminus, generating yeast strains that exhibited a cold-sensitive growth defect and severely compromised pol III transcriptional activity. Circular dichroism and NMR spectroscopy revealed a highly disordered 57-amino acid polypeptide in the Rpc53 N-terminus. This polypeptide is a versatile protein-binding module displaying nanomolar-level binding affinities for Rpc37 and the Tfc4 subunit of the transcription initiation factor TFIIIC. Accordingly, we denote this Rpc53 N-terminus polypeptide as the TFIIIC-binding region or CBR. Alanine replacements in the CBR significantly reduced its binding affinity for Tfc4, highlighting its functional importance to cell growth and transcription in vitro. Our study reveals the functional basis for Rpc53's CBR in assembly of the pol III transcription initiation complex.
Collapse
Affiliation(s)
- Arvind Chandra Shekhar
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C..
| |
Collapse
|
2
|
Ramsay EP, Vannini A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:285-294. [PMID: 29155071 DOI: 10.1016/j.bbagrm.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 01/03/2023]
Abstract
RNA polymerase III catalyses the synthesis of tRNAs in eukaryotic organisms. Through combined biochemical and structural characterisation, multiple auxiliary factors have been identified alongside RNA Polymerase III as critical in both facilitating and regulating transcription. Together, this machinery forms dynamic multi-protein complexes at tRNA genes which are required for polymerase recruitment, DNA opening and initiation and elongation of the tRNA transcripts. Central to the function of these complexes is their ability to undergo multiple conformational changes and rearrangements that regulate each step. Here, we discuss the available biochemical and structural data on the structural plasticity of multi-protein complexes involved in RNA Polymerase III transcriptional initiation and facilitated re-initiation during tRNA synthesis. Increasingly, structural information is becoming available for RNA polymerase III and its functional complexes, allowing for a deeper understanding of tRNA transcriptional initiation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
MESH Headings
- Animals
- Eukaryotic Cells/metabolism
- Humans
- Models, Genetic
- Multiprotein Complexes/metabolism
- Promoter Regions, Genetic/genetics
- Protein Subunits
- RNA Polymerase III/chemistry
- RNA Polymerase III/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer, Amino Acid-Specific/biosynthesis
- RNA, Transfer, Amino Acid-Specific/genetics
- Transcription Elongation, Genetic
- Transcription Factors/genetics
- Transcription Initiation, Genetic
Collapse
|
3
|
Leśniewska E, Boguta M. Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes. Open Biol 2017; 7:rsob.170001. [PMID: 28228471 PMCID: PMC5356446 DOI: 10.1098/rsob.170001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes a limited set of short genes in eukaryotes producing abundant small RNAs, mostly tRNA. The originally defined yeast Pol III transcriptome appears to be expanding owing to the application of new methods. Also, several factors required for assembly and nuclear import of Pol III complex have been identified recently. Models of Pol III based on cryo-electron microscopy reconstructions of distinct Pol III conformations reveal unique features distinguishing Pol III from other polymerases. Novel concepts concerning Pol III functioning involve recruitment of general Pol III-specific transcription factors and distinctive mechanisms of transcription initiation, elongation and termination. Despite the short length of Pol III transcription units, mapping of transcriptionally active Pol III with nucleotide resolution has revealed strikingly uneven polymerase distribution along all genes. This may be related, at least in part, to the transcription factors bound at the internal promoter regions. Pol III uses also a specific negative regulator, Maf1, which binds to polymerase under stress conditions; however, a subset of Pol III genes is not controlled by Maf1. Among other RNA polymerases, Pol III machinery represents unique features related to a short transcript length and high transcription efficiency.
Collapse
Affiliation(s)
- Ewa Leśniewska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Cheung S, Ma L, Chan PHW, Hu HL, Mayor T, Chen HT, Measday V. Ty1 Integrase Interacts with RNA Polymerase III-specific Subcomplexes to Promote Insertion of Ty1 Elements Upstream of Polymerase (Pol) III-transcribed Genes. J Biol Chem 2016; 291:6396-411. [PMID: 26797132 DOI: 10.1074/jbc.m115.686840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 01/01/2023] Open
Abstract
Retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate and are derived from retroviruses. The Ty1 retrotransposon of Saccharomyces cerevisiae belongs to the Ty1/Copia superfamily, which is present in every eukaryotic genome. Insertion of Ty1 elements into the S. cerevisiae genome, which occurs upstream of genes transcribed by RNA Pol III, requires the Ty1 element-encoded integrase (IN) protein. Here, we report that Ty1-IN interacts in vivo and in vitro with RNA Pol III-specific subunits to mediate insertion of Ty1 elements upstream of Pol III-transcribed genes. Purification of Ty1-IN from yeast cells followed by mass spectrometry (MS) analysis identified an enrichment of peptides corresponding to the Rpc82/34/31 and Rpc53/37 Pol III-specific subcomplexes. GFP-Trap purification of multiple GFP-tagged RNA Pol III subunits from yeast extracts revealed that the majority of Pol III subunits co-purify with Ty1-IN but not two other complexes required for Pol III transcription, transcription initiation factors (TF) IIIB and IIIC. In vitro binding studies with bacterially purified RNA Pol III proteins demonstrate that Rpc31, Rpc34, and Rpc53 interact directly with Ty1-IN. Deletion of the N-terminal 280 amino acids of Rpc53 abrogates insertion of Ty1 elements upstream of the hot spot SUF16 tRNA locus and abolishes the interaction of Ty1-IN with Rpc37. The Rpc53/37 complex therefore has an important role in targeting Ty1-IN to insert Ty1 elements upstream of Pol III-transcribed genes.
Collapse
Affiliation(s)
- Stephanie Cheung
- From the Department of Biochemistry and Molecular Biology, Wine Research Centre, and
| | | | - Patrick H W Chan
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada and
| | - Hui-Lan Hu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | - Thibault Mayor
- From the Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada and
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | - Vivien Measday
- From the Department of Biochemistry and Molecular Biology, Wine Research Centre, and
| |
Collapse
|
5
|
Arimbasseri AG, Rijal K, Maraia RJ. Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 2015; 5:e27639. [PMID: 25764110 DOI: 10.4161/trns.27369] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, RNA polymerase (RNAP) III transcribes hundreds of genes for tRNAs and 5S rRNA, among others, which share similar promoters and stable transcription initiation complexes (TIC), which support rapid RNAP III recycling. In contrast, RNAP II transcribes a large number of genes with highly variable promoters and interacting factors, which exert fine regulatory control over TIC lability and modifications of RNAP II at different transitional points in the transcription cycle. We review data that illustrate a relatively smooth continuity of RNAP III initiation-elongation-termination and reinitiation toward its function to produce high levels of tRNAs and other RNAs that support growth and development.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- a Intramural Research Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | | | | |
Collapse
|
6
|
Intergenic transcriptional interference is blocked by RNA polymerase III transcription factor TFIIIB in Saccharomyces cerevisiae. Genetics 2013; 196:427-38. [PMID: 24336746 PMCID: PMC3914616 DOI: 10.1534/genetics.113.160093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such “extratranscriptional” activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467–ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins.
