1
|
Bartošík V, Plucarová J, Laníková A, Janáčková Z, Padrta P, Jansen S, Vařečka V, Gruber T, Feller SM, Žídek L. Structural basis of binding the unique N-terminal domain of microtubule-associated protein 2c to proteins regulating kinases of signaling pathways. J Biol Chem 2024; 300:107551. [PMID: 39002671 PMCID: PMC11367651 DOI: 10.1016/j.jbc.2024.107551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024] Open
Abstract
Isoforms of microtubule-associated protein 2 (MAP2) differ from their homolog Tau in the sequence and interactions of the N-terminal region. Binding of the N-terminal region of MAP2c (N-MAP2c) to the dimerization/docking domains of the regulatory subunit RIIα of cAMP-dependent protein kinase (RIIDD2) and to the Src-homology domain 2 (SH2) of growth factor receptor-bound protein 2 (Grb2) have been described long time ago. However, the structural features of the complexes remained unknown due to the disordered nature of MAP2. Here, we provide structural description of the complexes. We have solved solution structure of N-MAP2c in complex with RIIDD2, confirming formation of an amphiphilic α-helix of MAP2c upon binding, defining orientation of the α-helix in the complex and showing that its binding register differs from previous predictions. Using chemical shift mapping, we characterized the binding interface of SH2-Grb2 and rat MAP2c phosphorylated by the tyrosine kinase Fyn in their complex and proposed a model explaining differences between SH2-Grb2 complexes with rat MAP2c and phosphopeptides with a Grb2-specific sequence. The results provide the structural basis of a potential role of MAP2 in regulating cAMP-dependent phosphorylation cascade via interactions with RIIDD2 and Ras signaling pathway via interactions with SH2-Grb2.
Collapse
Affiliation(s)
- Viktor Bartošík
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jitka Plucarová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alice Laníková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zuzana Janáčková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Padrta
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Séverine Jansen
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vojtěch Vařečka
- Institute of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tobias Gruber
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany; Institute of Physics, Biophysics, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Stephan M Feller
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Lukáš Žídek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Sayeesh PM, Iguchi M, Inomata K, Ikeya T, Ito Y. Structure and Dynamics of Drk-SH2 Domain and Its Site-Specific Interaction with Sev Receptor Tyrosine Kinase. Int J Mol Sci 2024; 25:6386. [PMID: 38928093 PMCID: PMC11203457 DOI: 10.3390/ijms25126386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The Drosophila downstream receptor kinase (Drk), a homologue of human GRB2, participates in the signal transduction from the extracellular to the intracellular environment. Drk receives signals through the interaction of its Src homology 2 (SH2) domain with the phosphorylated tyrosine residue in the receptor tyrosine kinases (RTKs). Here, we present the solution NMR structure of the SH2 domain of Drk (Drk-SH2), which was determined in the presence of a phosphotyrosine (pY)-containing peptide derived from a receptor tyrosine kinase, Sevenless (Sev). The solution structure of Drk-SH2 possess a common SH2 domain architecture, consisting of three β strands imposed between two α helices. Additionally, we interpret the site-specific interactions of the Drk-SH2 domain with the pY-containing peptide through NMR titration experiments. The dynamics of Drk-SH2 were also analysed through NMR-relaxation experiments as well as the molecular dynamic simulation. The docking simulations of the pY-containing peptide onto the protein surface of Drk-SH2 provided the orientation of the peptide, which showed a good agreement with the analysis of the SH2 domain of GRB2.
Collapse
Affiliation(s)
| | | | | | - Teppei Ikeya
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (P.M.S.); (M.I.); (K.I.)
| | - Yutaka Ito
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (P.M.S.); (M.I.); (K.I.)
| |
Collapse
|
3
|
SH2 Domains: Folding, Binding and Therapeutical Approaches. Int J Mol Sci 2022; 23:ijms232415944. [PMID: 36555586 PMCID: PMC9783222 DOI: 10.3390/ijms232415944] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
SH2 (Src Homology 2) domains are among the best characterized and most studied protein-protein interaction (PPIs) modules able to bind and recognize sequences presenting a phosphorylated tyrosine. This post-translational modification is a key regulator of a plethora of physiological and molecular pathways in the eukaryotic cell, so SH2 domains possess a fundamental role in cell signaling. Consequently, several pathologies arise from the dysregulation of such SH2-domains mediated PPIs. In this review, we recapitulate the current knowledge about the structural, folding stability, and binding properties of SH2 domains and their roles in molecular pathways and pathogenesis. Moreover, we focus attention on the different strategies employed to modulate/inhibit SH2 domains binding. Altogether, the information gathered points to evidence that pharmacological interest in SH2 domains is highly strategic to developing new therapeutics. Moreover, a deeper understanding of the molecular determinants of the thermodynamic stability as well as of the binding properties of SH2 domains appears to be fundamental in order to improve the possibility of preventing their dysregulated interactions.
Collapse
|
4
|
Xiao T, Sun L, Zhang M, Li Z, Haura EB, Schonbrunn E, Ji H. Synthesis and structural characterization of a monocarboxylic inhibitor for GRB2 SH2 domain. Bioorg Med Chem Lett 2021; 51:128354. [PMID: 34506932 DOI: 10.1016/j.bmcl.2021.128354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
A monocarboxylic inhibitor was designed and synthesized to disrupt the protein-protein interaction (PPI) between GRB2 and phosphotyrosine-containing proteins. Biochemical characterizations show compound 7 binds with the Src homology 2 (SH2) domain of GRB2 and is more potent than EGFR1068 phosphopeptide 14-mer. X-ray crystallographic studies demonstrate compound 7 occupies the GRB2 binding site for phosphotyrosine-containing sequences and reveal key structural features for GRB2-inhibitor binding. This compound with a -1 formal charge offers a new direction for structural optimization to generate cell-permeable inhibitors for this key protein target of the aberrant Ras-MAPK signaling cascade.
Collapse
Affiliation(s)
- Tao Xiao
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Luxin Sun
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Zilu Li
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Ernst Schonbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States.
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
5
|
Padarti A, Abou-Fadel J, Zhang J. Resurgence of phosphotyrosine binding domains: Structural and functional properties essential for understanding disease pathogenesis. Biochim Biophys Acta Gen Subj 2021; 1865:129977. [PMID: 34391832 DOI: 10.1016/j.bbagen.2021.129977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphotyrosine Binding (PTB) Domains, usually found on scaffold proteins, are pervasive in many cellular signaling pathways. These domains are the second-largest family of phosphotyrosine recognition domains and since their initial discovery, dozens of PTB domains have been structurally determined. SCOPE OF REVIEW Due to its signature sequence flexibility, PTB domains can bind to a large variety of ligands including phospholipids. PTB peptide binding is divided into classical binding (canonical NPXY motifs) and non-classical binding (all other motifs). The first atypical PTB domain was discovered in cerebral cavernous malformation 2 (CCM2) protein, while only one third in size of the typical PTB domain, it remains functionally equivalent. MAJOR CONCLUSIONS PTB domains are involved in numerous signaling processes including embryogenesis, neurogenesis, and angiogenesis, while dysfunction is linked to major disorders including diabetes, hypercholesterolemia, Alzheimer's disease, and strokes. PTB domains may also be essential in infectious processes, currently responsible for the global pandemic in which viral cellular entry is suspected to be mediated through PTB and NPXY interactions. GENERAL SIGNIFICANCE We summarize the structural and functional updates in the PTB domain over the last 20 years in hopes of resurging interest and further analyzing the importance of this versatile domain.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
6
|
Ancient MAPK ERK7 is regulated by an unusual inhibitory scaffold required for Toxoplasma apical complex biogenesis. Proc Natl Acad Sci U S A 2020; 117:12164-12173. [PMID: 32409604 PMCID: PMC7275706 DOI: 10.1073/pnas.1921245117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apicomplexan parasites include organisms that cause widespread and devastating human diseases such as malaria, cryptosporidiosis, and toxoplasmosis. These parasites are named for a structure, called the “apical complex,” that organizes their invasion and secretory machinery. We found that two proteins, apical cap protein 9 (AC9) and an enzyme called ERK7, work together to facilitate apical complex assembly. Intriguingly, ERK7 is an ancient molecule that is found throughout Eukaryota, though its regulation and function are poorly understood. AC9 is a scaffold that concentrates ERK7 at the base of the developing apical complex. In addition, AC9 binding likely confers substrate selectivity upon ERK7. This simple competitive regulatory model may be a powerful but largely overlooked mechanism throughout biology. Apicomplexan parasites use a specialized cilium structure called the apical complex to organize their secretory organelles and invasion machinery. The apical complex is integrally associated with both the parasite plasma membrane and an intermediate filament cytoskeleton called the inner-membrane complex (IMC). While the apical complex is essential to the parasitic lifestyle, little is known about the regulation of apical complex biogenesis. Here, we identify AC9 (apical cap protein 9), a largely intrinsically disordered component of the Toxoplasma gondii IMC, as essential for apical complex development, and therefore for host cell invasion and egress. Parasites lacking AC9 fail to successfully assemble the tubulin-rich core of their apical complex, called the conoid. We use proximity biotinylation to identify the AC9 interaction network, which includes the kinase extracellular signal-regulated kinase 7 (ERK7). Like AC9, ERK7 is required for apical complex biogenesis. We demonstrate that AC9 directly binds ERK7 through a conserved C-terminal motif and that this interaction is essential for ERK7 localization and function at the apical cap. The crystal structure of the ERK7–AC9 complex reveals that AC9 is not only a scaffold but also inhibits ERK7 through an unusual set of contacts that displaces nucleotide from the kinase active site. ERK7 is an ancient and autoactivating member of the mitogen-activated kinase (MAPK) family and its regulation is poorly understood in all organisms. We propose that AC9 dually regulates ERK7 by scaffolding and concentrating it at its site of action while maintaining it in an “off” state until the specific binding of a true substrate.
