1
|
Bern D, Tobi D. The effect of dimerization and ligand binding on the dynamics of Kaposi's sarcoma-associated herpesvirus protease. Proteins 2022; 90:1267-1277. [PMID: 35084062 PMCID: PMC9305915 DOI: 10.1002/prot.26307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022]
Abstract
The Kaposi's sarcoma-associated herpesvirus protease is essential for virus maturation. This protease functions under allosteric regulation that establishes its enzymatic activity upon dimerization. It exists in equilibrium between an inactive monomeric state and an active, weakly associating, dimeric state that is stabilized upon ligand binding. The dynamics of the protease dimer and its monomer were studied using the Gaussian network model and the anisotropic network model , and its role in mediating the allosteric regulation is demonstrated. We show that the dimer is composed of five dynamical domains. The central domain is formed upon dimerization and composed of helix five of each monomer, in addition to proximal and distal domains of each monomer. Dimerization reduces the mobility of the central domains and increases the mobility of the distal domains, in particular the binding site within them. The three slowest ANM modes of the dimer assist the protease in ligand binding, motion of the conserved Arg142 and Arg143 toward the oxyanion, and reducing the activation barrier for the tetrahedral transition state by stretching the bond that is cleaved by the protease. In addition, we show that ligand binding reduces the motion of helices α1 and α5 at the interface and explain how ligand binding can stabilize the dimer.
Collapse
Affiliation(s)
- David Bern
- Department of Molecular BiologyAriel UniversityArielIsrael
| | - Dror Tobi
- Department of Molecular BiologyAriel UniversityArielIsrael
- Department of Computer SciencesAriel UniversityArielIsrael
| |
Collapse
|
2
|
Zühlsdorf M, Hinrichs W. Assemblins as maturational proteases in herpesviruses. J Gen Virol 2017; 98:1969-1984. [PMID: 28758622 DOI: 10.1099/jgv.0.000872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During assembly of herpesvirus capsids, a protein scaffold self-assembles to ring-like structures forming the scaffold of the spherical procapsids. Proteolytic activity of the herpesvirus maturational protease causes structural changes that result in angularization of the capsids. In those mature icosahedral capsids, the packaging of viral DNA into the capsids can take place. The strictly regulated protease is called assemblin. It is inactive in its monomeric state and activated by dimerization. The structures of the dimeric forms of several assemblins from all herpesvirus subfamilies have been elucidated in the last two decades. They revealed a unique serine-protease fold with a catalytic triad consisting of a serine and two histidines. Inhibitors that disturb dimerization by binding to the dimerization area were found recently. Additionally, the structure of the monomeric form of assemblin from pseudorabies virus and some monomer-like structures of Kaposi's sarcoma-associated herpesvirus assemblin were solved. These findings are the proof-of-principle for the development of new anti-herpesvirus drugs. Therefore, the most important information on this fascinating and unique class of proteases is summarized here.
Collapse
Affiliation(s)
- Martin Zühlsdorf
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
| | - Winfried Hinrichs
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
| |
Collapse
|
3
|
Zühlsdorf M, Werten S, Klupp BG, Palm GJ, Mettenleiter TC, Hinrichs W. Dimerization-Induced Allosteric Changes of the Oxyanion-Hole Loop Activate the Pseudorabies Virus Assemblin pUL26N, a Herpesvirus Serine Protease. PLoS Pathog 2015; 11:e1005045. [PMID: 26161660 PMCID: PMC4498786 DOI: 10.1371/journal.ppat.1005045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023] Open
Abstract
Herpesviruses encode a characteristic serine protease with a unique fold and an active site that comprises the unusual triad Ser-His-His. The protease is essential for viral replication and as such constitutes a promising drug target. In solution, a dynamic equilibrium exists between an inactive monomeric and an active dimeric form of the enzyme, which is believed to play a key regulatory role in the orchestration of proteolysis and capsid assembly. Currently available crystal structures of herpesvirus proteases correspond either to the dimeric state or to complexes with peptide mimetics that alter the dimerization interface. In contrast, the structure of the native monomeric state has remained elusive. Here, we present the three-dimensional structures of native monomeric, active dimeric, and diisopropyl fluorophosphate-inhibited dimeric protease derived from pseudorabies virus, an alphaherpesvirus of swine. These structures, solved by X-ray crystallography to respective resolutions of 2.05, 2.10 and 2.03 Å, allow a direct comparison of the main conformational states of the protease. In the dimeric form, a functional oxyanion hole is formed by a loop of 10 amino-acid residues encompassing two consecutive arginine residues (Arg136 and Arg137); both are