Collapse
|
7
|
Mapping the protein interaction network for TFIIB-related factor Brf1 in the RNA polymerase III preinitiation complex. Mol Cell Biol 2013; 34:551-9. [PMID: 24277937 DOI: 10.1128/mcb.00910-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
TFIIB-related factor Brf1 is essential for RNA polymerase (Pol) III recruitment and open-promoter formation in transcription initiation. We site specifically incorporated a nonnatural amino acid cross-linker into Brf1 to map its protein interaction targets in the preinitiation complex (PIC). Our cross-linking analysis in the N-terminal domain of Brf1 indicated a pattern of multiple protein interactions reminiscent of TFIIB in the Pol active-site cleft. In addition to the TFIIB-like protein interactions, the Brf1 cyclin repeat subdomain is in contact with the Pol III-specific C34 subunit. With site-directed hydroxyl radical probing, we further revealed the binding between Brf1 cyclin repeats and the highly conserved region connecting C34 winged-helix domains 2 and 3. In contrast to the N-terminal domain of Brf1, the C-terminal domain contains extensive binding sites for TBP and Bdp1 to hold together the TFIIIB complex on the promoter. Overall, the domain architecture of the PIC derived from our cross-linking data explains how individual structural subdomains of Brf1 integrate the protein network from the Pol III active center to the promoter for transcription initiation.
Collapse
|
8
|
Niu QK, Liang Y, Zhou JJ, Dou XY, Gao SC, Chen LQ, Zhang XQ, Ye D. Pollen-expressed transcription factor 2 encodes a novel plant-specific TFIIB-related protein that is required for pollen germination and embryogenesis in Arabidopsis. MOLECULAR PLANT 2013; 6:1091-1108. [PMID: 23713077 DOI: 10.1093/mp/sst083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pollen germination and embryogenesis are important to sexual plant reproduction. The processes require a large number of genes to be expressed. Transcription of eukaryotic nuclear genes is accomplished by three conserved RNA polymerases acting in association with a set of auxiliary general transcription factors (GTFs), including B-type GTFs. The roles of B-type GTFs in plant reproduction remain poorly understood. Here we report functional characterization of a novel plant-specific TFIIB-related gene PTF2 in Arabidopsis. Mutation in PTF2 caused failure of pollen germination. Pollen-rescue revealed that the mutation also disrupted embryogenesis and resulted in seed abortion. PTF2 is expressed prolifically in developing pollen and the other tissues with active cell division and differentiation, including embryo and shoot apical meristem. The PTF2 protein shares a lower amino acid sequence similarity with other known TFIIB and TFIIB-related proteins in Arabidopsis. It can interact with TATA-box binding protein 2 (TBP2) and bind to the double-stranded DNA (dsDNA) as the other known TFIIB and TFIIB-related proteins do. In addition, PTF2 can form a homodimer and interact with the subunits of RNA polymerases (RNAPs), implying that it may be involved in the RNAPs transcription. These results suggest that PTF2 plays crucial roles in pollen germination and embryogenesis in Arabidopsis, possibly by regulating gene expression through interaction with TBP2 and the subunits of RNAPs.
Collapse
Affiliation(s)
- Qian-Kun Niu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Acker J, Conesa C, Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:283-95. [PMID: 23063749 DOI: 10.1016/j.bbagrm.2012.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recent data indicate that the well-defined transcription machinery of RNA polymerase III (Pol III) is probably more complex than commonly thought. In this review, we describe the yeast basal transcription factors of Pol III and their involvements in the transcription cycle. We also present a list of proteins detected on genes transcribed by Pol III (class III genes) that might participate in the transcription process. Surprisingly, several of these proteins are involved in RNA polymerase II transcription. Defining the role of these potential new effectors in Pol III transcription in vivo will be the challenge of the next few years. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Joël Acker
- CEA, iBiTecS, Gif Sur Yvette, F-91191, France
| | | | | |
Collapse
|
10
|
Vannini A, Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 2012; 45:439-46. [PMID: 22365827 DOI: 10.1016/j.molcel.2012.01.023] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 01/24/2023]
Abstract
Recent studies of the three eukaryotic transcription machineries revealed that all initiation complexes share a conserved core. This core consists of the RNA polymerase (I, II, or III), the TATA box-binding protein (TBP), and transcription factors TFIIB, TFIIE, and TFIIF (for Pol II) or proteins structurally and functionally related to parts of these factors (for Pol I and Pol III). The conserved core initiation complex stabilizes the open DNA promoter complex and directs initial RNA synthesis. The periphery of the core initiation complex is decorated by additional polymerase-specific factors that account for functional differences in promoter recognition and opening, and gene class-specific regulation. This review outlines the similarities and differences between these important molecular machines.
Collapse
Affiliation(s)
- Alessandro Vannini
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | | |
Collapse
|
11
|
Fernández-Tornero C, Böttcher B, Rashid UJ, Müller CW. Analyzing RNA polymerase III by electron cryomicroscopy. RNA Biol 2011; 8:760-5. [PMID: 21881405 DOI: 10.4161/rna.8.5.16021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent electron cryomicroscopy reconstructions have provided new insights into the overall organization of yeast RNA polymerase (Pol) III, responsible for the synthesis of small, non-translated RNAs. The structure of the free Pol III enzyme at 10 Å resolution provides an accurate framework to better understand its overall architecture and the structural organization and functional role of two Pol III-specific subcomplexes. Cryo-EM structures of elongating Pol III bound to DNA/RNA scaffolds show the rearrangement of the Pol III-specific subcomplexes that enclose incoming DNA. In one reconstruction downstream DNA and newly transcribed RNA can be followed over considerably longer distances as in the crystal structure of elongating Pol II. The Pol III transcription machinery is increasingly recognized as a possible target for cancer therapy. The recent cryo-EM reconstructions contribute to the molecular understanding of Pol III transcription as a prerequisite for targeting its components.