Collapse
|
7
|
Jaber Chehayeb R, Boggon TJ. SH2 Domain Binding: Diverse FLVRs of Partnership. Front Endocrinol (Lausanne) 2020; 11:575220. [PMID: 33042028 PMCID: PMC7530234 DOI: 10.3389/fendo.2020.575220] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/12/2020] [Indexed: 11/27/2022] Open
Abstract
The Src homology 2 (SH2) domain has a special role as one of the cornerstone examples of a "modular" domain. The interactions of this domain are very well-conserved, and have long been described as a bidentate, or "two-pronged plug" interaction between the domain and a phosphotyrosine (pTyr) peptide. Recent work has, however, highlighted unusual features of the SH2 domain that illustrate a greater diversity than was previously appreciated. In this review we discuss some of the novel and unusual characteristics across the SH2 family, including unusual peptide binding pockets, multiple pTyr recognition sites, recognition sites for unphosphorylated peptides, and recently identified variability in the conserved FLVR motif.
Collapse
Affiliation(s)
- Rachel Jaber Chehayeb
- Yale College, New Haven, CT, United States
- Department of Molecular Biophysics and Biochemistry, New Haven, CT, United States
| | - Titus J. Boggon
- Department of Molecular Biophysics and Biochemistry, New Haven, CT, United States
- Department of Pharmacology, New Haven, CT, United States
- Yale Cancer Center, Yale University, New Haven, CT, United States
- *Correspondence: Titus J. Boggon
| |
Collapse
|
8
|
Hosoe Y, Numoto N, Inaba S, Ogawa S, Morii H, Abe R, Ito N, Oda M. Structural and functional properties of Grb2 SH2 dimer in CD28 binding. Biophys Physicobiol 2019; 16:80-88. [PMID: 30923665 PMCID: PMC6435016 DOI: 10.2142/biophysico.16.0_80] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/30/2019] [Indexed: 01/06/2023] Open
Abstract
Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein that plays a critical role in cellular signal transduction. It contains a central Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains. Binding of Grb2 SH2 to the cytoplasmic region of CD28, phosphorylated Tyr (pY) containing the peptide motif pY-X-N-X, is required for costimulatory signaling in T cells. In this study, we purified the dimer and monomer forms of Grb2 SH2, respectively, and analyzed their structural and functional properties. Size exclusion chromatography analysis showed that both dimer and monomer exist as stable states. Thermal stability analysis using circular dichroism showed that the dimer mostly dissociates into the monomer around 50°C. CD28 binding experiments showed that the affinity of the dimer to the phosphopeptide was about three fold higher than that of the monomer, possibly due to the avidity effect. The present crystal structure analysis of Grb2 SH2 showed two forms; one is monomer at 1.15 Å resolution, which is currently the highest resolution analysis, and another is dimer at 2.00 Å resolution. In the dimer structure, the C-terminal region, comprising residues 123–152, was extended towards the adjacent molecule, in which Trp121 was the hinge residue. The stable dimer purified using size exclusion chromatography would be due to the C-terminal helix “swapping”. In cases where a mutation caused Trp121 to be replaced by Ser in Grb2 SH2, this protein still formed dimers, but lost the ability to bind CD28.
Collapse
Affiliation(s)
- Yuhi Hosoe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satomi Inaba
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.,Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Shuhei Ogawa
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Hisayuki Morii
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan.,Present address: Strategic Innovation and Research Center, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
9
|
Walliser C, Wist M, Hermkes E, Zhou Y, Schade A, Haas J, Deinzer J, Désiré L, Li SSC, Stilgenbauer S, Milner JD, Gierschik P. Functional characterization of phospholipase C-γ 2 mutant protein causing both somatic ibrutinib resistance and a germline monogenic autoinflammatory disorder. Oncotarget 2018; 9:34357-34378. [PMID: 30344948 PMCID: PMC6188132 DOI: 10.18632/oncotarget.26173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022] Open
Abstract
Depending on its occurrence in the germline or somatic context, a single point mutation, S707Y, of phospholipase C-γ2 (PLCγ2) gives rise to two distinct human disease states: acquired resistance of chronic lymphocytic leukemia cells (CLL) to inhibitors of Brutons´s tyrosine kinase (Btk) and dominantly inherited autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation, APLAID, respectively. The functional relationships of the PLCγ2S707Y mutation to other PLCG2 mutations causing (i) Btk inhibitor resistance of CLL cells and (ii) the APLAID-related human disease PLCγ2-associated antibody deficiency and immune dysregulation, PLAID, revealing different clinical characteristics including cold-induced urticaria, respectively, are currently incompletely understood. Here, we show that PLCγ2S707 point mutants displayed much higher activities at 37° C than the CLL Btk inhibitor resistance mutants R665W and L845F and the two PLAID mutants, PLCγ2Δ19 and PLCγ2Δ20-22. Combinations of CLL Btk inhibitor resistance mutations synergized to enhance PLCγ2 activity, with distinct functional consequences for different temporal orders of the individual mutations. Enhanced activity of PLCγ2S707Y was not observed in a cell-free system, suggesting that PLCγ2 activation in intact cells is dependent on regulatory rather than mutant-enzyme-inherent influences. Unlike the two PLAID mutants, PLCγ2S707Y was insensitive to activation by cooling and retained marked hyperresponsiveness to activated Rac upon cooling. In contrast to the PLAID mutants, which are insensitive to activation by endogenously expressed EGF receptors, the S707Y mutation markedly enhanced the stimulatory effect of EGF, explaining some of the pathophysiological discrepancies between immune cells of PLAID and APLAID patients in response to receptor-tyrosine-kinase activation.
Collapse
Affiliation(s)
- Claudia Walliser
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | - Martin Wist
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | - Elisabeth Hermkes
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | - Yuan Zhou
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | - Anja Schade
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | - Jennifer Haas
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | - Julia Deinzer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| | | | - Shawn S C Li
- Department of Biochemistry and The Siebens-Drake Medical Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, Ulm 89070, Germany
| | - Joshua D Milner
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm 89070, Germany
| |
Collapse
|
10
|
Papaioannou D, Geibel S, Kunze MBA, Kay CWM, Waksman G. Structural and biophysical investigation of the interaction of a mutant Grb2 SH2 domain (W121G) with its cognate phosphopeptide. Protein Sci 2015; 25:627-37. [PMID: 26645482 DOI: 10.1002/pro.2856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/27/2015] [Indexed: 11/11/2022]
Abstract
The adaptor protein Grb2 is a key element of mitogenetically important signaling pathways. With its SH2 domain it binds to upstream targets while its SH3 domains bind to downstream proteins thereby relaying signals from the cell membranes to the nucleus. The Grb2 SH2 domain binds to its targets by recognizing a phosphotyrosine (pY) in a pYxNx peptide motif, requiring an Asn at the +2 position C-terminal to the pY with the residue either side of this Asn being hydrophobic. Structural analysis of the Grb2 SH2 domain in complex with its cognate peptide has shown that the peptide adopts a unique β-turn conformation, unlike the extended conformation that phosphopeptides adopt when bound to other SH2 domains. TrpEF1 (W121) is believed to force the peptide into this unusual conformation conferring this unique specificity to the Grb2 SH2 domain. Using X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and isothermal titration calorimetry (ITC), we describe here a series of experiments that explore the role of TrpEF1 in determining the specificity of the Grb2 SH2 domain. Our results demonstrate that the ligand does not adopt a pre-organized structure before binding to the SH2 domain, rather it is the interaction between the two that imposes the hairpin loop to the peptide. Furthermore, we find that the peptide adopts a similar structure when bound to both the wild-type Grb2 SH2 domain and a TrpEF1Gly mutant. This suggests that TrpEF1 is not the determining factor for the conformation of the phosphopeptide.