strictly conserved throughout the herpesviruses. In the monomeric form, the top of the loop is shifted by approximately 11 Å, resulting in a complete disruption of the oxyanion hole and loss of activity. The dimerization-induced allosteric changes described here form the physical basis for the concentration-dependent activation of the protease, which is essential for proper virus replication. Small-angle X-ray scattering experiments confirmed a concentration-dependent equilibrium of monomeric and dimeric protease in solution. Herpesviruses encode a unique serine protease, which is essential for herpesvirus capsid maturation and is therefore an interesting target for drug development. In solution, this protease exists in an equilibrium of an inactive monomeric and an active dimeric form. All currently available crystal structures of herpesvirus proteases represent complexes, particularly dimers. Here we show the first three-dimensional structure of the native monomeric form in addition to the native and the chemically inactivated dimeric form of the protease derived from the porcine herpesvirus pseudorabies virus. Comparison of the monomeric and dimeric form allows predictions on the structural changes that occur during dimerization and shed light onto the process of protease activation. These new crystal structures provide a rational base to develop drugs preventing dimerization and therefore impeding herpesvirus capsid maturation. Furthermore, it is likely that this mechanism is conserved throughout the herpesviruses.
Collapse
Affiliation(s)
- Martin Zühlsdorf
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sebastiaan Werten
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Gottfried J. Palm
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Winfried Hinrichs
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
4
|
Gable JE, Lee GM, Jaishankar P, Hearn BR, Waddling CA, Renslo AR, Craik CS. Broad-spectrum allosteric inhibition of herpesvirus proteases. Biochemistry 2014; 53:4648-60. [PMID: 24977643 PMCID: PMC4108181 DOI: 10.1021/bi5003234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Herpesviruses
rely on a homodimeric protease for viral capsid maturation.
A small molecule, DD2, previously shown to disrupt dimerization of
Kaposi’s sarcoma-associated herpesvirus protease (KSHV Pr)
by trapping an inactive monomeric conformation and two analogues generated
through carboxylate bioisosteric replacement (compounds 2 and 3) were shown to inhibit the associated proteases
of all three human herpesvirus (HHV) subfamilies (α, β,
and γ). Inhibition data reveal that compound 2 has
potency comparable to or better than that of DD2 against the tested
proteases. Nuclear magnetic resonance spectroscopy and a new application
of the kinetic analysis developed by Zhang and Poorman [Zhang, Z.
Y., Poorman, R. A., et al. (1991) J. Biol. Chem. 266, 15591–15594] show DD2, compound 2, and compound 3 inhibit HHV proteases by dimer disruption. All three compounds
bind the dimer interface of other HHV proteases in a manner analogous
to binding of DD2 to KSHV protease. The determination and analysis
of cocrystal structures of both analogues with the KSHV Pr monomer
verify and elaborate on the mode of binding for this chemical scaffold,
explaining a newly observed critical structure–activity relationship.
These results reveal a prototypical chemical scaffold for broad-spectrum
allosteric inhibition of human herpesvirus proteases and an approach
for the identification of small molecules that allosterically regulate
protein activity by targeting protein–protein interactions.
Collapse
Affiliation(s)
- Jonathan E Gable
- Department of Pharmaceutical Chemistry, University of California , San Francisco, California 94158-2280, United States
| | | | | | | | | | | | | |
Collapse
|
5
|
Craik CS, Shahian T. A screening strategy for trapping the inactive conformer of a dimeric enzyme with a small molecule inhibitor. Methods Mol Biol 2012; 928:119-131. [PMID: 22956137 PMCID: PMC3739972 DOI: 10.1007/978-1-62703-008-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), the most common cancer in AIDS patients. All herpesviruses express a conserved dimeric serine protease that is required for generating infectious virions and is therefore of pharmaceutical interest. Given the past challenges of developing drug-like active-site inhibitors to this class of proteases, small-molecules targeting allosteric sites are of great value. In light of evidence supporting a strong structural linkage between the dimer interface and the protease active site, we have focused our efforts on the dimer interface for identifying dimer disrupting inhibitors. Here, we describe a high throughput screening approach for identifying small molecule dimerization inhibitors of KSHV protease. The helical mimetic, small molecule library used, as well as general strategies for selecting compound libraries for this application will also be discussed. This methodology can be applicable to other systems where an alpha helical moiety plays a dominant role at the interaction site of interest, and in vitro assays to monitor function are in place.