Collapse
|
12
|
Ehara H, Sekine SI, Yokoyama S. Crystal structure of the C17/25 subcomplex from Schizosaccharomyces pombe RNA polymerase III. Protein Sci 2011; 20:1558-65. [PMID: 21714024 DOI: 10.1002/pro.682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 11/09/2022]
Abstract
Eukaryotic RNA polymerase III (Pol III) is a multisubunit enzyme responsible for transcribing tRNA, 5S rRNA, and several small RNAs. Of the 17 subunits in Pol III, the C17 (Rpc17) and C25 (Rpc25) subunits form a stable subcomplex that protrudes from the core polymerase. In this study, we determined the crystal structure of the C17/25 subcomplex from Schizosaccharomyces pombe. The subcomplex adopts an elongated shape, and each subunit has two domains. The two subunits in the subcomplex are tightly packed and extensively interact, with a contact area of 2080 Å(2) . The overall conformation of S. pombe C17/25 is considerably different from the previously reported structure of C17/25 from Saccharomyces cerevisiae, with respect to the position of the C17 HRDC domain, a helix bundle essential for cell viability. In contrast, the S. pombe C17/25 structure is quite similar to those of the Pol II and archaeal counterparts, Rpb4/7 and RpoE/F, respectively, despite the low sequence similarity. A phylogenetic comparison of the C17 subunits among eukaryotes revealed that they can be classified into three groups, according to the length of the interdomain linker. S. pombe C17, as well as Rpb4 and RpoF, belongs to the largest group, with the short linker. On the other hand, S. cerevisiae C17 belongs to the smallest group, with the long linker, which probably enables the subcomplex to assume the alternative conformation.
Collapse
Affiliation(s)
- Haruhiko Ehara
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | |
Collapse
|
13
|
Autoregulation of an RNA polymerase II promoter by the RNA polymerase III transcription factor III C (TF(III)C) complex. Proc Natl Acad Sci U S A 2011; 108:8385-9. [PMID: 21536876 DOI: 10.1073/pnas.1019175108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Extra TF(III)C (ETC) sites are chromosomal locations bound in vivo by the RNA polymerase III (Pol III) transcription factor III C (TF(III)C) complex, but are not necessarily associated with Pol III transcription. Although the location of ETC sequences are conserved in budding yeast, and similar sites are found in other organisms, their functions are largely unstudied. One such site, ETC6 in Saccharomyces cerevisiae, lies upstream of TFC6, a gene encoding a subunit of the TF(III)C complex itself. Promoter analysis shows that the ETC6 B-box sequence is involved in autoregulation of the TFC6 promoter. Mutation of ETC6 increases TFC6 mRNA levels, whereas mutation immediately upstream severely weakens promoter activity. A temperature-sensitive mutation in TFC3 that weakens DNA binding of TF(III)C also results in increased TFC6 mRNA levels; however, no increase is observed in mutants of TF(III)B or Pol III subunits, demonstrating a specific role for the TF(III)C complex in TFC6 promoter regulation. Chromatin immunoprecipitation shows an inverse relationship of TF(III)C occupancy at ETC6 versus TFC6 mRNA levels. Overexpression of TFC6 increases association of TF(III)C at ETC6 (and other loci) and results in reduced expression of a TFC6 promoter-URA3 reporter gene. Both of these effects are dependent on the ETC6 B-box. These results demonstrate that the TFC6 promoter is directly regulated by the TF(III)C complex, a demonstration of an RNA polymerase II promoter being directly responsive to a core Pol III transcription factor complex. This regulation could have implications in controlling global tRNA expression levels.
Collapse
|
14
|
Fernández-Tornero C, Böttcher B, Rashid UJ, Steuerwald U, Flörchinger B, Devos DP, Lindner D, Müller CW. Conformational flexibility of RNA polymerase III during transcriptional elongation. EMBO J 2010; 29:3762-72. [PMID: 20967027 DOI: 10.1038/emboj.2010.266] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/27/2010] [Indexed: 01/21/2023] Open
Abstract
RNA polymerase (Pol) III is responsible for the transcription of genes encoding small RNAs, including tRNA, 5S rRNA and U6 RNA. Here, we report the electron cryomicroscopy structures of yeast Pol III at 9.9 Å resolution and its elongation complex at 16.5 Å resolution. Particle sub-classification reveals prominent EM densities for the two Pol III-specific subcomplexes, C31/C82/C34 and C37/C53, that can be interpreted using homology models. While the winged-helix-containing C31/C82/C34 subcomplex initiates transcription from one side of the DNA-binding cleft, the C37/C53 subcomplex accesses the transcription bubble from the opposite side of this cleft. The transcribing Pol III enzyme structure not only shows the complete incoming DNA duplex, but also reveals the exit path of newly synthesized RNA. During transcriptional elongation, the Pol III-specific subcomplexes tightly enclose the incoming DNA duplex, which likely increases processivity and provides structural insights into the conformational switch between Pol III-mediated initiation and elongation.
Collapse
Affiliation(s)
- Carlos Fernández-Tornero
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Vannini A, Ringel R, Kusser AG, Berninghausen O, Kassavetis GA, Cramer P. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell 2010; 143:59-70. [PMID: 20887893 DOI: 10.1016/j.cell.2010.09.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/06/2010] [Accepted: 08/11/2010] [Indexed: 11/19/2022]
Abstract
RNA polymerase III (Pol III) transcribes short RNAs required for cell growth. Under stress conditions, the conserved protein Maf1 rapidly represses Pol III transcription. We report the crystal structure of Maf1 and cryo-electron microscopic structures of Pol III, an active Pol III-DNA-RNA complex, and a repressive Pol III-Maf1 complex. Binding of DNA and RNA causes ordering of the Pol III-specific subcomplex C82/34/31 that is required for transcription initiation. Maf1 binds the Pol III clamp and rearranges C82/34/31 at the rim of the active center cleft. This impairs recruitment of Pol III to a complex of promoter DNA with the initiation factors Brf1 and TBP and thus prevents closed complex formation. Maf1 does however not impair binding of a DNA-RNA scaffold and RNA synthesis. These results explain how Maf1 specifically represses transcription initiation from Pol III promoters and indicate that Maf1 also prevents reinitiation by binding Pol III during transcription elongation.
Collapse
Affiliation(s)
- Alessandro Vannini
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Blombach F, Makarova KS, Marrero J, Siebers B, Koonin EV, van der Oost J. Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea. Biol Direct 2009; 4:39. [PMID: 19828044 PMCID: PMC2770514 DOI: 10.1186/1745-6150-4-39] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 10/14/2009] [Indexed: 11/25/2022] Open
Abstract
One of the hallmarks of eukaryotic information processing is the co-existence of 3 distinct, multi-subunit RNA polymerase complexes that are dedicated to the transcription of specific classes of coding or non-coding RNAs. Archaea encode only one RNA polymerase that resembles the eukaryotic RNA polymerase II with respect to the subunit composition. Here we identify archaeal orthologs of the eukaryotic RNA polymerase III subunit RPC34. Genome context analysis supports a function of this archaeal protein in the transcription of non-coding RNAs. These findings suggest that functional separation of RNA polymerases for protein-coding genes and non-coding RNAs might predate the origin of the Eukaryotes. Reviewers: This article was reviewed by Andrei Osterman and Patrick Forterre (nominated by Purificación López-García)
Collapse
Affiliation(s)
- Fabian Blombach
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Saïda F. Structural Characterization of the Interaction between TFIIIB Components Bdp1 and Brf1. Biochemistry 2008; 47:13197-206. [DOI: 10.1021/bi801406z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fakhri Saïda
- Center for Molecular Genetics, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093
| |
Collapse
|
18
|
Abstract
RNA polymerase (pol) III contains a dissociable subcomplex that is required for initiation, but not for elongation or termination of transcription. This subcomplex is composed of subunits RPC3, RPC6 and RPC7, and interacts with TFIIIB, a factor that is necessary and sufficient to support accurate pol III transcription in vitro. Direct binding of TFIIIB to RPC6 is believed to recruit pol III to its genetic templates. However, this has never been tested in vivo. Here we combine chromatin immunoprecipitation with RNA interference to demonstrate that the RPC3/6/7 subcomplex is required for pol III recruitment in mammalian cells. Specific knockdown of RPC6 by RNAi results in post-transcriptional depletion of the other components of the subcomplex, RPC3 and RPC7, without destabilizing core pol III subunits or TFIIIB. The resultant core enzyme is defective in associating with TFIIIB and target genes in vivo. Promoter occupancy by pol II is unaffected, despite sharing five subunits with the pol III core. These observations provide evidence for the validity in vivo of the model for pol III recruitment that was built on biochemical data.
