1
|
Goltermann L, Laborda P, Irazoqui O, Pogrebnyakov I, Bendixen MP, Molin S, Johansen HK, La Rosa R. Macrolide resistance through uL4 and uL22 ribosomal mutations in Pseudomonas aeruginosa. Nat Commun 2024; 15:8906. [PMID: 39414850 PMCID: PMC11484784 DOI: 10.1038/s41467-024-53329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
Macrolides are widely used antibiotics for the treatment of bacterial airway infections. Due to its elevated minimum inhibitory concentration in standardized culture media, Pseudomonas aeruginosa is considered intrinsically resistant and, therefore, antibiotic susceptibility testing against macrolides is not performed. Nevertheless, due to macrolides' immunomodulatory effect and suppression of virulence factors, they are used for the treatment of persistent P. aeruginosa infections. Here, we demonstrate that macrolides are, instead, effective antibiotics against P. aeruginosa airway infections in an Air-Liquid Interface (ALI) infection model system resembling the human airways. Importantly, macrolide treatment in both people with cystic fibrosis and primary ciliary dyskinesia patients leads to the accumulation of uL4 and uL22 ribosomal protein mutations in P. aeruginosa which causes antibiotic resistance. Consequently, higher concentrations of antibiotics are needed to modulate the macrolide-dependent suppression of virulence. Surprisingly, even in the absence of antibiotics, these mutations also lead to a collateral reduction in growth rate, virulence and pathogenicity in airway ALI infections which are pivotal for the establishment of a persistent infection. Altogether, these results lend further support to the consideration of macrolides as de facto antibiotics against P. aeruginosa and the need for resistance monitoring upon prolonged macrolide treatment.
Collapse
Affiliation(s)
- Lise Goltermann
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Pablo Laborda
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Oihane Irazoqui
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ivan Pogrebnyakov
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Maria Pals Bendixen
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Ruggero La Rosa
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Jiang Y, Kang H, Dou H, Guo D, Yuan Q, Dong L, Du Z, Zhao W, Xin D. Comparative genomic sequencing to characterize Mycoplasma pneumoniae genome, typing, and drug resistance. Microbiol Spectr 2024; 12:e0361523. [PMID: 38904371 PMCID: PMC11302288 DOI: 10.1128/spectrum.03615-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/13/2024] [Indexed: 06/22/2024] Open
Abstract
To analyze the characteristics of Mycoplasma pneumoniae as well as macrolide antibiotic resistance through whole-genome sequencing and comparative genomics. Thirteen clinical strains isolated from 2003 to 2019 were selected, 10 of which were resistant to erythromycin (MIC >64 µg/mL), including 8 P1-type I and 2 P1-type II. Three were sensitive (<1 µg/mL) and P1-type II. One resistant strain had an A→G point mutation at position 2064 in region V of the 23S rRNA, the others had it at position 2063, while the three sensitive strains had no mutation here. Genome assembly and comparative genome analysis revealed a high level of genome consistency within the P1 type, and the primary differences in genome sequences concentrated in the region encoding the P1 protein. In P1-type II strains, three specific gene mutations were identified: C162A and A430G in L4 gene and T1112G mutation in the CARDS gene. Clinical information showed seven cases were diagnosed with severe pneumonia, all of which were infected with drug-resistant strains. Notably, BS610A4 and CYM219A1 exhibited a gene multi-copy phenomenon and shared a conserved functional domain with the DUF31 protein family. Clinically, the patients had severe refractory pneumonia, with pleural effusion, necessitating treatment with glucocorticoids and bronchoalveolar lavage. The primary variations between strains occur among different P1-types, while there is a high level of genomic consistency within P1-types. Three mutation loci associated with specific types were identified, and no specific genetic alterations directly related to clinical presentation were observed.IMPORTANCEMycoplasma pneumoniae is an important pathogen of community-acquired pneumonia, and macrolide resistance brings difficulties to clinical treatment. We analyzed the characteristics of M. pneumoniae as well as macrolide antibiotic resistance through whole-genome sequencing and comparative genomics. The work addressed primary variations between strains that occur among different P1-types, while there is a high level of genomic consistency within P1-types. In P1-type II strains, three specific gene mutations were identified: C162A and A430G in L4 gene and T1112G mutation in the CARDS gene. All the strains isolated from severe pneumonia cases were drug-resistant, two of which exhibited a gene multi-copy phenomenon, sharing a conserved functional domain with the DUF31 protein family. Three mutation loci associated with specific types were identified, and no specific genetic alterations directly related to clinical presentation were observed.