Collapse
Affiliation(s)
- Danai Papaioannou
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom
| | - Sebastian Geibel
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom.,Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2, Haus D15, Würzburg, 97080, Germany
| | - Micha B A Kunze
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom
| | - Christopher W M Kay
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom.,London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Gabriel Waksman
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
11
|
EGF-receptor specificity for phosphotyrosine-primed substrates provides signal integration with Src. Nat Struct Mol Biol 2015; 22:983-90. [PMID: 26551075 PMCID: PMC4824005 DOI: 10.1038/nsmb.3117] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 09/30/2015] [Indexed: 01/07/2023]
Abstract
Aberrant activation of the EGF receptor (EGFR) contributes to many human cancers by activating the Ras-MAPK pathway and other pathways. EGFR signaling is augmented by Src-family kinases, but the mechanism is poorly understood. Here, we show that human EGFR preferentially phosphorylates peptide substrates that are primed by a prior phosphorylation. Using peptides based on the sequence of the adaptor protein Shc1, we show that Src mediates the priming phosphorylation, thus promoting subsequent phosphorylation by EGFR. Importantly, the doubly phosphorylated Shc1 peptide binds more tightly than singly phosphorylated peptide to the Ras activator Grb2; this binding is a key step in activating the Ras-MAPK pathway. Finally, a crystal structure of EGFR in complex with a primed Shc1 peptide reveals the structural basis for EGFR substrate specificity. These results provide a molecular explanation for the integration of Src and EGFR signaling with downstream effectors such as Ras.
Collapse
|
12
|
Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev 2014; 114:6733-78. [DOI: 10.1021/cr400585q] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kim Van Roey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bora Uyar
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Holger Dinkel
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Markus Seiler
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aidan Budd
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Toby J. Gibson
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Norman E. Davey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department
of Physiology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
13
|
Higo K, Ikura T, Oda M, Morii H, Takahashi J, Abe R, Ito N. High resolution crystal structure of the Grb2 SH2 domain with a phosphopeptide derived from CD28. PLoS One 2013; 8:e74482. [PMID: 24098653 PMCID: PMC3787023 DOI: 10.1371/journal.pone.0074482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
Src homology 2 (SH2) domains play a critical role in cellular signal transduction. They bind to peptides containing phosphotyrosine (pY) with various specificities that depend on the flanking amino-acid residues. The SH2 domain of growth-factor receptor-bound protein 2 (Grb2) specifically recognizes pY-X-N-X, whereas the SH2 domains in phosphatidylinositol 3-kinase (PI3K) recognize pY-X-X-M. Binding of the pY site in CD28 (pY-M-N-M) by PI3K and Grb2 through their SH2 domains is a key step that triggers the CD28 signal transduction for T cell activation and differentiation. In this study, we determined the crystal structure of the Grb2 SH2 domain in complex with a pY-containing peptide derived from CD28 at 1.35 Å resolution. The peptide was found to adopt a twisted U-type conformation, similar to, but distinct from type-I β-turn. In all previously reported crystal structures, the peptide bound to the Grb2 SH2 domains adopts a type-I β-turn conformation, except those with a proline residue at the pY+3 position. Molecular modeling also suggests that the same peptide bound to PI3K might adopt a very different conformation.
Collapse
Affiliation(s)
- Kunitake Higo
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Teikichi Ikura
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto-shi, Kyoto, Japan
| | - Hisayuki Morii
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba-shi, Ibaraki, Japan
| | - Jun Takahashi
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
Linossi EM, Chandrashekaran IR, Kolesnik TB, Murphy JM, Webb AI, Willson TA, Kedzierski L, Bullock AN, Babon JJ, Norton RS, Nicola NA, Nicholson SE. Suppressor of Cytokine Signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1. PLoS One 2013; 8:e70536. [PMID: 23990909 PMCID: PMC3749136 DOI: 10.1371/journal.pone.0070536] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/20/2013] [Indexed: 12/02/2022] Open
Abstract
Suppressor of Cytokine Signaling (SOCS)5 is thought to act as a tumour suppressor through negative regulation of JAK/STAT and epidermal growth factor (EGF) signaling. However, the mechanism/s by which SOCS5 acts on these two distinct pathways is unclear. We show for the first time that SOCS5 can interact directly with JAK via a unique, conserved region in its N-terminus, which we have termed the JAK interaction region (JIR). Co-expression of SOCS5 was able to specifically reduce JAK1 and JAK2 (but not JAK3 or TYK2) autophosphorylation and this function required both the conserved JIR and additional sequences within the long SOCS5 N-terminal region. We further demonstrate that SOCS5 can directly inhibit JAK1 kinase activity, although its mechanism of action appears distinct from that of SOCS1 and SOCS3. In addition, we identify phosphoTyr317 in Shc-1 as a high-affinity substrate for the SOCS5-SH2 domain and suggest that SOCS5 may negatively regulate EGF and growth factor-driven Shc-1 signaling by binding to this site. These findings suggest that different domains in SOCS5 contribute to two distinct mechanisms for regulation of cytokine and growth factor signaling.
Collapse
Affiliation(s)
- Edmond M. Linossi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Indu R. Chandrashekaran
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Tatiana B. Kolesnik
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - James M. Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew I. Webb
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy A. Willson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Lukasz Kedzierski
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Alex N. Bullock
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Jeffrey J. Babon
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Raymond S. Norton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Nicos A. Nicola
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Sandra E. Nicholson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Tanaka H, Akagi KI, Oneyama C, Tanaka M, Sasaki Y, Kanou T, Lee YH, Yokogawa D, Dobenecker MW, Nakagawa A, Okada M, Ikegami T. Identification of a new interaction mode between the Src homology 2 domain of C-terminal Src kinase (Csk) and Csk-binding protein/phosphoprotein associated with glycosphingolipid microdomains. J Biol Chem 2013; 288:15240-54. [PMID: 23548896 DOI: 10.1074/jbc.m112.439075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins with Src homology 2 (SH2) domains play major roles in tyrosine kinase signaling. Structures of many SH2 domains have been studied, and the regions involved in their interactions with ligands have been elucidated. However, these analyses have been performed using short peptides consisting of phosphotyrosine followed by a few amino acids, which are described as the canonical recognition sites. Here, we report the solution structure of the SH2 domain of C-terminal Src kinase (Csk) in complex with a longer phosphopeptide from the Csk-binding protein (Cbp). This structure, together with biochemical experiments, revealed the existence of a novel binding region in addition to the canonical phosphotyrosine 314-binding site of Cbp. Mutational analysis of this second region in cells showed that both canonical and novel binding sites are required for tumor suppression through the Cbp-Csk interaction. Furthermore, the data indicate an allosteric connection between Cbp binding and Csk activation that arises from residues in the βB/βC loop of the SH2 domain.
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cable J, Prutzman K, Gunawardena HP, Schaller MD, Chen X, Campbell SL. In vitro phosphorylation of the focal adhesion targeting domain of focal adhesion kinase by Src kinase. Biochemistry 2012; 51:2213-23. [PMID: 22372511 DOI: 10.1021/bi300123a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Focal adhesion kinase (FAK), a key regulator of cell adhesion and migration, is overexpressed in many types of cancer. The C-terminal focal adhesion targeting (FAT) domain of FAK is necessary for proper localization of FAK to focal adhesions and subsequent activation. Phosphorylation of Y926 in the FAT domain by the tyrosine kinase Src has been shown to promote metastasis and invasion in vivo by linking the FAT domain to the MAPK pathway via its interaction with growth factor receptor-bound protein 2. Several groups have reported that inherent conformational dynamics in the FAT domain likely regulate phosphorylation of Y926; however, what regulates these dynamics is unknown. In this paper, we demonstrate that there are two sites of in vitro Src-mediated phosphorylation in the FAT domain: Y926, which has been shown to affect FAK function in vivo, and Y1008, which has no known biological role. The phosphorylation of these two tyrosine residues is pH-dependent, but this does not reflect the pH dependence of Src kinase activity. Circular dichroism and nuclear magnetic resonance data indicate that the stability and conformational dynamics of the FAT domain are sensitive to changes in pH over a physiological pH range. In particular, regions of the FAT domain previously shown to regulate phosphorylation of Y926 as well as regions near Y1008 show pH-dependent dynamics on the microsecond to millisecond time scale.
Collapse
Affiliation(s)
- Jennifer Cable
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | |
Collapse
|
17
|
Das S, Raychaudhuri M, Sen U, Mukhopadhyay D. Functional implications of the conformational switch in AICD peptide upon binding to Grb2-SH2 domain. J Mol Biol 2011; 414:217-30. [PMID: 22001015 DOI: 10.1016/j.jmb.2011.09.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/20/2011] [Accepted: 09/28/2011] [Indexed: 10/17/2022]
Abstract
It has been hypothesized previously that synergistic effect of both amyloid precursor protein intracellular C-terminal domain (AICD) and Aβ aggregation could contribute to Alzheimer's disease pathogenesis. Structural studies of AICD have found no stable globular fold over a broad range of pH. Present work is based on the premises that a conformational switch involving the flipping of C-terminal helix of AICD would be essential for effective binding with the Src homology 2 (SH2) domain of growth factor receptor binding protein-2 (Grb2) and subsequent initiation of Grb2-mediated endo-lysosomal pathway. High-resolution crystal structures of Grb2-SH2 domain bound to AICD peptides reveal a unique mode of binding where the peptides assume a noncanonical conformation that is unlike other structures of AICD peptides bound to protein-tyrosine-binding domains or that of its free state; rather, a flipping of the C-terminal helix of AICD is evident. The involvement of different AICD residues in Grb2-SH2 interaction is further elucidated through fluorescence-based assays. Our results reveal the significance of a specific interaction of the two molecules to optimize the rapid transport of AICD inside endosomal vesicles presumably to reduce the cytotoxic load.