Collapse
Affiliation(s)
- Niall S Kenneth
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | |
Collapse
|
19
|
Dubey RN, Gartenberg MR. A tDNA establishes cohesion of a neighboring silent chromatin domain. Genes Dev 2007; 21:2150-60. [PMID: 17785523 PMCID: PMC1950854 DOI: 10.1101/gad.1583807] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 07/17/2007] [Indexed: 12/17/2022]
Abstract
DNA replication generates sister chromatid pairs that are bound to one another until anaphase onset. The process, termed sister chromatid cohesion, requires the multisubunit cohesin complex that resides at centromeres and sites where genes converge. At the HMR mating-type locus of budding yeast, cohesin associates with a heterochromatin-like structure known as silent chromatin. In this report, we show that silent chromatin is necessary but not sufficient for cohesion of the replicating locus. A tRNA gene (tDNA) that delimits the silent chromatin domain is also required, as are subunits of the TFIIIB and RSC complexes that bind the gene. Non-tDNA boundary elements do not substitute for tDNAs in cohesion, suggesting that barrier activity is not responsible for the phenomenon. The results reveal an unexpected role for tDNAs and RNA polymerase III-associated proteins in establishment of sister chromatid cohesion.
Collapse
Affiliation(s)
- Rudra N. Dubey
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | - Marc R. Gartenberg
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
- Member of the Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| |
Collapse
|
20
|
Proshkina GM, Shematorova EK, Proshkin SA, Zaros C, Thuriaux P, Shpakovski GV. Ancient origin, functional conservation and fast evolution of DNA-dependent RNA polymerase III. Nucleic Acids Res 2006; 34:3615-24. [PMID: 16877568 PMCID: PMC1540719 DOI: 10.1093/nar/gkl421] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RNA polymerase III contains seventeen subunits in yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and in human cells. Twelve of them are akin to the core RNA polymerase I or II. The five other are RNA polymerase III-specific and form the functionally distinct groups Rpc31-Rpc34-Rpc82 and Rpc37-Rpc53. Currently sequenced eukaryotic genomes revealed significant homology to these seventeen subunits in Fungi, Animals, Plants and Amoebozoans. Except for subunit Rpc31, this also extended to the much more distantly related genomes of Alveolates and Excavates, indicating that the complex subunit organization of RNA polymerase III emerged at a very early stage of eukaryotic evolution. The Sch.pombe subunits were expressed in S.cerevisiae null mutants and tested for growth. Ten core subunits showed heterospecific complementation, but the two largest catalytic subunits (Rpc1 and Rpc2) and all five RNA polymerase III-specific subunits (Rpc82, Rpc53, Rpc37, Rpc34 and Rpc31) were non-functional. Three highly conserved RNA polymerase III-specific domains were found in the twelve-subunit core structure. They correspond to the Rpc17-Rpc25 dimer, involved in transcription initiation, to an N-terminal domain of the largest subunit Rpc1 important to anchor Rpc31, Rpc34 and Rpc82, and to a C-terminal domain of Rpc1 that presumably holds Rpc37, Rpc53 and their Rpc11 partner.
Collapse
Affiliation(s)
| | | | | | - Cécile Zaros
- Laboratoire de Physiogénomique, Service de Biochimie & Génétique MoléculaireBâtiment 144, CEA/Saclay, F-91191 Gif-sur-Yvette, cedex, France
| | - Pierre Thuriaux
- Laboratoire de Physiogénomique, Service de Biochimie & Génétique MoléculaireBâtiment 144, CEA/Saclay, F-91191 Gif-sur-Yvette, cedex, France
- Correspondence may also be addressed to Pierre Thuriaux. Tel: 33 1 69 08 35 86; Fax: 33 1 69 08 47 12;
| | - George V. Shpakovski
- To whom correspondence should be addressed. Tel: +7 495 3306583; Fax: +7 495 3357103;
| |
Collapse
|
21
|
Guffanti E, Percudani R, Harismendy O, Soutourina J, Werner M, Iacovella MG, Negri R, Dieci G. Nucleosome depletion activates poised RNA polymerase III at unconventional transcription sites in Saccharomyces cerevisiae. J Biol Chem 2006; 281:29155-64. [PMID: 16816405 DOI: 10.1074/jbc.m600387200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase (pol) III, assisted by the transcription factors TFIIIC and TFIIIB, transcribes small untranslated RNAs, such as tRNAs. In addition to known pol III-transcribed genes, the Saccharomyces cerevisiae genome contains loci (ZOD1, ETC1-8) associated to incomplete pol III transcription complexes (Moqtaderi, Z., and Struhl, K. (2004) Mol. Cell. Biol. 24, 4118-4127). We show that a short segment of the ZOD1 locus, containing box A and box B promoter elements and a termination signal between them, directs the pol III-dependent production of a small RNA both in vitro and in vivo. In yeast cells, the levels of both ZOD1- and ETC5-specific transcripts were dramatically enhanced upon nucleosome depletion. Remarkably, transcription factor and pol III occupancy at the corresponding loci did not change significantly upon derepression, thus suggesting that chromatin opening activates poised pol III to transcription. Comparative genomic analysis revealed that the ZOD1 promoter is the only surviving portion of a tDNA(Ile) ancestor, whose transcription capacity has been preserved throughout evolution independently from the encoded RNA product. Similarly, another TFIIIC/TFIIIB-associated locus, close to the YGR033c open reading frame, was found to be the strictly conserved remnant of an ancient tDNA(Arg). The maintenance, by eukaryotic genomes, of chromatin-repressed, non-coding transcription units has implications for both genome expression and organization.