Collapse
Affiliation(s)
- Yue Jiang
- Pediatric Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hailong Kang
- National Genomics Data Center and CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiwei Dou
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dongxing Guo
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qing Yuan
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lili Dong
- National Genomics Data Center and CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Zhenglin Du
- National Genomics Data Center and CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Wenming Zhao
- National Genomics Data Center and CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Deli Xin
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Subramanian A, Wang L, Moss T, Voorhies M, Sangwan S, Stevenson E, Pulido EH, Kwok S, Chalkley RJ, Li KH, Krogan NJ, Swaney DL, Burlingame AL, Floor SN, Sil A, Walter P, Mukherjee S. A Legionella toxin exhibits tRNA mimicry and glycosyl transferase activity to target the translation machinery and trigger a ribotoxic stress response. Nat Cell Biol 2023; 25:1600-1615. [PMID: 37857833 PMCID: PMC11005034 DOI: 10.1038/s41556-023-01248-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
A widespread strategy employed by pathogens to establish infection is to inhibit host-cell protein synthesis. Legionella pneumophila, an intracellular bacterial pathogen and the causative organism of Legionnaires' disease, secretes a subset of protein effectors into host cells that inhibit translation elongation. Mechanistic insights into how the bacterium targets translation elongation remain poorly defined. We report here that the Legionella effector SidI functions in an unprecedented way as a transfer-RNA mimic that directly binds to and glycosylates the ribosome. The 3.1 Å cryo-electron microscopy structure of SidI reveals an N-terminal domain with an 'inverted L' shape and surface-charge distribution characteristic of tRNA mimicry, and a C-terminal domain that adopts a glycosyl transferase fold that licenses SidI to utilize GDP-mannose as a sugar precursor. This coupling of tRNA mimicry and enzymatic action endows SidI with the ability to block protein synthesis with a potency comparable to ricin, one of the most powerful toxins known. In Legionella-infected cells, the translational pausing activated by SidI elicits a stress response signature mimicking the ribotoxic stress response, which is activated by elongation inhibitors that induce ribosome collisions. SidI-mediated effects on the ribosome activate the stress kinases ZAKα and p38, which in turn drive an accumulation of the protein activating transcription factor 3 (ATF3). Intriguingly, ATF3 escapes the translation block imposed by SidI, translocates to the nucleus and orchestrates the transcription of stress-inducible genes that promote cell death, revealing a major role for ATF3 in the response to collided ribosome stress. Together, our findings elucidate a novel mechanism by which a pathogenic bacterium employs tRNA mimicry to hijack a ribosome-to-nuclear signalling pathway that regulates cell fate.
Collapse
Affiliation(s)
- Advait Subramanian
- G.W. Hooper Foundation, University of California at San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Lan Wang
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Tom Moss
- G.W. Hooper Foundation, University of California at San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| | - Mark Voorhies
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| | - Smriti Sangwan
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Erica Stevenson
- Gladstone Institute of Data Science and Biotechnology, J. Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Ernst H Pulido
- Gladstone Institute of Data Science and Biotechnology, J. Gladstone Institutes, San Francisco, CA, USA
| | - Samentha Kwok
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Kathy H Li
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, J. Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- Gladstone Institute of Data Science and Biotechnology, J. Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Anita Sil
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.
- Bay Area Institute of Science, Altos Labs, Redwood City, CA, USA.