Collapse
Affiliation(s)
- Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
6
|
Shen A. Allosteric regulation of protease activity by small molecules. MOLECULAR BIOSYSTEMS 2010; 6:1431-43. [PMID: 20539873 DOI: 10.1039/c003913f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteases regulate a plethora of biological processes. Because they irreversibly cleave peptide bonds, the activity of proteases is strictly controlled. While there are many ways to regulate protease activity, an emergent mechanism is the modulation of protease function by small molecules acting at allosteric sites. This mode of regulation holds the potential to allow for the specific and temporal control of a given biological process using small molecules. These compounds also serve as useful tools for studying protein dynamics and function. This review highlights recent advances in identifying and characterizing natural and synthetic small molecule allosteric regulators of proteases and discusses their utility in studies of protease function, drug discovery and protein engineering.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Pathology, Stanford School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
7
|
Shahian T, Lee GM, Lazic A, Arnold LA, Velusamy P, Roels CM, Guy RK, Craik CS. Inhibition of a viral enzyme by a small-molecule dimer disruptor. Nat Chem Biol 2009; 5:640-6. [PMID: 19633659 PMCID: PMC2752665 DOI: 10.1038/nchembio.192] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 05/18/2009] [Indexed: 11/03/2022]
Abstract
Small molecule dimer disruptors that inhibit an essential dimeric protease of human Kaposi’s sarcoma-associated herpesvirus (KSHV) were identified by screening an α-helical mimetic library. Subsequently, a second generation of low micromolar inhibitors with improved potency and solubility was synthesized. Complementary methods including size exclusion chromatography and 1H-13C HSQC titration using selectively labeled 13C-Met samples revealed that monomeric protease is enriched in the presence of inhibitor. 1H-15N-HSQC titration studies mapped the inhibitor binding-site to the dimer interface, and mutagenesis studies targeting this region were consistent with a mechanism where inhibitor binding prevents dimerization through the conformational selection of a dynamic intermediate. These results validate the interface of herpesvirus proteases and other similar oligomeric interactions as suitable targets for the development of small molecule inhibitors.
Collapse
Affiliation(s)
- Tina Shahian
- Graduate Group in Biochemistry and Molecular Biology, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lazic A, Goetz DH, Nomura AM, Marnett AB, Craik CS. Substrate modulation of enzyme activity in the herpesvirus protease family. J Mol Biol 2007; 373:913-23. [PMID: 17870089 PMCID: PMC2078331 DOI: 10.1016/j.jmb.2007.07.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/21/2007] [Accepted: 07/26/2007] [Indexed: 11/23/2022]
Abstract
The herpesvirus proteases are an example in which allosteric regulation of an enzyme activity is achieved through the formation of quaternary structure. Here, we report a 1.7 A resolution structure of Kaposi's sarcoma-associated herpesvirus protease in complex with a hexapeptide transition state analogue that stabilizes the dimeric state of the enzyme. Extended substrate binding sites are induced upon peptide binding. In particular, 104 A2 of surface are buried in the newly formed S4 pocket when tyrosine binds at this site. The peptide inhibitor also induces a rearrangement of residues that stabilizes the oxyanion hole and the dimer interface. Concomitant with the structural changes, an increase in catalytic efficiency of the enzyme results upon extended substrate binding. A nearly 20-fold increase in kcat/KM results upon extending the peptide substrate from a tetrapeptide to a hexapeptide exclusively due to a KM effect. This suggests that the mechanism by which herpesvirus proteases achieve their high specificity is by using extended substrates to modulate both the structure and activity of the enzyme.