Collapse
Affiliation(s)
- Elisa Guffanti
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, 43100 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kassavetis GA, Driscoll R, Geiduschek EP. Mapping the Principal Interaction Site of the Brf1 and Bdp1 Subunits of Saccharomyces cerevisiae TFIIIB. J Biol Chem 2006; 281:14321-9. [PMID: 16551611 DOI: 10.1074/jbc.m601702200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Brf1 subunit of the central RNA polymerase (pol) III transcription initiation factor TFIIIB is bipartite; its N-terminal TFIIB-related half is principally responsible for recruiting pol III to the promoter and for promoter opening near the transcriptional start site, whereas its pol III-specific C-terminal half contributes most of the affinities that hold the three subunits of TFIIIB together. Here, the principal attachment site of Brf1 for the Bdp1 subunit of TFIIIB has been mapped by a combination of structure-informed, site-directed mutagenesis and photochemical protein-DNA cross-linking. A 66-amino acid segment of Brf1 is shown to serve as a two-sided adhesive surface, with the side chains projecting away from its extended interface with TATA-binding protein anchoring Bdp1 binding. An extensive collection of N-terminal, C-terminal, and internal deletion proteins has been used to demarcate the interacting Bdp1 domain to a 66-amino acid segment that includes the SANT domain of this subunit and is phylogenetically the most conserved region of Bdp1.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
23
|
Saxena A, Ma B, Schramm L, Hernandez N. Structure-function analysis of the human TFIIB-related factor II protein reveals an essential role for the C-terminal domain in RNA polymerase III transcription. Mol Cell Biol 2005; 25:9406-18. [PMID: 16227591 PMCID: PMC1265830 DOI: 10.1128/mcb.25.21.9406-9418.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.
Collapse
Affiliation(s)
- Ashish Saxena
- Genetics Program, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
24
|
Conesa C, Ruotolo R, Soularue P, Simms TA, Donze D, Sentenac A, Dieci G. Modulation of yeast genome expression in response to defective RNA polymerase III-dependent transcription. Mol Cell Biol 2005; 25:8631-42. [PMID: 16166643 PMCID: PMC1265737 DOI: 10.1128/mcb.25.19.8631-8642.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/21/2005] [Accepted: 07/06/2005] [Indexed: 11/20/2022] Open
Abstract
We used genome-wide expression analysis in Saccharomyces cerevisiae to explore whether and how the expression of protein-coding, RNA polymerase (Pol) II-transcribed genes is influenced by a decrease in RNA Pol III-dependent transcription. The Pol II transcriptome was characterized in four thermosensitive, slow-growth mutants affected in different components of the RNA Pol III transcription machinery. Unexpectedly, we found only a modest correlation between altered expression of Pol II-transcribed genes and their proximity to class III genes, a result also confirmed by the analysis of single tRNA gene deletants. Instead, the transcriptome of all of the four mutants was characterized by increased expression of genes known to be under the control of the Gcn4p transcriptional activator. Indeed, GCN4 was found to be translationally induced in the mutants, and deleting the GCN4 gene eliminated the response. The Gcn4p-dependent expression changes did not require the Gcn2 protein kinase and could be specifically counteracted by an increased gene dosage of initiator tRNA(Met). Initiator tRNA(Met) depletion thus triggers a GCN4-dependent reprogramming of genome expression in response to decreased Pol III transcription. Such an effect might represent a key element in the coordinated transcriptional response of yeast cells to environmental changes.
Collapse
Affiliation(s)
- Christine Conesa
- Service de Biochimie et Génétique Moléculaire, Bâtiment 144, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Nikitina TV, Tishchenko LI. RNA polymerase III transcription machinery: Structure and transcription regulation. Mol Biol 2005. [DOI: 10.1007/s11008-005-0024-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Moir RD, Willis IM. Tetratricopeptide repeats of Tfc4 and a limiting step in the assembly of the initiation factor TFIIIB. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:93-121. [PMID: 14969725 DOI: 10.1016/s0065-3233(04)67004-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
27
|
Giuliodori S, Percudani R, Braglia P, Ferrari R, Guffanti E, Ottonello S, Dieci G. A composite upstream sequence motif potentiates tRNA gene transcription in yeast. J Mol Biol 2003; 333:1-20. [PMID: 14516739 DOI: 10.1016/j.jmb.2003.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcription of eukaryotic tRNA genes relies on the TFIIIC-dependent recruitment of TFIIIB on a approximately 50 bp region upstream of the transcription start site (TSS). TFIIIC specifically interacts with highly conserved, intragenic promoter elements, while the contacts between TFIIIB and the upstream DNA have long been considered as largely non-specific. Through a computer search procedure designed to detect shared, yet degenerate sequence features, we have identified a conserved sequence pattern upstream of Saccharomyces cerevisiae tDNAs. This pattern consists of four regions in which particular sequences are over-represented. The most downstream of these regions surrounds the TSS, while the other three districts of sequence conservation (appearing as a centrally located TATA-like sequence flanked by T-rich elements on both sides) are located across the DNA region known to interact with TFIIIB. Upstream regions whose sequence conforms to this pattern were found to potentiate tRNA gene transcription, both in vitro and in vivo, by enhancing TFIIIB binding. A conserved pattern of DNA bendability was also revealed, with peaks of bending propensity centered on the TATA-like and the TSS regions. Sequence analysis of other eukaryotic genomes further revealed the widespread occurrence of conserved sequence patterns upstream of tDNAs, with striking lineage-specific differences in the number and sequence of conserved motifs. Our data strongly support the notion that tRNA gene transcription in eukaryotes is modulated by composite TFIIIB binding sites that may confer responsiveness to variation in TFIIIB activity and/or concentration.
Collapse
Affiliation(s)
- Silvia Giuliodori
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Martinez MJ, Sprague KU. Cloning of a putative Bombyx mori TFIIB-related factor (BRF). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 54:55-67. [PMID: 14518004 DOI: 10.1002/arch.10120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To identify the protein domains responsible for its conserved and specialized functions, putative TFIIB-Related Factor (BRF) from the silkworm (Bombyx mori) was compared with BRFs from other organisms. The Bombyx BRF coding region was assembled from three separate and overlapping cDNA fragments. Fragments encoding the middle portion and the 3' end were discovered in the Bombyx mori Genome Project "Silkbase" collection through sequence homology with human BRF1, and the fragment encoding the N-terminus was isolated in our laboratory using the 5' RACE method. Southern analysis showed that silkworm BRF is encoded by a single-copy gene. Bombyx BRF contains the following domains that have been noted in all other BRFs, and that are likely, therefore, to provide highly conserved functions: a zinc finger domain, an imperfect repeat, three "BRF Homology" domains, and an acidic domain at the C-terminus. As expected from the evolutionary relationships among insects and mammals, Bombyx BRF is more similar overall to Drosophila BRF (55% identical) than to human BRF1 (42% identical). Detailed examination of individual domains reveals a remarkable exception, however. Domain II of Bombyx BRF is more similar to its human counterpart than to Drosophila Domain II. This result indicates that Domain II has undergone unusual divergence in Drosophila, and suggests a structural basis for Drosophila BRF's unique pattern of interaction with other transcription factors.