| | - Shaeri Mukherjee
- G.W. Hooper Foundation, University of California at San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Xia X. Horizontal Gene Transfer and Drug Resistance Involving Mycobacterium tuberculosis. Antibiotics (Basel) 2023; 12:1367. [PMID: 37760664 PMCID: PMC10526031 DOI: 10.3390/antibiotics12091367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) acquires drug resistance at a rate comparable to that of bacterial pathogens that replicate much faster and have a higher mutation rate. One explanation for this rapid acquisition of drug resistance in Mtb is that drug resistance may evolve in other fast-replicating mycobacteria and then be transferred to Mtb through horizontal gene transfer (HGT). This paper aims to address three questions. First, does HGT occur between Mtb and other mycobacterial species? Second, what genes after HGT tend to survive in the recipient genome? Third, does HGT contribute to antibiotic resistance in Mtb? I present a conceptual framework for detecting HGT and analyze 39 ribosomal protein genes, 23S and 16S ribosomal RNA genes, as well as several genes targeted by antibiotics against Mtb, from 43 genomes representing all major groups within Mycobacterium. I also included mgtC and the insertion sequence IS6110 that were previously reported to be involved in HGT. The insertion sequence IS6110 shows clearly that the Mtb complex participates in HGT. However, the horizontal transferability of genes depends on gene function, as was previously hypothesized. HGT is not observed in functionally important genes such as ribosomal protein genes, rRNA genes, and other genes chosen as drug targets. This pattern can be explained by differential selection against functionally important and unimportant genes after HGT. Functionally unimportant genes such as IS6110 are not strongly selected against, so HGT events involving such genes are visible. For functionally important genes, a horizontally transferred diverged homologue from a different species may not work as well as the native counterpart, so the HGT event involving such genes is strongly selected against and eliminated, rendering them invisible to us. In short, while HGT involving the Mtb complex occurs, antibiotic resistance in the Mtb complex arose from mutations in those drug-targeted genes within the Mtb complex and was not gained through HGT.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada; ; Tel.: +1-613-562-5718
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Goltermann L, Andersen KL, Johansen HK, Molin S, La Rosa R. Macrolide therapy in Pseudomonas aeruginosa infections causes uL4 ribosomal protein mutations leading to high-level resistance. Clin Microbiol Infect 2022; 28:1594-1601. [PMID: 35988850 DOI: 10.1016/j.cmi.2022.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/05/2022] [Accepted: 08/06/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Pseudomonas aeruginosa colonizes the cystic fibrosis (CF) airways causing chronic bacterial lung infections. CF patients are routinely treated with macrolides, however, P. aeruginosa is considered insusceptible as consequence of inadequate susceptibility testing leaving resistance mechanism completely overlooked. Here, we investigated a new mechanism of macrolide resistance caused by ribosomal protein mutations. METHODS Investigating a longitudinal collection of 529 isolates from CF patients and analysing 5758 protein sequences from different sources, mutations in P. aeruginosa's ribosomal proteins connected to macrolide resistance were identified. Using a modified susceptibility testing protocol, isolates harbouring a mutated uL4 ribosomal protein were tested for resistance against macrolide antibiotics and macrolide-induced quorum sensing modulation. Proteome and ribosome profiling were applied to assess the impact of the mutations on the bacterial physiology. RESULTS Five uL4 mutations were identified in isolates from different CF patients. Most mapped to the conserved loop region of uL4 and resulted in increased macrolide tolerance (>10-fold relative to wt strains). Greater concentrations (>10-fold) of macrolide antibiotic were needed to inhibit the growth, reduce swimming motility, and induce redox sensitivity of the uL4 mutants. 16 proteins involved in ribosome adaptation displayed altered expression possibly to compensate for the uL4 mutations, which changed the ribosome stoichiometry without negatively affecting bacterial physiology. CONCLUSIONS Macrolide antibiotics should, therefore, be considered as active antimicrobial agents against P. aeruginosa and resistance development should be contemplated when patients are treated with prolonged courses of macrolides. Importantly, improved macrolide susceptibility testing is necessary for the detection of resistant bacteria.
Collapse
Affiliation(s)
- Lise Goltermann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Tavío MM, Ramírez AS, Poveda C, Rosales RS, Malla CF, Poveda JB. Resistance to 16-Membered Macrolides, Tiamulin and Lincomycin in a Swine Isolate of Acholeplasma laidlawii. Antibiotics (Basel) 2021; 10:antibiotics10111415. [PMID: 34827353 PMCID: PMC8615230 DOI: 10.3390/antibiotics10111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Acholeplasma (A.) laidlawii is an opportunistic pathogen with the ability to disseminate resistance determinants to antibiotics; however, its resistance to macrolides has been less studied. The aim of the present study was to characterize the mechanisms responsible for the resistance to macrolides, tiamulin and lincomycin found in a strain of A. laidlawii isolated from a pig with pneumonia. MICs of erythromycin, 15- and 16-membered macrolides, tiamulin and lincomycin were determined by microdilution method with and without reserpine, an inhibitor of ABC efflux pumps and regions of the genome were sequenced. Reserpine only decreased lincomycin MIC but it did not change the MICs of macrolides and tiamulin. The analysis of the DNA sequence of 23S rRNA showed nucleotide substitutions at eight different positions, although none of them were at positions previously related to macrolide resistance. Five mutations were found in the L22 protein, one of them at the stop codon. In addition, two mutations were found in the amino acid sequence of L4. The combination of multiple mutations in the ribosomal proteins L22 and L4 together with substitutions in 23S rRNA DNA sequence was associated with the resistance to macrolides, the pleuromutilin and lincomycin in the studied A. laidlawii strain.