Collapse
Affiliation(s)
- Ana Lazic
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, USA
| | | | | | | | | |
Collapse
|
9
|
Brignole EJ, Gibson W. Enzymatic activities of human cytomegalovirus maturational protease assemblin and its precursor (pPR, pUL80a) are comparable: [corrected] maximal activity of pPR requires self-interaction through its scaffolding domain. J Virol 2007; 81:4091-103. [PMID: 17287260 PMCID: PMC1866128 DOI: 10.1128/jvi.02821-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses encode an essential, maturational serine protease whose catalytic domain, assemblin (28 kDa), is released by self-cleavage from a 74-kDa precursor (pPR, pUL80a). Although there is considerable information about the structure and enzymatic characteristics of assemblin, a potential pharmacologic target, comparatively little is known about these features of the precursor. To begin studying pPR, we introduced five point mutations that stabilize it against self-cleavage at its internal (I), cryptic (C), release (R), and maturational (M) sites and at a newly discovered "tail" (T) site. The resulting mutants, called ICRM-pPR and ICRMT-pPR, were expressed in bacteria, denatured in urea, purified by immobilized metal affinity chromatography, and renatured by a two-step dialysis procedure and by a new method of sedimentation into glycerol gradients. The enzymatic activities of the pPR mutants were indistinguishable from that of IC-assemblin prepared in parallel for comparison, as determined by using a fluorogenic peptide cleavage assay, and approximated rates previously reported for purified assemblin. The percentage of active enzyme in the preparations was also comparable, as determined by using a covalent-binding suicide substrate. An unexpected finding was that, in the absence of the kosmotrope Na2SO4, optimal activity of pPR requires interaction through its scaffolding domain. We conclude that although the enzymatic activities of assemblin and its precursor are comparable, there may be differences in how their catalytic sites become fully activated.
Collapse
Affiliation(s)
- Edward J Brignole
- Virology Laboratories, The Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
10
|
Abstract
The hydroxyl group of a serine residue at position 195 acts as a nucleophile in the catalytic mechanism of the serine proteases. However, the chemically similar residue, threonine, is rarely used in similar functional context. Our structural modeling suggests that the Ser 195 --> Thr trypsin variant is inactive due to negative steric interaction between the methyl group on the beta-carbon of Thr 195 and the disulfide bridge formed by cysteines 42 and 58. By simultaneously truncating residues 42 and 58 and substituting Ser 195 with threonine, we have successfully converted the classic serine protease trypsin to a functional threonine protease. Substitution of residue 42 with alanine and residue 58 with alanine or valine in the presence of threonine 195 results in trypsin variants that are 10(2) -10(4) -fold less active than wild type in kcat/KM but >10(6)-fold more active than the Ser 195 --> Thr single variant. The substitutions do not alter the substrate specificity of the enzyme in the P1'- P4' positions. Removal of the disulfide bridge decreases the overall thermostability of the enzyme, but it is partially rescued by the presence of threonine at position 195.
Collapse
Affiliation(s)
- Teaster T Baird
- University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, California 94143-2280, USA
| | | | | |
Collapse
|
11
|
Loveland AN, Chan CK, Brignole EJ, Gibson W. Cleavage of human cytomegalovirus protease pUL80a at internal and cryptic sites is not essential but enhances infectivity. J Virol 2005; 79:12961-8. [PMID: 16188998 PMCID: PMC1235863 DOI: 10.1128/jvi.79.20.12961-12968.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytomegalovirus (CMV) maturational protease, assemblin, contains an "internal" (I) cleavage site absent from its homologs in other herpesviruses. Blocking this site for cleavage did not prevent replication of the resulting I(-) mutant virus. However, cells infected with the I(-) virus showed increased amounts of a fragment produced by cleavage at the nearby "cryptic" (C) site, suggesting that its replication may bypass the I-site block by using the C site as an alternate cleavage pathway. To test this and further examine the biological importance of these cleavages, we constructed two additional virus mutants-one blocked for C-site cleavage and another blocked for both I- and C-site cleavage. Infectivity comparisons with the parental wild-type virus showed that the I(-) mutant was the least affected for virus production, whereas infectivity of the C(-) mutant was reduced by approximately 40% and when both sites were blocked virus infectivity was reduced by nearly 90%, providing the first evidence that these cleavages have biological significance. We also present and discuss evidence suggesting that I-site cleavage destabilizes assemblin and its fragments, whereas C-site cleavage does not.