Collapse
Affiliation(s)
- Samir Das
- Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, WB, Kolkata 700 064, India
| | | | | | | |
Collapse
|
18
|
Das S, Mukhopadhyay D. Intrinsically unstructured proteins and neurodegenerative diseases: Conformational promiscuity at its best. IUBMB Life 2011; 63:478-88. [DOI: 10.1002/iub.498] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Two closely spaced tyrosines regulate NFAT signaling in B cells via Syk association with Vav. Mol Cell Biol 2011; 31:2984-96. [PMID: 21606197 DOI: 10.1128/mcb.05043-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Activated Syk, an essential tyrosine kinase in B cell signaling, interacts with Vav guanine nucleotide exchange factors and regulates Vav activity through tyrosine phosphorylation. The Vav SH2 domain binds Syk linker B by an unusual recognition of two closely spaced Syk tyrosines: Y342 and Y346. The binding affinity is highest when both Y342 and Y346 are phosphorylated. An investigation in B cells of the dependence of Vav phosphorylation and NFAT activation on phosphorylation of Y342 and Y346 finds that cellular response levels match the relative binding affinities of the Vav1 SH2 domain for singly and doubly phosphorylated linker B peptides. This key result suggests that the uncommon recognition determinant of these two closely spaced tyrosines is a limiting factor in signaling. Interestingly, differences in affinities for binding singly and doubly phosphorylated peptides are reflected in the on rate, not the off rate. Such a control mechanism would be highly effective for regulating binding among competing Syk binding partners. The nuclear magnetic resonance (NMR) structure of Vav1 SH2 in complex with a doubly phosphorylated linker B peptide reveals diverse conformations associated with the unusual SH2 recognition of two phosphotyrosines. NMR relaxation indicates compensatory changes in loop fluctuations upon binding, with implications for nonphosphotyrosine interactions of Vav1 SH2.
Collapse
|
20
|
Orcajo-Rincón ÁL, Ortega-Gutiérrez S, Serrano P, Torrecillas IR, Wüthrich K, Campillo M, Pardo L, Viso A, Benhamú B, López-Rodríguez ML. Development of Non-Peptide Ligands of Growth Factor Receptor-Bound Protein 2-Src Homology 2 Domain Using Molecular Modeling and NMR Spectroscopy. J Med Chem 2011; 54:1096-100. [DOI: 10.1021/jm101478n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ángel L. Orcajo-Rincón
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | - Ivan R. Torrecillas
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autonoma de Barcelona, E-08913 Bellaterra, Barcelona, Spain
| | - Kurt Wüthrich
- Department of Molecular Biology
- Skaggs Institute for Chemical Biology
| | - Mercedes Campillo
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autonoma de Barcelona, E-08913 Bellaterra, Barcelona, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autonoma de Barcelona, E-08913 Bellaterra, Barcelona, Spain
| | - Alma Viso
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Bellinda Benhamú
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María L. López-Rodríguez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
21
|
Kaneko T, Huang H, Zhao B, Li L, Liu H, Voss CK, Wu C, Schiller MR, Li SSC. Loops govern SH2 domain specificity by controlling access to binding pockets. Sci Signal 2010; 3:ra34. [PMID: 20442417 DOI: 10.1126/scisignal.2000796] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cellular functions require specific protein-protein interactions that are often mediated by modular domains that use binding pockets to engage particular sequence motifs in their partners. Yet, how different members of a domain family select for distinct sequence motifs is not fully understood. The human genome encodes 120 Src homology 2 (SH2) domains (in 110 proteins), which mediate protein-protein interactions by binding to proteins with diverse phosphotyrosine (pTyr)-containing sequences. The structure of the SH2 domain of BRDG1 bound to a peptide revealed a binding pocket that was blocked by a loop residue in most other SH2 domains. Analysis of 63 SH2 domain structures suggested that the SH2 domains contain three binding pockets, which exhibit selectivity for the three positions after the pTyr in a peptide, and that SH2 domain loops defined the accessibility and shape of these pockets. Despite sequence variability in the loops, we identified conserved structural features in the loops of SH2 domains responsible for controlling access to these surface pockets. We engineered new loops in an SH2 domain that altered specificity as predicted. Thus, selective blockage of binding subsites or pockets by surface loops provides a molecular basis by which the diverse modes of ligand recognition by the SH2 domain may have evolved and provides a framework for engineering SH2 domains and designing SH2-specific inhibitors.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jiang S, Liao C, Bindu L, Yin B, Worthy KW, Fisher RJ, Burke TR, Nicklaus MC, Roller PP. Discovery of thioether-bridged cyclic pentapeptides binding to Grb2-SH2 domain with high affinity. Bioorg Med Chem Lett 2009; 19:2693-8. [PMID: 19362470 PMCID: PMC7291730 DOI: 10.1016/j.bmcl.2009.03.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/06/2009] [Accepted: 03/26/2009] [Indexed: 10/21/2022]
Abstract
Blocking the interaction between phosphotyrosine (pTyr)-containing activated receptors and the Src homology 2 (SH2) domain of the growth factor receptor-bound protein 2 (Grb 2) is considered to be an effective and non-cytotoxic strategy to develop new anti-proliferate agents due to its potential to shut down the Ras activation pathway. In this study, a series of phosphotyrosine containing cyclic pentapeptides were designed and synthesized based upon the phage library derived cyclopeptide, G1TE. A comprehensive SAR study was also carried out to develop potent Grb2-SH2 domain antagonists based upon this novel template. With both the peptidomimetic optimization of the amino acid side-chains and the constraint of the backbone conformation guided by molecular modeling, we developed several potent antagonists with low micromolar range binding affinity, such as cyclic peptide 15 with an K(d)=0.359microM, which is providing a novel template for the development of Grb2-SH2 domain antagonists as potential therapeutics for certain cancers.
Collapse
Affiliation(s)
- Sheng Jiang
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fox-Erlich S, Schiller MR, Gryk MR. Structural conservation of a short, functional, peptide-sequence motif. FRONT BIOSCI-LANDMRK 2009; 14:1143-51. [PMID: 19273121 PMCID: PMC2654600 DOI: 10.2741/3299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Full length, eukaryotic proteins generally consist of several autonomously folding and functioning domains. Many of these domains are known to function by binding and/or modifying other partner proteins based on the recognition of a short, linear amino sequence contained within the target protein. This article reviews the many bioinformatic tools and resources which discover, define and catalogue the various, known protein domains as well as assist users by identifying domain signatures within proteins of interest. We also review the smaller subset of bioinformatic tools which catalogue and help identify the short linear motifs used for domain targeting. It has been suggested that these short, functional, peptide-sequence motifs are normally found in unstructured regions of the target. The role of protein structure in the activity of one representative of these short, functional motifs is explored through an examination of known structures deposited in the Protein Data Bank.
Collapse
Affiliation(s)
- Susan Fox-Erlich
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | | | | |
Collapse
|
24
|
Ogura K, Shiga T, Yokochi M, Yuzawa S, Burke TR, Inagaki F. Solution structure of the Grb2 SH2 domain complexed with a high-affinity inhibitor. JOURNAL OF BIOMOLECULAR NMR 2008; 42:197-207. [PMID: 18830565 PMCID: PMC3719385 DOI: 10.1007/s10858-008-9272-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 08/26/2008] [Indexed: 05/21/2023]
Abstract
The solution structure of the growth factor receptor-bound protein 2 (Grb2) SH2 domain complexed with a high-affinity inhibitor containing a non-phosphorus phosphate mimetic within a macrocyclic platform was determined by nuclear magnetic resonance (NMR) spectroscopy. Unambiguous assignments of the bound inhibitor and intermolecular NOEs between the Grb2 SH2 domain and the inhibitor was accomplished using perdeuterated Grb2 SH2 protein. The well-defined solution structure of the complex was obtained and compared to those by X-ray crystallography. Since the crystal structure of the Grb2 SH2 domain formed a domain-swapped dimer and several inhibitors were bound to a hinge region, there were appreciable differences between the solution and crystal structures. Based on the binding interactions between the inhibitor and the Grb2 SH2 domain in solution, we proposed a design of second-generation inhibitors that could be expected to have higher affinity.