Collapse
Affiliation(s)
- María M. Tavío
- Microbiología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas, Spain; (M.M.T.); (C.F.M.)
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (C.P.); (R.S.R.); (J.B.P.)
| | - Ana S. Ramírez
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (C.P.); (R.S.R.); (J.B.P.)
- Correspondence: ; Tel.: +34-9284-57432
| | - Carlos Poveda
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (C.P.); (R.S.R.); (J.B.P.)
| | - Rubén S. Rosales
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (C.P.); (R.S.R.); (J.B.P.)
| | - Cristina F. Malla
- Microbiología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas, Spain; (M.M.T.); (C.F.M.)
| | - José B. Poveda
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (C.P.); (R.S.R.); (J.B.P.)
| |
Collapse
|
7
|
A Survey of Spontaneous Antibiotic-Resistant Mutants of the Halophilic, Thermophilic Bacterium Rhodothermus marinus. Antibiotics (Basel) 2021; 10:antibiotics10111384. [PMID: 34827322 PMCID: PMC8614978 DOI: 10.3390/antibiotics10111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Rhodothermus marinus is a halophilic extreme thermophile, with potential as a model organism for studies of the structural basis of antibiotic resistance. In order to facilitate genetic studies of this organism, we have surveyed the antibiotic sensitivity spectrum of R. marinus and identified spontaneous antibiotic-resistant mutants. R. marinus is naturally insensitive to aminoglycosides, aminocylitols and tuberactinomycins that target the 30S ribosomal subunit, but is sensitive to all 50S ribosomal subunit-targeting antibiotics examined, including macrolides, lincosamides, streptogramin B, chloramphenicol, and thiostrepton. It is also sensitive to kirromycin and fusidic acid, which target protein synthesis factors. It is sensitive to rifampicin (RNA polymerase inhibitor) and to the fluoroquinolones ofloxacin and ciprofloxacin (DNA gyrase inhibitors), but insensitive to nalidixic acid. Drug-resistant mutants were identified using rifampicin, thiostrepton, erythromycin, spiramycin, tylosin, lincomycin, and chloramphenicol. The majority of these were found to have mutations that are similar or identical to those previously found in other species, while several novel mutations were identified. This study provides potential selectable markers for genetic manipulations and demonstrates the feasibility of using R. marinus as a model system for studies of ribosome and RNA polymerase structure, function, and evolution.
Collapse
|
8
|
Jiang FC, Wang RF, Chen P, Dong LY, Wang X, Song Q, Wan YQ, Song QQ, Song J, Wang YH, Xia ZQ, Xia D, Han J. Genotype and mutation patterns of macrolide resistance genes of Mycoplasma pneumoniae from children with pneumonia in Qingdao, China, in 2019. J Glob Antimicrob Resist 2021; 27:273-278. [PMID: 34687926 DOI: 10.1016/j.jgar.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/16/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES This study assessed the incidence and resistance of Mycoplasma pneumoniae (MP) in children in Qingdao, China, in 2019. METHODS We detected MP infection in 78 pharyngeal swabs from children with pneumonia by qPCR. The RepMP4 element in the P1 adhesin gene, domain V of the 23S rRNA gene, and the L4/L22 ribosomal proteins were amplified by nested PCR. Evolutionary analysis was conducted based on the P1 gene sequence. Resistance mutations in domain V of the 23S rRNA gene and L4/L22 ribosomal proteins were analysed. RESULTS The incidence of MP infection in children with pneumonia was 59.0% (46/78). The mean duration of MP infection was longer than that of non-MP infection. According to P1 gene sequencing of 21 samples, 12 (57.1%) were type 1 and 9 (42.9%) were type 2. Drug resistance mutations A2063G in domain V of 23S rRNA gene and T508C in L22 were identified from all sequenced MP. However, mutations at positions 2064 and 2617 were not found in this study. C162A mutation appeared in most type 2 samples. A430G mutation appeared in one type 1 sample and in several type 2 samples. T279C mutation in L22 was mostly found in type 2 samples. CONCLUSION The incidence of MP infection was 59.0% in children with pneumonia in Qingdao in 2019. Type 1 MP infection was slightly more common than type 2, indicating that the genotype of MP is gradually shifting from type 1 to type 2. Macrolide resistance mutation A2063G could be detected in all sequenced MP.