Collapse
Affiliation(s)
- M Juanita Martinez
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
29
|
Harismendy O, Gendrel CG, Soularue P, Gidrol X, Sentenac A, Werner M, Lefebvre O. Genome-wide location of yeast RNA polymerase III transcription machinery. EMBO J 2003; 22:4738-47. [PMID: 12970186 PMCID: PMC212732 DOI: 10.1093/emboj/cdg466] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes a large set of genes encoding small untranslated RNAs like tRNAs, 5S rRNA, U6 snRNA or RPR1 RNA. To get a global view of class III (Pol III-transcribed) genes, the distribution of essential components of Pol III, TFIIIC and TFIIIB was mapped across the yeast genome. During active growth, most class III genes and few additional loci were targeted by TFIIIC, TFIIIB and Pol III, indicating that they were transcriptionally active. SNR52, which encodes a snoRNA, was identified as a new class III gene. During the late growth phase, TFIIIC remained bound to most class III genes while the recruitment of Pol III and, to a lesser extent, of TFIIIB was down regulated. This study fixes a reasonable upper bound to the number of class III genes in yeast and points to a global regulation at the level of Pol III and TFIIIB recruitment.
Collapse
Affiliation(s)
- Olivier Harismendy
- Service de Biochimie et de Génétique Moléculaire, Bâtiment 144, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Kassavetis GA, Han S, Naji S, Geiduschek EP. The role of transcription initiation factor IIIB subunits in promoter opening probed by photochemical cross-linking. J Biol Chem 2003; 278:17912-7. [PMID: 12637540 DOI: 10.1074/jbc.m300743200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The core transcription initiation factor (TF) IIIB recruits its conjugate RNA polymerase (pol) III to the promoter and also plays an essential role in promoter opening. TFIIIB assembled with certain deletion mutants of its Brf1 and Bdp1 subunits is competent in pol III recruitment, but the resulting preinitiation complex does not open the promoter. Whether Brf1 and Bdp1 participate in opening the promoter by direct DNA interaction (as sigma subunits of bacterial RNA polymerases do) or indirectly by their action on pol III has been approached by site-specific photochemical protein-DNA cross-linking of TFIIIB-pol III-U6 RNA gene promoter complexes. Brf1, Bdp1, and several pol III subunits can be cross-linked to the nontranscribed strand of the U6 promoter at base pair -9/-8 and +2/+3 (relative to the transcriptional start as +1), respectively the upstream and downstream ends of the DNA segment that opens up into the transcription bubble. Cross-linking of Bdp1 and Brf1 is detected at 0 degrees C in closed preinitiation complexes and at 30 degrees C in complexes that are partly open, but also it is detected in mutant TFIIIB-pol III-DNA complexes that are unable to open the promoter. In contrast, promoter opening-defective TFIIIB mutants generate significant changes of cross-linking of polymerase subunits. The weight of this evidence argues in favor of an indirect mode of action of TFIIIB in promoter opening.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences and the Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | | | |
Collapse
|
31
|
Huang Y, McGillicuddy E, Weindel M, Dong S, Maraia RJ. The fission yeast TFIIB-related factor limits RNA polymerase III to a TATA-dependent pathway of TBP recruitment. Nucleic Acids Res 2003; 31:2108-16. [PMID: 12682361 PMCID: PMC153730 DOI: 10.1093/nar/gkg301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The RNA polymerase (pol) III-transcribed (e.g. tRNA and 5S rRNA) genes of traditionally studied organisms rely on gene-internal promoters that precisely position the initiation factor, TFIIIB, on the upstream promoter-less DNA. This is accomplished by the ability of the TFIIIB subunit, TFIIB-related factor (Brf1), to make stable protein-protein interactions with TATA-binding protein (TBP) and place it on the promoter-less upstream DNA. Unlike traditional model organisms, Schizosaccharomyces pombe tRNA and 5S rRNA genes contain upstream TATA promoters that are required to program functional pol III initiation complexes. In this study we demonstrate that S.pombe (Sp)Brf does not form stable interactions with TBP in the absence of DNA using approaches that do reveal stable association of TBP and S.cerevisiae (Sc)Brf1. Gel mobility analyses demonstrate that a TBP-TATA DNA complex can recruit SpBrf to a Pol III promoter. Consistent with this, overproduction of SpBrf in S.pombe increases the expression of a TATA-dependent, but not a TATA-less, suppressor tRNA gene. Since previous whole genome analysis also revealed TATA elements upstream of tRNA genes in Arabidopsis, this pathway may be more widespread than appreciated previously.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | | | | | |
Collapse
|
32
|
Juo ZS, Kassavetis GA, Wang J, Geiduschek EP, Sigler PB. Crystal structure of a transcription factor IIIB core interface ternary complex. Nature 2003; 422:534-9. [PMID: 12660736 DOI: 10.1038/nature01534] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Accepted: 03/11/2003] [Indexed: 11/09/2022]
Abstract
Transcription factor IIIB (TFIIIB), consisting of the TATA-binding protein (TBP), TFIIB-related factor (Brf1) and Bdp1, is a central component in basal and regulated transcription by RNA polymerase III. TFIIIB recruits its polymerase to the promoter and subsequently has an essential role in the formation of the open initiation complex. The amino-terminal half of Brf1 shares a high degree of sequence similarity with the polymerase II general transcription factor TFIIB, but it is the carboxy-terminal half of Brf1 that contributes most of its binding affinity with TBP. The principal anchoring region is located between residues 435 and 545 of yeast Brf1, comprising its homology domain II. The same region also provides the primary interface for assembling Bdp1 into the TFIIIB complex. We report here a 2.95 A resolution crystal structure of the ternary complex containing Brf1 homology domain II, the conserved region of TBP and 19 base pairs of U6 promoter DNA. The structure reveals the core interface for assembly of TFIIIB and demonstrates how the loosely packed Brf1 domain achieves remarkable binding specificity with the convex and lateral surfaces of TBP.
Collapse
Affiliation(s)
- Z Sean Juo
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520-8114, USA.