Collapse
Affiliation(s)
- Kenji Ogura
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N12 W6, Sapporo, 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Li L, Wu C, Huang H, Zhang K, Gan J, Li SSC. Prediction of phosphotyrosine signaling networks using a scoring matrix-assisted ligand identification approach. Nucleic Acids Res 2008; 36:3263-73. [PMID: 18424801 PMCID: PMC2425477 DOI: 10.1093/nar/gkn161] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Systematic identification of binding partners for modular domains such as Src homology 2 (SH2) is important for understanding the biological function of the corresponding SH2 proteins. We have developed a worldwide web-accessible computer program dubbed SMALI for scoring matrix-assisted ligand identification for SH2 domains and other signaling modules. The current version of SMALI harbors 76 unique scoring matrices for SH2 domains derived from screening oriented peptide array libraries. These scoring matrices are used to search a protein database for short peptides preferred by an SH2 domain. An experimentally determined cut-off value is used to normalize an SMALI score, therefore allowing for direct comparison in peptide-binding potential for different SH2 domains. SMALI employs distinct scoring matrices from Scansite, a popular motif-scanning program. Moreover, SMALI contains built-in filters for phosphoproteins, Gene Ontology (GO) correlation and colocalization of subject and query proteins. Compared to Scansite, SMALI exhibited improved accuracy in identifying binding peptides for SH2 domains. Applying SMALI to a group of SH2 domains identified hundreds of interactions that overlap significantly with known networks mediated by the corresponding SH2 proteins, suggesting SMALI is a useful tool for facile identification of signaling networks mediated by modular domains that recognize short linear peptide motifs.
Collapse
Affiliation(s)
- Lei Li
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Wavreille AS, Garaud M, Zhang Y, Pei D. Defining SH2 domain and PTP specificity by screening combinatorial peptide libraries. Methods 2007; 42:207-19. [PMID: 17532507 PMCID: PMC2041848 DOI: 10.1016/j.ymeth.2007.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022] Open
Abstract
Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing short phosphotyrosyl (pY) peptide motifs in their partner proteins. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of pY proteins, counteracting the protein tyrosine kinases. Both types of proteins exhibit primary sequence specificity, which plays at least a partial role in dictating their physiological interacting partners or substrates. A combinatorial peptide library method has been developed to systematically assess the sequence specificity of SH2 domains and PTPs. A "one-bead-one-compound" pY peptide library is synthesized on 90-microm TentaGel beads and screened against an SH2 domain or PTP of interest for binding or catalysis. The beads that carry the tightest binding sequences against the SH2 domain or the most efficient substrates of the PTP are selected by an enzyme-linked assay and individually sequenced by a partial Edman degradation/mass spectrometry technique. The combinatorial method has been applied to determine the sequence specificity of 8 SH2 domains from Src and Csk kinases, adaptor protein Grb2, and phosphatases SHP-1, SHP-2, and SHIP1 and a prototypical PTP, PTP1B.
Collapse
Affiliation(s)
- Anne-Sophie Wavreille
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Mathieu Garaud
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Yanyan Zhang
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Dehua Pei
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
27
|
Spuches AM, Argiros HJ, Lee KH, Haas LL, Pero SC, Krag DN, Roller PP, Wilcox DE, Lyons BA. Calorimetric investigation of phosphorylated and non-phosphorylated peptide ligand binding to the human Grb7-SH2 domain. J Mol Recognit 2007; 20:245-52. [PMID: 17705331 DOI: 10.1002/jmr.834] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20-30% of breast cancers. In general, growth factor receptor bound (Grb) proteins bind to activated membrane-bound receptor tyrosine kinases (RTKs; e.g., the epidermal growth factor receptor, EGFR) through their Src homology 2 (SH2) domains. In particular, Grb7 binds to erbB2 (a.k.a. EGFR2) and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In previous studies, we reported the solution structure and the backbone relaxation behavior of the Grb7-SH2/erbB2 peptide complex. In this study, isothermal titration calorimetry studies have been completed by measuring the thermodynamic binding parameters of several phosphorylated and non-phosphorylated peptides representative of natural Grb7 receptor ligands as well as ligands developed through combinatorial peptide screening methods. The entirety of these calorimetric studies is interpreted in an effort to describe the specific ligand binding characteristics of the Grb7 protein.
Collapse
Affiliation(s)
- A M Spuches
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Leroux V, Gresh N, Liu WQ, Garbay C, Maigret B. Role of water molecules for binding inhibitors in the SH2 domain of Grb2: A molecular dynamics study. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.theochem.2006.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Jiang S, Li P, Peach ML, Bindu L, Worthy KW, Fisher RJ, Burke TR, Nicklaus M, Roller PP. Structure-based design of potent Grb2–SH2 domain antagonists not relying on phosphotyrosine mimics. Biochem Biophys Res Commun 2006; 349:497-503. [PMID: 16945340 DOI: 10.1016/j.bbrc.2006.08.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 08/05/2006] [Indexed: 12/01/2022]
Abstract
Development of Grb2-SH2 domain antagonists is considered to be an effective and non-cytotoxic strategy to develop new antiproliferative agents because of their potential to shut down the Ras signaling pathway. We developed a concise route for the efficient synthesis of G1TE analogs on solid phase. Using this route, a series of cyclic peptides that do not rely on phosphotyrosine or its mimics were designed and synthesized based upon the phage library-derived cyclopeptide, G1TE. Considering that Gly7 plays prominent roles for G1TE binding to the Grb2-SH2 domain, we introduced different amino acids in the 7th position. The D-Ala7-containing peptide 3 demonstrates improved binding affinity by adopting favorable conformation for protein binding. This can be rationalized by molecular modeling. The optimization at the Leu2 position was also studied, and the resulting cyclopeptides exhibited remarkably improved binding affinity. Based upon these global modifications, a highly potent peptide ligand 9 was discovered with a Kd = 17 nM, evaluated by Biacore binding assay. This new analog is one of the most potent non-phosphorus-containing Grb2-SH2 antagonists reported to date. This potent peptidomimetic provides a new template for the development of non-pTyr containing Grb2-SH2 domain antagonists and acts as a chemotherapeutic lead for the treatment of erbB2-related cancer.
Collapse
Affiliation(s)
- Sheng Jiang
- Laboratory of Medicinal Chemistry, NCI, NIH, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Phan J, Shi ZD, Burke TR, Waugh DS. Crystal Structures of a High-affinity Macrocyclic Peptide Mimetic in Complex with the Grb2 SH2 Domain. J Mol Biol 2005; 353:104-15. [PMID: 16165154 DOI: 10.1016/j.jmb.2005.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/15/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
The high-affinity binding of the growth factor receptor-bound protein 2 (Grb2) SH2 domain to tyrosine-phosphorylated cytosolic domains of receptor tyrosine kinases (RTKs) is an attractive target for therapeutic intervention in many types of cancer. We report here two crystal forms of a complex between the Grb2 SH2 domain and a potent non-phosphorus-containing macrocyclic peptide mimetic that exhibits significant anti-proliferative effects against erbB-2-dependent breast cancers. This agent represents a "second generation" inhibitor with greatly improved binding affinity and bio-availability compared to its open-chain counterpart. The structures were determined at 2.0A and 1.8A with one and two domain-swapped dimers per asymmetric unit, respectively. The mode of binding and specific interactions between the protein and the inhibitor provide insight into the high potency of this class of macrocylic compounds and may aid in further optimization as part of the iterative rational drug design process.
Collapse
Affiliation(s)
- Jason Phan
- Macromolecular Crystallography Laboratory Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
31
|
Ivancic M, Spuches AM, Guth EC, Daugherty MA, Wilcox DE, Lyons BA. Backbone nuclear relaxation characteristics and calorimetric investigation of the human Grb7-SH2/erbB2 peptide complex. Protein Sci 2005; 14:1556-69. [PMID: 15930003 PMCID: PMC2253377 DOI: 10.1110/ps.041102305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20%-30% of breast cancers. Grb7 binds to erbB2 and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In a prior study, we reported the solution structure of the Grb7-SH2/erbB2 peptide complex. In this study, T(1), T(2), and steady-state NOE measurements were performed on the Grb7-SH2 domain, and the backbone relaxation behavior of the domain is discussed with respect to the potential function of an insert region present in all three members of this protein family. Isothermal titration calorimetry (ITC) studies were completed measuring the thermodynamic parameters of the binding of a 10-residue phosphorylated peptide representative of erbB2 to the SH2 domain. These measurements are compared to calorimetric studies performed on other SH2 domain/phosphorylated peptide complexes available in the literature.