Collapse
Affiliation(s)
- Fa-Chun Jiang
- Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, Qingdao 266033, Shandong, China
| | - Rui-Fang Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ping Chen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Li-Yan Dong
- Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, Qingdao 266033, Shandong, China
| | - Xia Wang
- District Center of Disease Control and Prevention of Shibei, Qingdao 266000, Shandong, China
| | - Qin Song
- District Center of Disease Control and Prevention of Chengyang, Qingdao 266041, Shandong, China
| | - Yi-Qiu Wan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Medical College of Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Qin-Qin Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Juan Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yan-Hai Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhi-Qiang Xia
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dong Xia
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
9
|
Manoharan-Basil SS, Laumen JGE, Van Dijck C, De Block T, De Baetselier I, Kenyon C. Evidence of Horizontal Gene Transfer of 50S Ribosomal Genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front Microbiol 2021; 12:683901. [PMID: 34177869 PMCID: PMC8222677 DOI: 10.3389/fmicb.2021.683901] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Horizontal gene transfer (HGT) in the penA and multidrug efflux pump genes has been shown to play a key role in the genesis of antimicrobial resistance in Neisseria gonorrhoeae. In this study, we evaluated if there was evidence of HGT in the genes coding for the ribosomal proteins in the Neisseria genus. We did this in a collection of 11,659 isolates of Neisseria, including N. gonorrhoeae and commensal Neisseria species (N. cinerea, N. elongata, N. flavescens, N. mucosa, N. polysaccharea, and N. subflava). Comparative genomic analyses identified HGT events in three genes: rplB, rplD, and rplY coding for ribosomal proteins L2, L4 and L25, respectively. Recombination events were predicted in N. gonorrhoeae and N. cinerea, N. subflava, and N. lactamica were identified as likely progenitors. In total, 2,337, 2,355, and 1,127 isolates possessed L2, L4, and L25 HGT events. Strong associations were found between HGT in L2/L4 and the C2597T 23S rRNA mutation that confers reduced susceptibility to macrolides. Whilst previous studies have found evidence of HGT of entire genes coding for ribosomal proteins in other bacterial species, this is the first study to find evidence of HGT-mediated chimerization of ribosomal proteins.
Collapse
Affiliation(s)
| | - Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Tessa De Block
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Laumen JGE, Manoharan-Basil SS, Verhoeven E, Abdellati S, De Baetselier I, Crucitti T, Xavier BB, Chapelle S, Lammens C, Van Dijck C, Malhotra-Kumar S, Kenyon C. Molecular pathways to high-level azithromycin resistance in Neisseria gonorrhoeae. J Antimicrob Chemother 2021; 76:1752-1758. [DOI: 10.1093/jac/dkab084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/28/2021] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
The prevalence of azithromycin resistance in Neisseria gonorrhoeae is increasing in numerous populations worldwide.
Objectives
To characterize the genetic pathways leading to high-level azithromycin resistance.
Methods
A customized morbidostat was used to subject two N. gonorrhoeae reference strains (WHO-F and WHO-X) to dynamically sustained azithromycin pressure. We tracked stepwise evolution of resistance by whole genome sequencing.
Results
Within 26 days, all cultures evolved high-level azithromycin resistance. Typically, the first step towards resistance was found in transitory mutations in genes rplD, rplV and rpmH (encoding the ribosomal proteins L4, L22 and L34 respectively), followed by mutations in the MtrCDE-encoded efflux pump and the 23S rRNA gene. Low- to high-level resistance was associated with mutations in the ribosomal proteins and MtrCDE efflux pump. However, high-level resistance was consistently associated with mutations in the 23S ribosomal RNA, mainly the well-known A2059G and C2611T mutations, but also at position A2058G.
Conclusions
This study enabled us to track previously reported mutations and identify novel mutations in ribosomal proteins (L4, L22 and L34) that may play a role in the genesis of azithromycin resistance in N. gonorrhoeae.