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Laura Schramm
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
34
|
Yieh L, Hatzis H, Kassavetis G, Sandmeyer SB. Mutational analysis of the transcription factor IIIB-DNA target of Ty3 retroelement integration. J Biol Chem 2002; 277:25920-8. [PMID: 11994300 DOI: 10.1074/jbc.m202729200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ty3 retrovirus-like element inserts preferentially at the transcription initiation sites of genes transcribed by RNA polymerase III. The requirements for transcription factor (TF) IIIC and TFIIIB in Ty3 integration into the two initiation sites of the U6 gene carried on pU6LboxB were previously examined. Ty3 integrates at low but detectable frequencies in the presence of TFIIIB subunits Brf1 and TATA-binding protein. Integration increases in the presence of the third subunit, Bdp1. TFIIIC is not essential, but the presence of TFIIIC specifies an orientation of TFIIIB for transcriptional initiation and directs integration to the U6 gene-proximal initiation site. In the current study, recombinant wild type TATA-binding protein, wild type and mutant Brf1, and Bdp1 proteins and highly purified TFIIIC were used to investigate the roles of specific protein domains in Ty3 integration. The amino-terminal half of Brf1, which contains a TFIIB-like repeat, contributed more strongly than the carboxyl-terminal half of Brf1 to Ty3 targeting. Each half of Bdp1 split at amino acid 352 enhanced integration. In the presence of TFIIIB and TFIIIC, the pattern of integration extended downstream by several base pairs compared with the pattern observed in vitro in the absence of TFIIIC and in vivo, suggesting that TFIIIC may not be present on genes targeted by Ty3 in vivo. Mutations in Bdp1 that affect its interaction with TFIIIC resulted in TFIIIC-independent patterns of Ty3 integration. Brf1 zinc ribbon and Bdp1 internal deletion mutants that are competent for polymerase III recruitment but defective in promoter opening were competent for Ty3 integration irrespective of the state of DNA supercoiling. These results extend the similarities between the TFIIIB domains required for transcription and Ty3 integration and also reveal requirements that are specific to transcription.
Collapse
Affiliation(s)
- Lynn Yieh
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-1700, USA
| | | | | | | |
Collapse
|
35
|
Ishiguro A, Kassavetis GA, Geiduschek EP. Essential roles of Bdp1, a subunit of RNA polymerase III initiation factor TFIIIB, in transcription and tRNA processing. Mol Cell Biol 2002; 22:3264-75. [PMID: 11971960 PMCID: PMC133792 DOI: 10.1128/mcb.22.10.3264-3275.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The essential Saccharomyces cerevisiae gene BDP1 encodes a subunit of RNA polymerase III (Pol III) transcription factor (TFIIIB); TATA box binding protein (TBP) and Brf1 are the other subunits of this three-protein complex. Deletion analysis defined three segments of Bdp1 that are essential for viability. A central segment, comprising amino acids 327 to 353, was found to be dispensable, and cells making Bdp1 that was split within this segment, at amino acid 352, are viable. Suppression of bdp1 conditional viability by overexpressing SPT15 and BRF1 identified functional interactions of specific Bdp1 segments with TBP and Brf1, respectively. A Bdp1 deletion near essential segment I was synthetically lethal with overexpression of PCF1-1, a dominant gain-of-function mutation in the second tetracopeptide repeat motif (out of 11) of the Tfc4 (tau(131)) subunit of TFIIIC. The analysis also identifies a connection between Bdp1 and posttranscriptional processing of Pol III transcripts. Yeast genomic library screening identified RPR1 as the specific overexpression suppressor of very slow growth at 37 degrees C due to deletion of Bdp1 amino acids 253 to 269. RPR1 RNA, a Pol III transcript, is the RNA subunit of RNase P, which trims pre-tRNA transcript 5' ends. Maturation of tRNA was found to be aberrant in bdp1-Delta 253-269 cells, and RPR1 transcription with the highly resolved Pol III transcription system in vitro was also diminished when recombinant Bdp1 Delta 253-269 replaced wild-type Bdp1. Physical interaction of RNase P with Bdp1 was demonstrated by coimmunoprecipitation and pull-down assays.
Collapse
Affiliation(s)
- Akira Ishiguro
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
36
|
Grove A, Adessa MS, Geiduschek E, Kassavetis GA. Marking the start site of RNA polymerase III transcription: the role of constraint, compaction and continuity of the transcribed DNA strand. EMBO J 2002; 21:704-14. [PMID: 11847118 PMCID: PMC125851 DOI: 10.1093/emboj/21.4.704] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 12/13/2001] [Accepted: 12/13/2001] [Indexed: 01/22/2023] Open
Abstract
The effects of breaks in the individual strands of an RNA polymerase III promoter on initiation of transcription have been examined. Single breaks have been introduced at 2 bp intervals in a 24 bp segment that spans the transcriptional start site of the U6 snRNA gene promoter. Their effects on transcription are asymmetrically distributed: transcribed (template) strand breaks downstream of bp-14 (relative to the normal start as +1) systematically shift the start site, evidently by disrupting the normal mechanism that measures distance from DNA-bound TBP. Breaks placed close to the normal start site very strongly inhibit transcription. Breaks in the non-transcribed strand generate only minor effects on transcription. A structure-based model interprets these observations and explains how the transcribed strand is used to locate the transcriptional start site.
Collapse
Affiliation(s)
- Anne Grove
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
Present address: Louisiana State University, Division of Biochemistry and Molecular Biology, 534 Choppin Hall, Baton Rouge, LA 70803, USA Corresponding authors e-mail: or
| | | | | | - George A. Kassavetis
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
Present address: Louisiana State University, Division of Biochemistry and Molecular Biology, 534 Choppin Hall, Baton Rouge, LA 70803, USA Corresponding authors e-mail: or
| |
Collapse
|
37
|
Andrau JC, Werner M. B"-associated factor(s) involved in RNA polymerase III preinitiation complex formation and start-site selection. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5167-75. [PMID: 11589709 DOI: 10.1046/j.0014-2956.2001.02445.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The TFIIIB transcription factor is the central component of the RNA polymerase III transcriptional machinery. In yeast, this factor is composed of three essential polypeptides TBP, TFIIIB70 and TFIIIB90, that are sufficient as recombinant proteins, together with TFIIIC, to promote accurate transcription in vitro. Here we show that a partially purified fraction, named B", that contains the TFIIIB90 subunit, displays properties distinct from recombinant TFIIIB90. This fraction contains at least a component that interacts with DNA*TFIIIC complexes, either alone or in combination with TFIIIB90, and increases the resistance of the complexes to heparin treatment. In addition, primer extension and single round transcriptions experiment reveal a different start-site selection pattern directed by B" or rTFIIIB90. In mixing experiments, we show that an activity in B", distinct from TFIIIB90, can promote transcription initiation at the +1 site without affecting the rate of preinitiation complex formation. Our data suggest the existence of at least one new component that participates in preinitiation complex formation and influences start-site selection by RNA polymerase III.