Collapse
Affiliation(s)
- Monika Ivancic
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington 05405, USA
| | | | | | | | | | | |
Collapse
|
32
|
Scharf PJ, Witney J, Daly R, Lyons BA. Solution structure of the human Grb14-SH2 domain and comparison with the structures of the human Grb7-SH2/erbB2 peptide complex and human Grb10-SH2 domain. Protein Sci 2005; 13:2541-6. [PMID: 15322292 PMCID: PMC2280013 DOI: 10.1110/ps.04884704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Grb14 is an adapter protein that is known to be overexpressed in estrogen receptor positive breast cancers, and in a number of prostate cancer cell lines. Grb14 has been demonstrated to bind to a number of activated receptor tyrosine kinases (RTKs) and to modulate signals transduced through these receptors. The RTKs to which Grb14 binds include the insulin receptor (IR), the fibroblast growth factor receptor (FGFR), the platelet-derived growth factor receptor (PDGFR), and the tunica endothelial kinase (Tek/Tie2) receptor. Grb14 has been shown to bind to these activated RTKs through its Src homology 2 (SH2) domain, with the exception of the insulin receptor, where the primary binding interaction is via a small domain adjacent to the SH2 domain (the BPS or PIR domain). Grb14 is a member of the Grb7 family of proteins, which also includes Grb7 and Grb10. We have solved the solution structure of the human Grb14-SH2 domain and compared it with the recently determined Grb7-SH2 and Grb10-SH2 domain structures.
Collapse
Affiliation(s)
- Paul J Scharf
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
33
|
Hino N, Okazaki Y, Kobayashi T, Hayashi A, Sakamoto K, Yokoyama S. Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid. Nat Methods 2005; 2:201-6. [PMID: 15782189 DOI: 10.1038/nmeth739] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 01/20/2005] [Indexed: 01/08/2023]
Abstract
We report a method of photo-cross-linking proteins in mammalian cells, which is based on site-specific incorporation of a photoreactive amino acid, p-benzoyl-L-phenylalanine (pBpa), through the use of an expanded genetic code. To analyze the cell signaling interactions involving the adaptor protein Grb2, pBpa was incorporated in its Src homology 2 (SH2) domain. The human GRB2 gene with an amber codon was introduced into Chinese hamster ovary (CHO) cells, together with the genes for the Bacillus stearothermophilus suppressor tRNA(Tyr) and a pBpa-specific variant of Escherichia coli tyrosyl-tRNA synthetase (TyrRS). The Grb2 variant with pBpa in the amber position was synthesized when pBpa was included in the growth medium. Upon exposure of cells to 365-nm light, protein variants containing pBpa in the positions proximal to the ligand-binding pocket were cross-linked with the transiently expressed epidermal growth factor (EGF) receptor in the presence of an EGF stimulus. Cross-linked complexes with endogenous proteins were also detected. In vivo photo-cross-linking with pBpa incorporated in proteins will be useful for studying protein-protein interactions in mammalian cells.
Collapse
Affiliation(s)
- Nobumasa Hino
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Roque ACA, Lowe CR. Lessons from nature: On the molecular recognition elements of the phosphoprotein binding-domains. Biotechnol Bioeng 2005; 91:546-55. [PMID: 15959902 DOI: 10.1002/bit.20561] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The reversible phosphorylation of proteins regulates many biological processes. Despite the technological advances in the enrichment and detection of phosphorylated proteins, the currently available techniques still struggle with the complexity of the human proteome. The aim of this review is to highlight the molecular recognition elements of the interaction between phosphorylated proteins and peptides and pTyr or pSer/Thr-binding domains. The identification of the recognition features of the naturally occurring pTyr- and pSer/Thr-binding domains can contribute to an understanding of the molecular aspects of the affinity and specificity for phosphorylated residues. This might inspire the design of small "biomimetic" molecules with potential applications in assessing the extent of the phosphoproteome using affinity-based strategies.
Collapse
Affiliation(s)
- A Cecília A Roque
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom.
| | | |
Collapse
|
35
|
Zamora-Leon SP, Bresnick A, Backer JM, Shafit-Zagardo B. Fyn phosphorylates human MAP-2c on tyrosine 67. J Biol Chem 2004; 280:1962-70. [PMID: 15536091 DOI: 10.1074/jbc.m411380200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Src homology 3 (SH3) domain of Fyn binds to a conserved PXXP motif on microtubule-associated protein-2. Co-transfections into COS7 cells and in vitro kinase assays performed with Fyn and wild-type, or mutant MAP-2c, determined that Fyn phosphorylated MAP-2c on tyrosine 67. The phosphorylation generated a consensus sequence for the binding of the SH2 domain of Grb2 (pYSN). Pull-down assays with SH2-Grb2 from human fetal brain homogenates, and co-immunoprecipitation of Grb2 and MAP-2 confirmed the interaction in vivo, and demonstrated that MAP-2c is tyrosine-phosphorylated in human fetal brain. Filter overlay assays confirmed that the SH2 domain of Grb2 binds to human MAP-2c following incubation with active Fyn. Enzyme-linked immunosorbent assays confirmed the interaction between the SH2 domain of Grb2 and a tyrosine-phosphorylated MAP-2 peptide spanning the pY(67)SN motif. Thus, MAP-2c can directly recruit multiple signaling proteins important for central nervous system development.
Collapse
Affiliation(s)
- S Pilar Zamora-Leon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
36
|
Shao H, Xu X, Mastrangelo MAA, Jing N, Cook RG, Legge GB, Tweardy DJ. Structural Requirements for Signal Transducer and Activator of Transcription 3 Binding to Phosphotyrosine Ligands Containing the YXXQ Motif. J Biol Chem 2004; 279:18967-73. [PMID: 14966128 DOI: 10.1074/jbc.m314037200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stat3 is an Src homology (SH)2-containing protein constitutively activated in a wide variety of human cancers following its recruitment to YXXQ-containing motifs, which results in resistance to apoptosis. Despite resolution of the crystal structure of Stat3 homodimer bound to DNA, the structural basis for the unique specificity of Stat3 SH2 for YXXQ-containing phosphopeptides remains unresolved. We tested three models of this interaction based on computational analysis of available structures and sequence alignments, two of which assumed an extended peptide configuration and one in which the peptide had a beta-turn. By using peptide immunoblot affinity assays and mirror resonance affinity analysis, we demonstrated that only phosphotyrosine (Tyr(P)) peptides containing +3 Gln (not Leu, Met, Glu, or Arg) bound to wild type Stat3. Examination of a series of wild type and mutant Stat3 proteins demonstrated loss of binding to pYXXQ-containing peptides only in Stat3 mutated at Lys-591 or Arg-609, whose side chains interact with the Tyr(P) residue, and Stat3 mutated at Glu-638, whose amide hydrogen bonds with oxygen within the +3 Gln side chain when the peptide ligand assumes a beta-turn. These findings support a model for Stat3 SH2 interactions that could form the basis for anticancer drugs that specifically target Stat3.
Collapse
Affiliation(s)
- Huang Shao
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Sheinerman FB, Al-Lazikani B, Honig B. Sequence, structure and energetic determinants of phosphopeptide selectivity of SH2 domains. J Mol Biol 2004; 334:823-41. [PMID: 14636606 DOI: 10.1016/j.jmb.2003.09.075] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Here, we present an approach for the prediction of binding preferences of members of a large protein family for which structural information for a number of family members bound to a substrate is available. The approach involves a number of steps. First, an accurate multiple alignment of sequences of all members of a protein family is constructed on the basis of a multiple structural superposition of family members with known structure. Second, the methods of continuum electrostatics are used to characterize the energetic contribution of each residue in a protein to the binding of its substrate. Residues that make a significant contribution are mapped onto the protein sequence and are used to define a "binding site signature" for the complex being considered. Third, sequences whose structures have not been determined are checked to see if they have binding-site signatures similar to one of the known complexes. Predictions of binding affinity to a given substrate are based on similarities in binding-site signature. An important component of the approach is the introduction of a context-specific substitution matrix suitable for comparison of binding-site residues. The methods are applied to the prediction of phosphopeptide selectivity of SH2 domains. To this end, the energetic roles of all protein residues in 17 different complexes of SH2 domains with their cognate targets are analyzed. The total number of residues that make significant contributions to binding is found to vary from nine to 19 in different complexes. These energetically important residues are found to contribute to binding through a variety of mechanisms, involving both electrostatic and hydrophobic interactions. Binding-site signatures are found to involve residues in different positions in SH2 sequences, some of them as far as 9A away from a bound peptide. Surprisingly, similarities in the signatures of different domains do not correlate with whole-domain sequence identities unless the latter is greater than 50%. An extensive comparison with the optimal binding motifs determined by peptide library experiments, as well as other experimental data indicate that the similarity in binding preferences of different SH2 domains can be deduced on the basis of their binding-site signatures. The analysis provides a rationale for the empirically derived classification of SH2 domains described by Songyang & Cantley, in that proteins in the same group are found to have similar residues at positions important for binding. Confident predictions of binding preference can be made for about 85% of SH2 domain sequences found in SWISSPROT. The approach described in this work is quite general and can, in principle, be used to analyze binding preferences of members of large protein families for which structural information for a number of family members is available. It also offers a strategy for predicting cross-reactivity of compounds designed to bind to a particular target, for example in structure-based drug design.