Collapse
Affiliation(s)
- J G E Laumen
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S S Manoharan-Basil
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
| | - E Verhoeven
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- Pfizer, Puurs, Belgium
| | - S Abdellati
- Institute of Tropical Medicine, Department of Clinical Sciences, Clinical Reference Laboratory, Antwerp, Belgium
| | - I De Baetselier
- Institute of Tropical Medicine, Department of Clinical Sciences, Clinical Reference Laboratory, Antwerp, Belgium
| | - T Crucitti
- Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - B B Xavier
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S Chapelle
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Lammens
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Van Dijck
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S Malhotra-Kumar
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Kenyon
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Gingras H, Patron K, Leprohon P, Ouellette M. Azithromycin resistance mutations in Streptococcus pneumoniae as revealed by a chemogenomic screen. Microb Genom 2020; 6. [PMID: 33074087 PMCID: PMC7725334 DOI: 10.1099/mgen.0.000454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We report on the combination of chemical mutagenesis, azithromycin selection and next-generation sequencing (Mut-Seq) for the identification of small nucleotide variants that decrease the susceptibility of Streptococcus pneumoniae to the macrolide antibiotic azithromycin. Mutations in the 23S ribosomal RNA or in ribosomal proteins can confer resistance to macrolides and these were detected by Mut-Seq. By concentrating on recurrent variants, we could associate mutations in genes implicated in the metabolism of glutamine with decreased azithromycin susceptibility among S. pneumoniae mutants. Glutamine synthetase catalyses the transformation of glutamate and ammonium into glutamine and its chemical inhibition is shown to sensitize S. pneumoniae to antibiotics. A mutation affecting the ribosomal-binding site of a putative ribonuclease J2 is also shown to confer low-level resistance. Mut-Seq has the potential to reveal chromosomal changes enabling high resistance as well as novel events conferring more subtle phenotypes.
Collapse
Affiliation(s)
- Hélène Gingras
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Kévin Patron
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
12
|
Zheng Z, Liu L, Shen X, Yu J, Chen L, Zhan L, Chen H, Lin C, Jiang Y, Xia H, Wang L, Yu F. Antimicrobial Resistance And Molecular Characteristics Among Neisseria gonorrhoeae Clinical Isolates In A Chinese Tertiary Hospital. Infect Drug Resist 2019; 12:3301-3309. [PMID: 31695449 PMCID: PMC6815782 DOI: 10.2147/idr.s221109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/25/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose The resistance of N. gonorrhoeae to antimicrobial agents has been increasing year by year due to the overuse of antibiotics. The primary aims of the present study were to investigate the molecular characteristics of the clinical isolates of Neisseria gonorrhoeae and the resistance to azithromycin in a Chinese tertiary hospital. Methods From January 2014 to May 2017, a total of 55 clinical isolates of N. gonorrhoeae were collected. Genes associated with azithromycin resistance (AZM-R), including mutations in 23S rRNA alleles, the mtrR promoter and coding regions, and rplD and rplV were evaluated by PCR and DNA sequencing. All clinical isolates were subjected to N. gonorrhoeae multiantigen sequence typing (NG-MAST), while the AZM-R isolates were further characterized by multilocus sequence typing (MLST). Results The AZM-R rate in this study was 23.64% (13/55), and a single (A)-nucleotide deletion mutation in the mtrR promoter region, a G45D mutation in the mtrR coding region, a point mutation in rplD, and an A2047G mutation in 23S rRNA alleles were detected in 13, 4, 3 and 4 isolates, respectively; no mutations were found in rplV. There was no significant difference in the mtrR coding region mutation rate between the azithromycin-sensitive and AZM-R groups (P > 0.05); however, there was a significant difference in the mutation rate of the mtrR promoter region (P < 0.05). Among the 55 isolates studied, 43 distinct NG-MAST were determined, while the AZM-R isolates were allocated into 10 distinct MLST/NG-MAST combinations. All three isolates with high-level AZM-R belonged to the sequence types (STs) NG-MAST ST1866 and MLST ST10899. Conclusion N. gonorrhoeae clinical isolates from Wenzhou, eastern China, showed considerable genetic diversity. Measures should be implemented to monitor the spread of the NG-MAST ST1866 and MLST ST10899 N. gonorrhoeae clones, which exhibit high-level AZM-R in eastern China.