Collapse
Affiliation(s)
- Amy N Loveland
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
12
|
Shimba N, Nomura AM, Marnett AB, Craik CS. Herpesvirus protease inhibition by dimer disruption. J Virol 2004; 78:6657-65. [PMID: 15163756 PMCID: PMC416554 DOI: 10.1128/jvi.78.12.6657-6665.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 02/03/2004] [Indexed: 01/23/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), like all herpesviruses, encodes a protease (KSHV Pr), which is necessary for the viral lytic cycle. Herpesvirus proteases function as obligate dimers; however, each monomer has an intact, complete active site which does not interact directly with the other monomer across the dimer interface. Protein grafting of an interfacial KSHV Pr alpha-helix onto a small stable protein, avian pancreatic polypeptide, generated a helical 30-amino-acid peptide designed to disrupt the dimerization of KSHV Pr. The chimeric peptide was optimized through protein modeling of the KSHV Pr-peptide complex. Circular dichroism analysis and gel filtration chromatography revealed that the rationally designed peptide adopts a helical conformation and is capable of disrupting KSHV Pr dimerization, respectively. Additionally, the optimized peptide inhibits KSHV Pr activity by 50% at a approximately 200-fold molar excess of peptide to KSHV Pr, and the dissociation constant was estimated to be 300 microM. Mutagenesis of the interfacial residue M197 to a leucine resulted in an inhibitory concentration which was twofold higher for KSHV Pr M197L than for KSHV Pr, in agreement with the model that the dimer interface is involved in peptide binding. These results indicate that the dimer interface, as well as the active sites, of herpesvirus proteases is a viable target for inhibiting enzyme activity.
Collapse
Affiliation(s)
- Nobuhisa Shimba
- Department of Pharmaceutical Chemistry, University of California-San Francisco, 600 16th St., Box 2280, San Francisco, CA 94143-2280, USA
| | | | | | | |
Collapse
|
13
|
Marnett AB, Nomura AM, Shimba N, Ortiz de Montellano PR, Craik CS. Communication between the active sites and dimer interface of a herpesvirus protease revealed by a transition-state inhibitor. Proc Natl Acad Sci U S A 2004; 101:6870-5. [PMID: 15118083 PMCID: PMC406434 DOI: 10.1073/pnas.0401613101] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Indexed: 11/18/2022] Open
Abstract
Structurally diverse organophosphonate inhibitors targeting the active site of the enzyme were used to investigate the relationship of the active site and the dimer interface of wild-type protease in solution. Positional scanning synthetic combinatorial libraries revealed Kaposi's sarcoma-associated herpesvirus protease to be highly specific, even at sites distal to the peptide bond undergoing hydrolysis. Specificity results were used to synthesize a hexapeptide diphenylphosphonate inhibitor of Kaposi's sarcoma-associated herpesvirus protease. The transition state analog inhibitors covalently phosphonylate the active site serine, freezing the enzyme structure during catalysis. An NMR-based assay was developed to monitor the native monomer-dimer equilibrium in solution and was used to demonstrate the effect of protease inhibition on the quaternary structure of the enzyme. NMR, circular dichroism, and size exclusion chromatography analysis showed that active site inhibition strongly regulates the binding affinity of the monomer-dimer equilibrium at the spatially separate dimer interface of the protease, shifting the equilibrium to the dimeric form of the enzyme. Furthermore, inhibitor studies revealed that the catalytic cycles of the spatially separate active sites are independent. These results (i) provide direct evidence that peptide bond hydrolysis is integrally linked to the quaternary structure of the enzyme, (ii) establish a molecular mechanism of protease activation and stabilization during catalysis, and (iii) highlight potential implications of substoichiometric inhibition of the viral protease in developing herpesviral therapeutics.