Collapse
Affiliation(s)
- Felix B Sheinerman
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
38
|
Long YQ, Lung FDT, Roller PP. Global optimization of conformational constraint on non-phosphorylated cyclic peptide antagonists of the Grb2-SH2 domain. Bioorg Med Chem 2003; 11:3929-36. [PMID: 12927853 DOI: 10.1016/s0968-0896(03)00411-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following our earlier work on a phage library derived non-phosphorylated thioether-cyclized peptide inhibitor of Grb2 SH2 domain, a series of small peptide analogues with various cyclization linkage or various ring size were designed and synthesized and evaluated to investigate the optimal conformational constraint for this novel Grb2-SH2 blocker. Our previous SAR studies have indicated that constrained conformation as well as all amino acids except Leu(2) and Gly(7) in this lead peptide, cyclo(CH(2)CO-Glu(1)-Leu-Tyr-Glu-Asn-Val-Gly-Met-Tyr-Cys(10))-amide (termed G1TE), was necessary for sustenance of the biological activity. In this study, in an effort to derive potent and bioavailable Grb2-SH2 inhibitor with minimal sequence, we undertook a systematic conformational study on this non-phosphorylated cyclic ligand by optimizing the ring linkage, ring configuration and ring size. The polarity and configuration of the cyclization linkage were implicated important in assuming the active conformation. Changing the flexible thioether linkage in G1TE into the relatively rigid sulfoxide linkage secured a 4-fold increase in potency (4, IC(50)=6.5 microM). However, open chain, shortening or expanding the ring size led to a marked loss of inhibitory activity. Significantly, the introduction of omega-amino carboxylic acid linker in place of three C-terminal amino acids in G1TE can remarkably recover the apparently favorable conformation, which is otherwise lost because of the reduced ring size. This modification, combined with favorable substitutions of Gla for Glu(1) and Adi for Glu(4) in the resulting six-residue cyclic peptide, afforded peptide 19, with an almost equal potency (19, IC(50)=23.3 microM) relative to G1TE. Moreover, the lipophilic chain in omega-amino carboxylic acid may confer better cell membrane permeability to 19. These newly developed G1TE analogues with smaller ring size and less peptide character but equal potency can serve as templates to derive potent and specific non-phosphorylated Grb2-SH2 antagonists.
Collapse
Affiliation(s)
- Ya-Qiu Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | | | | |
Collapse
|
39
|
Li P, Peach ML, Zhang M, Liu H, Yang D, Nicklaus M, Roller PP. Structure-based design of thioether-bridged cyclic phosphopeptides binding to Grb2-SH2 domain. Bioorg Med Chem Lett 2003; 13:895-9. [PMID: 12617916 DOI: 10.1016/s0960-894x(03)00015-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of phosphotyrosine containing cyclic peptides was designed and synthesized based upon the phage library derived cyclopeptide, G1TE. Considering the type-I beta-turn feature of peptidic ligand binding to Grb2 SH2 domain, we introduce alpha,alpha-disubstituted cyclic amino acid, Ach, into the 4th position of the cyclic peptide to induce a local right handed 3(10) helical conformation. In order to stabilize the favorable binding conformation, the bulky and hydrophobic amino acids, neopentylglycine (NPG) and phenylalanine, were introduced into the 8th and 2nd positions of the peptide ligand, respectively. To facilitate the sidechain of pTyr3 reaching into the phosphotyrosine binding pocket, a less bulky alanine was preferred in position 1. Based upon these global modifications, a highly potent peptide ligand 12 was discovered with an IC(50)=1.68 nM, evaluated by ELISA binding essay. Ligand 12 is at least 10(5) more potent than the lead peptide, termed G1TE.
Collapse
Affiliation(s)
- Peng Li
- Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Zheng XM, Resnick RJ, Shalloway D. Mitotic activation of protein-tyrosine phosphatase alpha and regulation of its Src-mediated transforming activity by its sites of protein kinase C phosphorylation. J Biol Chem 2002; 277:21922-9. [PMID: 11923305 PMCID: PMC5641391 DOI: 10.1074/jbc.m201394200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During mitosis, the catalytic activity of protein-tyrosine phosphatase (PTP) alpha is enhanced, and its inhibitory binding to Grb2, which specifically blocks Src dephosphorylation, is decreased. These effects act synergistically to activate Src in mitosis. We show here that these effects are abrogated by mutation of Ser180 and/or Ser204, the sites of protein kinase C-mediated phosphorylation within PTPalpha. Moreover, either a Ser-to-Ala substitution or serine dephosphorylation specifically eliminated the ability of PTPalpha to dephosphorylate and activate Src even during interphase. This explains why the substitutions eliminated PTPalpha transforming activity, even though PTPalpha interphase dephosphorylation of nonspecific substrates was only slightly decreased. This occurred without change in the phosphorylation of PTPalpha at Tyr789, which is required for "phosphotyrosine displacement" during Src dephosphorylation. Thus, in addition to increasing PTPalpha nonspecific catalytic activity, Ser180 and Ser204 phosphorylation (along with Tyr789 phosphorylation) regulates PTPalpha substrate specificity. This involves serine phosphorylation-dependent differential modulation of the affinity of Tyr(P)789 for the Src and Grb2 SH2 domains. The results suggest that protein kinase C may participate in the mitotic activation of PTPalpha and Src and that there are intramolecular interactions between the PTPalpha C-terminal and membrane-proximal regions that are regulated, at least in part, by serine phosphorylation.
Collapse
Affiliation(s)
- Xin-Min Zheng
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Ross J. Resnick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
41
|
Liu G, Guibao CD, Zheng J. Structural insight into the mechanisms of targeting and signaling of focal adhesion kinase. Mol Cell Biol 2002; 22:2751-60. [PMID: 11909967 PMCID: PMC133741 DOI: 10.1128/mcb.22.8.2751-2760.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase whose focal adhesion targeting (FAT) domain interacts with other focal adhesion molecules in integrin-mediated signaling. Localization of activated FAK to focal adhesions is indispensable for its function. Here we describe a solution structure of the FAT domain bound to a peptide derived from paxillin, a FAK-binding partner. The FAT domain is composed of four helices that form a "right-turn" elongated bundle; the globular fold is mainly maintained by hydrophobic interactions. The bound peptide further stabilizes the structure. Certain signaling events such as phosphorylation and molecule interplay may induce opening of the helix bundle. Such conformational change is proposed to precede departure of FAK from focal adhesions, which starts focal adhesion turnover.
Collapse
Affiliation(s)
- Gaohua Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
42
|
Abstract
Protein phosphorylation provides molecular control of complex physiological events within cells. In many cases, phosphorylation on specific amino acids directly controls the assembly of multi-protein complexes by recruiting phospho-specific binding modules. Here, the function, structure, and cell biology of phosphotyrosine-binding domains is discussed.
Collapse
Affiliation(s)
- Michael B Yaffe
- Center for Cancer Research, E18-580, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.
| |
Collapse
|
43
|
Nioche P, Liu WQ, Broutin I, Charbonnier F, Latreille MT, Vidal M, Roques B, Garbay C, Ducruix A. Crystal structures of the SH2 domain of Grb2: highlight on the binding of a new high-affinity inhibitor. J Mol Biol 2002; 315:1167-77. [PMID: 11827484 DOI: 10.1006/jmbi.2001.5299] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of growth factor receptors induces phosphorylation of tyrosine residues in its C-terminal part, creating binding sites for SH2 domain-containing proteins. Grb2 is a protein that recruits Sos, the exchange factor for Ras. Recruitment of Sos allows for Ras activation and subsequent signal transmission. This promotes translocation of MAP kinases into the nucleus and activation of early transcription factors. Grb2, a 25 kDa protein, is composed of one SH2 domain surrounded by two SH3 domains. The SH2 domain of Grb2 binds to class II phosphotyrosyl peptides with the consensus sequence pYXNX. Thus, Grb2 is a good example of a bifunctional adaptor protein that brings proteins into close proximity, allowing signal transduction through proteins located in different compartments. To explore the interactions between Grb2 and phosphorylated ligands, we have solved the crystal structure of complexes between the Grb2-SH2 domain and peptides corresponding to Shc-derived sequences. Two structures are described: the Grb2-SH2 domain in complex with PSpYVNVQN at 1.5 A; and the Grb2-SH2 domain in complex with mAZ*-pY-(alphaMe)pY-N-NH2 pseudo-peptide, at 2 A. Both are compared to an unliganded SH2 structure determined at 2.7 A which, interestingly enough, forms a dimer through two swapping subdomains from two symmetry-related molecules. The nanomolar affinity of the mAZ-pY-(alphaMe)pY-N-NH2 pseudo-peptide for Grb2-SH2 is related to new interactions with non- conserved residues. The design of Grb2-SH2 domain inhibitors that prevent interaction with tyrosine kinase proteins or other adaptors like Shc or IRS1 should provide a means to interrupt the Ras signaling pathway. Newly synthesized pseudo-peptides exhibit nanomolar affinities for the Grb2-SH2 domain. It will then be possible to design new inhibitors with similar affinity and simpler chemical structures.