Collapse
Affiliation(s)
- Zhou Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Li Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaofei Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jingyi Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lingling Zhan
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Han Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chunchan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ye Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Hong Xia
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| |
Collapse
|
13
|
Low Prevalence of Gram-Positive Isolates Showing Elevated Lefamulin MIC Results during the SENTRY Surveillance Program for 2015-2016 and Characterization of Resistance Mechanisms. Antimicrob Agents Chemother 2019; 63:AAC.02158-18. [PMID: 30670418 DOI: 10.1128/aac.02158-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
This study investigated the molecular mechanisms possibly associated with non-wild-type MICs for lefamulin among staphylococci and streptococci included in the lefamulin surveillance program from 2015 to 2016. A total of 2,919 Staphylococcus aureus, 276 coagulase-negative staphylococci (CoNS), 3,923 Streptococcus pneumoniae, 389 β-hemolytic, and 178 viridans group streptococci isolates were included in the surveillance studies. Eleven (0.3% of all S. aureus) S. aureus isolates with lefamulin MICs above the staphylococcal epidemiological cutoff (ECOFF) value (>0.25 μg/ml) were selected for this study. Eight (72.7%) S. aureus (lefamulin MIC, 0.5 to 4 μg/ml) isolates carried vga(A or E), one isolate (MIC, 32 μg/ml) carried lsa(E), one isolate (MIC, 16 μg/ml) had an alteration in L4, and one strain (MIC, 0.5 μg/ml) did not carry any of the investigated resistance mechanisms. A total of 14 (5.1% of all CoNS) CoNS isolates had lefamulin MICs (0.5 to >32 μg/ml) above the ECOFF. Similar to S. aureus, 8 (57.1%) CoNS (lefamulin MIC, 1 to 8 μg/ml) isolates carried vga(A or B), while 2 isolates (MIC, 4 to 32 μg/ml) carried cfr High genetic diversity was observed among staphylococci, although 3 S. aureus isolates belonged to sequence type 398 (ST398). Among the 3 Streptococcus agalactiae and 3 viridans group streptococci (0.1% of all streptococci surveyed) isolates selected for additional characterization, all but 1 isolate carried lsa(E). This study documents a low occurrence of surveillance isolates exhibiting a non-wild-type MIC for lefamulin, and among these isolates, vga and lsa(E) prevailed in staphylococci and streptococci, respectively.
Collapse
|
14
|
Mendes RE, Jones RN, Woosley LN, Cattoir V, Castanheira M. Application of Next-Generation Sequencing for Characterization of Surveillance and Clinical Trial Isolates: Analysis of the Distribution of β-lactamase Resistance Genes and Lineage Background in the United States. Open Forum Infect Dis 2019; 6:S69-S78. [PMID: 30895217 PMCID: PMC6419912 DOI: 10.1093/ofid/ofz004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Sequencing technologies and techniques have seen remarkable transformation and innovation that have significantly affected sequencing capability. Data analyses have replaced sequencing as the main challenge. This paper provides an overview on applying next-generation sequencing (NGS) and analysis and discusses the benefits and challenges. In addition, this document shows results from using NGS and bioinformatics tools to screen for β-lactamase genes and assess the epidemiological structure of Escherichia coli– and Klebsiella pneumoniae–causing bloodstream (BSIs) and urinary tract (UTIs) infections in patients hospitalized in the United States during the SENTRY Antimicrobial Surveillance Program for 2016. Methods A total of 3525 isolates (2751 E. coli and 774 K. pneumoniae) causing BSIs (n = 892) and UTIs (n = 2633) in hospitalized patients in the United States were included. Isolates were tested for susceptibility by broth microdilution, and those that met a minimum inhibitory concentration (MIC)–based screening criteria had their genomes sequenced and analyzed. Results A total of 11.6% and 16.1% of E. coli–causing UTIs and BSIs, respectively, met the MIC-based criteria, whereas 11.0% and 13.7% of K. pneumoniae isolates causing UTIs and BSIs, respectively, met the criteria. Among E. coli, blaCTX-M variants (87.6% overall) prevailed (60.5% of CTX-M group 1 and 26.9% of group 9). A total of 60.3% of K. pneumoniae isolates carried blaCTX-M variants (52.7% and 7.6% of groups 1 and 9, respectively). Two E. coli (0.6%) and 13 K. pneumoniae (12.9%) isolates harbored blaKPC. Among KPC-producing K. pneumoniae (2 from BSIs and 11 from UTIs), 84.6% (11/13) were ST258 (CC258). Seventeen and 38 unique clonal complexes (CCs) were noted in E. coli that caused BSIs and UTIs, respectively, and CC131 (or ST131) was the most common CC among BSI (53.6%) and UTI (58.2%) isolates. Twenty-three and 26 CCs were noted among K. pneumoniae–causing BSIs and UTIs, respectively. CC258 (28.3%) prevailed in UTI pathogens, whereas CC307 (15.0%) was the most common CC among BSI isolates. Conclusions This study provides a benchmark for the distribution of β-lactamase genes and the population structure information for the most common Enterobacteriaceae species responsible for BSIs and UTIs in US medical centers during the 2016 SENTRY Program.