Collapse
Affiliation(s)
- J C Andrau
- Service de Biochimie et Génétique Moléculaire, Bät. 142, CEA/Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | | |
Collapse
|
38
|
Huang Y, Maraia RJ. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 2001; 29:2675-90. [PMID: 11433012 PMCID: PMC55761 DOI: 10.1093/nar/29.13.2675] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-subunit transcription factors (TF) direct RNA polymerase (pol) III to synthesize a variety of essential small transcripts such as tRNAs, 5S rRNA and U6 snRNA. Use by pol III of both TATA-less and TATA-containing promoters, together with progress in the Saccharomyces cerevisiae and human systems towards elucidating the mechanisms of actions of the pol III TFs, provides a paradigm for eukaryotic gene transcription. Human and S.cerevisiae pol III components reveal good general agreement in the arrangement of orthologous TFs that are distributed along tRNA gene control elements, beginning upstream of the transcription initiation site and extending through the 3' terminator element, although some TF subunits have diverged beyond recognition. For this review we have surveyed the Schizosaccharomyces pombe database and identified 26 subunits of pol III and associated TFs that would appear to represent the complete core set of the pol III machinery. We also compile data that indicate in vivo expression and/or function of 18 of the fission yeast proteins. A high degree of homology occurs in pol III, TFIIIB, TFIIIA and the three initiation-related subunits of TFIIIC that are associated with the proximal promoter element, while markedly less homology is apparent in the downstream TFIIIC subunits. The idea that the divergence in downstream TFIIIC subunits is associated with differences in pol III termination-related mechanisms that have been noted in the yeast and human systems but not reviewed previously is also considered.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive MSC 2753, Bethesda, MD 20892-2753, USA
| | | |
Collapse
|
39
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
40
|
Kassavetis GA, Letts GA, Geiduschek EP. The RNA polymerase III transcription initiation factor TFIIIB participates in two steps of promoter opening. EMBO J 2001; 20:2823-34. [PMID: 11387215 PMCID: PMC125488 DOI: 10.1093/emboj/20.11.2823] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Evidence for post-recruitment functions of yeast transcription factor (TF)IIIB in initiation of transcription was first provided by the properties of TFIIIB-RNA polymerase III-promoter complexes assembled with deletion mutants of its Brf and B" subunits that are transcriptionally inactive because they fail to open the promoter. The experiments presented here show that these defects can be repaired by unpairing short (3 or 5 bp) DNA segments spanning the transcription bubble of the open promoter complex. Analysis of this suppression phenomenon indicates that TFIIIB participates in two steps of promoter opening by RNA polymerase III that are comparable to the successive steps of promoter opening by bacterial RNA polymerase holoenzyme. B" deletions between amino acids 355 and 421 interfere with the initiating step of DNA strand separation at the upstream end of the transcription bubble. Removing an N-terminal domain of Brf interferes with downstream propagation of the transcription bubble to and beyond the transcriptional start site.
Collapse
Affiliation(s)
- G A Kassavetis
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | | | |
Collapse
|
41
|
Donze D, Kamakaka RT. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J 2001; 20:520-31. [PMID: 11157758 PMCID: PMC133458 DOI: 10.1093/emboj/20.3.520] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The chromosomes of eukaryotes are organized into structurally and functionally discrete domains. Several DNA elements have been identified that act to separate these chromatin domains. We report a detailed characterization of one of these elements, identifying it as a unique tRNA gene possessing the ability to block the spread of silent chromatin in Saccharomyces cerevisiae efficiently. Transcriptional potential of the tRNA gene is critical for barrier activity, as mutations in the tRNA promoter elements, or in extragenic loci that inhibit RNA polymerase III complex assembly, reduce barrier activity. Also, we have reconstituted the Drosophila gypsy element as a heterochromatin barrier in yeast, and have identified other yeast sequences, including the CHA1 upstream activating sequence, that function as barrier elements. Extragenic mutations in the acetyltransferase genes SAS2 and GCN5 also reduce tRNA barrier activity, and tethering of a GAL4/SAS2 fusion creates a robust barrier. We propose that silencing mediated by the Sir proteins competes with barrier element-associated chromatin remodeling activity.
Collapse
Affiliation(s)
| | - Rohinton T. Kamakaka
- Unit on Chromatin and Transcription, NICHD/NIH, Bldg 18T, Room 106, 18 Library Drive, Bethesda, MD 20892, USA
Corresponding author e-mail:
| |
Collapse
|
42
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Yieh L, Kassavetis G, Geiduschek EP, Sandmeyer SB. The Brf and TATA-binding protein subunits of the RNA polymerase III transcription factor IIIB mediate position-specific integration of the gypsy-like element, Ty3. J Biol Chem 2000; 275:29800-7. [PMID: 10882723 DOI: 10.1074/jbc.m003149200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ty3 integrates into the transcription initiation sites of genes transcribed by RNA polymerase III. It is known that transcription factors (TF) IIIB and IIIC are important for recruiting Ty3 to its sites of integration upstream of tRNA genes, but that RNA polymerase III is not required. In order to investigate the respective roles of TFIIIB and TFIIIC, we have developed an in vitro integration assay in which Ty3 is targeted to the U6 small nuclear RNA gene, SNR6. Because TFIIIB can bind to the TATA box upstream of the U6 gene through contacts mediated by TATA-binding protein (TBP), TFIIIC is dispensable for in vitro transcription. Thus, this system offers an opportunity to test the role of TFIIIB independent of a requirement of TFIIIC. We demonstrate that the recombinant Brf and TBP subunits of TFIIIB, which interact over the SNR6 TATA box, direct integration at the SNR6 transcription initiation site in the absence of detectable TFIIIC or TFIIIB subunit B". These findings suggest that the minimal requirements for pol III transcription and Ty3 integration are very similar.
Collapse
Affiliation(s)
- L Yieh
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-1700, USA
| | | | | | | |
Collapse
|
44
|
Abstract
The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesizes the large rRNA, pol II synthesizes mRNA and pol III synthesizes tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the process of transcription by pol I and pol III, how it happens and the proteins involved. Attention will be drawn to the similarities between the three nuclear RNA polymerase systems and also to their differences.
Collapse
Affiliation(s)
- M R Paule
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
45
|
Ferri ML, Peyroche G, Siaut M, Lefebvre O, Carles C, Conesa C, Sentenac A. A novel subunit of yeast RNA polymerase III interacts with the TFIIB-related domain of TFIIIB70. Mol Cell Biol 2000; 20:488-95. [PMID: 10611227 PMCID: PMC85110 DOI: 10.1128/mcb.20.2.488-495.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is limited information on how eukaryotic RNA polymerases (Pol) recognize their cognate preinitiation complex. We have characterized a polypeptide copurifying with yeast Pol III. This protein, C17, was found to be homologous to a mammalian protein described as a hormone receptor. Deletion of the corresponding gene, RPC17, was lethal and its regulated extinction caused a selective defect in transcription of class III genes in vivo. Two-hybrid and coimmunoprecipitation experiments indicated that C17 interacts with two Pol III subunits, one of which, C31, is important for the initiation reaction. C17 also interacted with TFIIIB70, the TFIIB-related component of TFIIIB. The interaction domain was found to be in the N-terminal, TFIIB-like half of TFIIIB70, downstream of the zinc ribbon and first imperfect repeat. Although Pol II similarly interacts with TFIIB, it is notable that C17 has no similarity to any Pol II subunit. The data indicate that C17 is a novel specific subunit of Pol III which participates together with C34 in the recruitment of Pol III by the preinitiation complex.
Collapse
Affiliation(s)
- M L Ferri
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|