Collapse
Affiliation(s)
- Pierre Nioche
- Laboratoire de Cristallographie et RMN biologiques; UMR 8015 CNRS, Faculté de Pharmacie, Université René Descartes, 4, Avenue de l'Observatorie, 75270 Paris cedex 06, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
We show that, dependent on serine hyperphosphorylation, protein tyrosine phosphatase alpha (PTPalpha) is activated by two different mechanisms during mitosis: its specific activity increases and its inhibitory binding to Grb2 decreases. The latter effect probably abates Grb2 inhibition of the phosphotyrosine displacement process that is required specifically for Src dephosphorylation and causes a mitotic increase in transient PTPalpha-Src binding. Thus, part of the increased protein tyrosine phosphatase activity may be specific for Src family members. These effects cease along with Src activation when cells exit mitosis. Src is not activated in mitosis in PTPalpha-knockout cells, indicating a unique mitotic role for this phosphatase. The activation of PTPalpha, combined with the effects of mitotic Cdc2-mediated phosphorylations of Src, quantitatively accounts for the mitotic activation of Src, indicating that PTPalpha is the membrane-bound, serine phosphorylation-activated, protein tyrosine phosphatase that activates Src during mitosis.
Collapse
Affiliation(s)
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
Corresponding author e-mail:
| |
Collapse
|
45
|
Malabarba MG, Milia E, Faretta M, Zamponi R, Pelicci PG, Di Fiore PP. A repertoire library that allows the selection of synthetic SH2s with altered binding specificities. Oncogene 2001; 20:5186-94. [PMID: 11526507 DOI: 10.1038/sj.onc.1204654] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2001] [Revised: 05/10/2001] [Accepted: 05/23/2001] [Indexed: 11/09/2022]
Abstract
Tyrosine phosphorylation is one of the major mechanisms involved in the intracellular propagation of external signals. Strategies aimed at interfering with this process might allow the control of several cellular phenotypes. SH2 domains mediate protein-protein interactions by recognizing phosphotyrosine (pY) residues in the context of specific phosphopeptides. We created an SH2-scaffolded repertoire library by randomly mutagenizing five critical amino acid positions in the specificity-determining region of the PLCgamma C-terminal SH2 domain. Synthetic SH2 domains were selected from the library using biotinylated phosphopeptides derived from a natural PLCgamma-SH2 ligand as well as unrelated SH2 ligands. The isolated SH2s displayed high binding affinity constants for the selecting peptides and were capable of interacting with the corresponding proteins.
Collapse
Affiliation(s)
- M G Malabarba
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Burke TR, Yao ZJ, Gao Y, Wu JX, Zhu X, Luo JH, Guo R, Yang D. N-terminal carboxyl and tetrazole-containing amides as adjuvants to Grb2 SH2 domain ligand binding. Bioorg Med Chem 2001; 9:1439-45. [PMID: 11408162 DOI: 10.1016/s0968-0896(01)00014-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High affinity binding of peptides to Src homology 2 (SH2) domains, often requires the presence of phosphotyrosyl (pTyr) or pTyr-mimicking moieties in the N-terminal position of the binding ligand. Several reports have shown that N(alpha)-acylation of the critical pTyr residue can result in increased SH2 domain binding potency. For Grb2 SH2 domains which recognize pTyr-Xxx-Asn-NH(2) motifs, significant potency enhancement can be incurred by N(alpha)-(3-amino)Z derivatization of tripeptides such as pTyr-Ile-Asn-NH(2). Using ligands based on the high affinity pY-Ac(6)c-Asn-(naphthylpropylamide) motif, (where Ac(6)c=1-aminocyclohexanecarboxylic acid), additional reports have shown moderate potentiating effects of N(alpha)-oxalyl derivatization. The current study examined variations of the N(alpha)-oxalyl theme in the context of a Xxx-Ac(6)c-Asn-(naphthylpropylamide) platform, where Xxx=the hydrolytically stable pTyr mimetics phosphonomethyl phenylalanine (Pmp) or carboxymethyl phenylalanine (Cmf). The effects of N(alpha)-(3-amino)Z derivatization were also investigated for this platform, to ascertain whether the large binding enhancement reported for tripeptides such as pTyr-Ile-Asn-NH(2) could be observed. In ELISA-based extracellular Grb2 SH2 domain binding assays, it was found for the Pmp-based series, that extending the oxalyl carboxyl out by one methylene unit or replacing carboxyl functionality with a tetrazole isostere, resulted in binding potency greater than the parent N(alpha)-acetyl-containing compound, with enhancement approximating that observed for the N(alpha)-oxalyl derivative. When Cmf was used as the pTyr mimetic, only modest differences in IC(50) values were observed for the series. Examination of the N(alpha)-(3-amino)Z derivatized Pmp-Ac(6)c-Asn-(naphthylpropylamide), showed that binding affinity was reduced relative to the parent N(alpha)-acetyl analogue, in contrast to the reported significant enhancement of affinity observed with other peptide ligands. Treatment of MDA-453 tumor cells, which are mitogenically driven through erbB-2 tyrosine kinase-dependent pathways, with Pmp-containing inhibitors resulted in growth inhibition, with the N(alpha)-oxalyl and N(alpha)-malonyl-containing compounds exhibiting IC(50) values (4.3 and 4.6 microM, respectively) approximately five-fold lower than the parent N(alpha)-acetyl-containing compound. Tetrazole and N(alpha)-(3-amino)Z-containing inhibitors were from two- to four-fold less potent than these latter analogues in the growth inhibition assays.
Collapse
Affiliation(s)
- T R Burke
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Building 376, FCRDC, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Munday J, Kerr S, Ni J, Cornish AL, Zhang JQ, Nicoll G, Floyd H, Mattei MG, Moore P, Liu D, Crocker PR. Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor. Biochem J 2001; 355:489-97. [PMID: 11284738 PMCID: PMC1221762 DOI: 10.1042/0264-6021:3550489] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here we characterize Siglec-10 as a new member of the Siglec family of sialic acid-binding Ig-like lectins. A full-length cDNA was isolated from a human spleen library and the corresponding gene identified. Siglec-10 is predicted to contain five extracellular Ig-like domains and a cytoplasmic tail containing three putative tyrosine-based signalling motifs. Siglec-10 exhibited a high degree of sequence similarity to CD33-related Siglecs and mapped to the same region, on chromosome 19q13.3. The expressed protein was able to mediate sialic acid-dependent binding to human erythrocytes and soluble sialoglycoconjugates. Using specific antibodies, Siglec-10 was detected on subsets of human leucocytes including eosinophils, monocytes and a minor population of natural killer-like cells. The molecular properties and expression pattern suggest that Siglec-10 may function as an inhibitory receptor within the innate immune system.
Collapse
Affiliation(s)
- J Munday
- The Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yuzawa S, Yokochi M, Hatanaka H, Ogura K, Kataoka M, Miura K, Mandiyan V, Schlessinger J, Inagaki F. Solution structure of Grb2 reveals extensive flexibility necessary for target recognition. J Mol Biol 2001; 306:527-37. [PMID: 11178911 DOI: 10.1006/jmbi.2000.4396] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Grb2 is an adaptor protein composed of a single SH2 domain flanked by two SH3 domains. Grb2 functions as an important evolutionary conserved link between a variety of cell membrane receptors and the Ras/MAP kinase-signaling cascade. Here, we describe the solution structure of Grb2 as revealed by NMR and small angle X-ray scattering measurements. We demonstrate that Grb2 is a flexible protein in which the C-terminal SH3 domain is connected to the SH2 domain via a flexible linker. This is in contrast to the previously described Grb2 crystal structure, which showed a compact structure with intramolecular contact between two SH3 domains. Binding experiments on Grb2 and peptides containing two different proline-rich sequences indicate that Grb2 adapts the relative position and orientation of the two SH3 domains to bind bivalently to the target peptide sequences.
Collapse
Affiliation(s)
- S Yuzawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
A central theme in intracellular signaling is the regulatable interaction of proteins via the binding of specialized domains on one protein to short linear sequences on other molecules. The capability of these short sequences to mediate the required specificity and affinity for signal transduction allows for the rational design of peptide-based modulators of specific protein-protein interactions. Such inhibitors are valuable tools for elucidating the role of these interactions in cellular physiology and in targeting such interactions for potential therapeutic intervention. This approach is exemplified by the study of the role of phosphorylation of specific sites on signaling proteins. However, the difficulty of introducing large hydrophilic molecules such as phosphopeptides into cells has been a major drawback in this area. This review describes the application of recently developed cell-permeant peptide vectors in the introduction of biologically active peptides into cells, with particular emphasis on the antennapedia/penetratin, TAT, and signal-peptide based sequences. In addition, the modification of such peptides to increase uptake efficiency and affinity for their targets is discussed. Finally, the use of cell-permeant phosphopeptides to both inhibit and stimulate intracellular signaling mechanisms is described, by reference to the PLCgamma, Grb2, and PI-3 kinase pathways.
Collapse
Affiliation(s)
- D J Dunican
- Molecular Neurobiology Group, New Hunts House, 4th Floor South Wing, Guy's Campus, Kings College London, London Bridge, London SE1 9RT, UK
| | | |
Collapse
|
50
|
|