Collapse
Affiliation(s)
- Alan B Marnett
- Program in Chemistry and Chemical Biology, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
14
|
Chan CK, Brignole EJ, Gibson W. Cytomegalovirus assemblin (pUL80a): cleavage at internal site not essential for virus growth; proteinase absent from virions. J Virol 2002; 76:8667-74. [PMID: 12163586 PMCID: PMC136994 DOI: 10.1128/jvi.76.17.8667-8674.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) maturational proteinase is synthesized as an enzymatically active 74-kDa precursor that cleaves itself at four sites. Two of these, called the maturational (M) and release (R) sites, are conserved in the homologs of all herpesviruses. The other two, called the internal (I) and cryptic (C) sites, have recognized consensus sequences only among cytomegalovirus (CMV) homologs and are located in the 28-kDa proteolytic portion of the precursor, called assemblin. I-site cleavage cuts assemblin in half without detected effect on its enzymatic behavior in vitro. To investigate the requirement for this cleavage during virus infection, we used the CMV-bacterial artificial chromosome system (E. M. Borst, G. Hahn, U. H. Koszinowski, and M. Messerle, J. Virol. 73:8320-8329, 1999) to construct a virus encoding a mutant I site (Ala143 to Val) intended to be blocked for cleavage. Characterizations of the resulting mutant (i) confirmed the presence of the mutation in the viral genome and the inability of the mutant virus to effect I-site cleavage in infected cells; (ii) determined that the mutation has no gross effect on the rate of virus production or on the amounts of extracellular virions, noninfectious enveloped particles (NIEPs), and dense bodies; (iii) established that assemblin and its cleavage products are present in NIEPs but are absent from CMV virions, an apparent difference from what is found for virions of herpes simplex virus; and (iv) showed that the 23-kDa protein product of C-site cleavage is more abundant in mutant virus-than in wild-type virus-infected cells and NIEPs. We conclude that the production of infectious CMV requires neither I-site cleavage of assemblin nor the presence of assemblin in the mature virion.
Collapse
Affiliation(s)
- Chee-Kai Chan
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
15
|
Kapust RB, Tözsér J, Fox JD, Anderson DE, Cherry S, Copeland TD, Waugh DS. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng Des Sel 2001; 14:993-1000. [PMID: 11809930 DOI: 10.1093/protein/14.12.993] [Citation(s) in RCA: 671] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Because of its stringent sequence specificity, the catalytic domain of the nuclear inclusion protease from tobacco etch virus (TEV) is a useful reagent for cleaving genetically engineered fusion proteins. However, a serious drawback of TEV protease is that it readily cleaves itself at a specific site to generate a truncated enzyme with greatly diminished activity. The rate of autoinactivation is proportional to the concentration of TEV protease, implying a bimolecular reaction mechanism. Yet, a catalytically active protease was unable to convert a catalytically inactive protease into the truncated form. Adding increasing concentrations of the catalytically inactive protease to a fixed amount of the wild-type enzyme accelerated its rate of autoinactivation. Taken together, these results suggest that autoinactivation of TEV protease may be an intramolecular reaction that is facilitated by an allosteric interaction between protease molecules. In an effort to create a more stable protease, we made amino acid substitutions in the P2 and P1' positions of the internal cleavage site and assessed their impact on the enzyme's stability and catalytic activity. One of the P1' mutants, S219V, was not only far more stable than the wild-type protease (approximately 100-fold), but also a more efficient catalyst.
Collapse
Affiliation(s)
- R B Kapust
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Buisson M, Valette E, Hernandez JF, Baudin F, Ebel C, Morand P, Seigneurin JM, Arlaud GJ, Ruigrok RW. Functional determinants of the Epstein-Barr virus protease. J Mol Biol 2001; 311:217-28. [PMID: 11469870 DOI: 10.1006/jmbi.2001.4854] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpesvirus proteases are essential for the production of progeny virus. They cleave the assembly protein that fills the immature capsid in order to make place for the viral DNA. The recombinant protease of the human gamma-herpesvirus Epstein-Barr virus (EBV) was expressed in Escherichia coli and purified. Circular dichroism indicated that the protein was properly folded with a secondary structure content similar to that of other herpesvirus proteases. Gel filtration and sedimentation analysis indicated a fast monomer-dimer equilibrium of the protease with a K(d) of about 60 microM. This value was not influenced by glycerol but was lowered to 1.7 microM in the presence of 0.5 M sodium citrate. We also developed an HPLC-based enzymatic assay using a 20 amino acid residue synthetic peptide substrate derived from one of the viral target sequences for the protease. We found that conditions that stabilised the dimer also led to a higher enzymatic activity. Through sequential deletion of amino acid residues from either side of the cleavage site, the minimal peptide substrate for the protease was determined as P5-P2'. This minimal sequence is shorter than that for other herpesvirus proteases. The implications of our findings are discussed with reference to the viral life-cycle. These results are the first ever published on the EBV protease and represent a first step towards the development of protease inhibitors.
Collapse
Affiliation(s)
- M Buisson
- Laboratoire de Virologie, Hôpital Michallon, Grenoble Cedex 9, 38043, France
| | | | | | | | | | | | | | | | | |
Collapse
|