Collapse
Affiliation(s)
| | | | | | - Vincent Cattoir
- University Hospital of Rennes, Department of Clinical Microbiology, Rennes, France.,National Reference Center for Antimicrobial Resistance, Rennes, France.,University of Rennes 1, Unit Inserm U1230, Rennes, France
| | | |
Collapse
|
15
|
Zhao F, Liu J, Shi W, Huang F, Liu L, Zhao S, Zhang J. Antimicrobial susceptibility and genotyping of Mycoplasma pneumoniae isolates in Beijing, China, from 2014 to 2016. Antimicrob Resist Infect Control 2019; 8:18. [PMID: 30697421 PMCID: PMC6346583 DOI: 10.1186/s13756-019-0469-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/09/2019] [Indexed: 11/10/2022] Open
Abstract
Background The presence of macrolide-resistant Myocplasma pneumoniae has been frequently reported in recent years, especially in China. In this study, we investigated the antimicrobial susceptibility and genotype against M. pneumoniae isolates from 2014 to 2016, Beijing. Methods We investigated the activities of four antibiotics against 81 M. pneumoniae isolates in vitro. All isolates were amplification of domains II and V of the 23S rRNA gene and the L4 and L22 ribosomal protein fragments. All isolates were genotyped with duplex real-time PCR, MLVA and VNTR detection in p1 gene. Results The macrolide resistance rate was 65.4% (53/81). Each of the macrolide-resistant M. pneumoniae isolates was resistant to erythromycin (Minimum Inhibitory Concentration, MIC, ≥256 μg/ml) and azithromycin (MIC, 2-64 μg/ml), but susceptible to tetracycline and levofloxacin in vitro. Fifty two macrolide-resistant isolates harbored the A2063G mutation, and only 1 macrolide-resistant isolates harbored the A2064G mutation in domain V of the 23S ribosomal RNA gene. The C162A, A430G, and T279C mutations in the L4 and L22 ribosomal protein genes were not responsible for macrolide resistance, but they were related to the particular genotype of M. pneumoniae. 95.7% of type 1 isolates (45/47) were macrolide-resistance, and 23.5% of the type 2 isolates (8/34) were macrolide-resistance. Type 2 M. pneumoniae macrolide-resistance rate was 50.6% higher than that of the previous reports in China. The eight macrolide-resistant type 2 M. pneumoniae isolates were belong to 3/5/6/2 and 3/5/7/2 MLVA genotypes. Conclusion To our knowledge, this phenomenon likely resulted from a combination of genotype shifting from type1 to type 2 and antibiotic selection pressure in M. pneumoniae in China in recent years. The increase of resistance in type 2 is not due to the spread of same clone. However, the relationship between genotype shifts and macrolide resistance in M. pneumoniae needs to be further verified with more extensive surveillance data.
Collapse
Affiliation(s)
- Fei Zhao
- 1National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206 China.,State Key Laboratory of Infectious Disease Prevention and Control, 155 Changbai Road, Changping District, Beijing, 102206 China
| | - Jinrong Liu
- 3Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Nanlishi Road 56, Xicheng District, Beijing, China
| | - Weixian Shi
- 4Beijing Center for Disease Control and Prevention, 16 Hepingli Middle Street, Dongcheng District, Beijing, 100013 China
| | - Fang Huang
- 4Beijing Center for Disease Control and Prevention, 16 Hepingli Middle Street, Dongcheng District, Beijing, 100013 China
| | - Liyong Liu
- 1National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206 China.,State Key Laboratory of Infectious Disease Prevention and Control, 155 Changbai Road, Changping District, Beijing, 102206 China
| | - Shunying Zhao
- 3Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Nanlishi Road 56, Xicheng District, Beijing, China
| | - Jianzhong Zhang
- 1National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206 China.,State Key Laboratory of Infectious Disease Prevention and Control, 155 Changbai Road, Changping District, Beijing, 102206 China
| |
Collapse
|
16
|
Gasu EN, Ahor HS, Borquaye LS. Peptide Extract from Olivancillaria hiatula Exhibits Broad-Spectrum Antibacterial Activity. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6010572. [PMID: 30671464 PMCID: PMC6323461 DOI: 10.1155/2018/6010572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/22/2018] [Indexed: 12/22/2022]
Abstract
Increasing reports of infectious diseases worldwide have become a global concern in recent times. Depleted antibiotic pipelines, rapid and complex cases of antimicrobial resistance, and emergence and re-emergence of infectious disease have necessitated an urgent need for the development of new antimicrobial therapeutics, preferably with novel modes of action. Due to their distinct mode of action, antimicrobial peptides offer an interesting alternative to conventional antibiotics to deal with the problems enumerated. In this study, the antimicrobial potential of the peptide extract from the marine mollusc, Olivancillaria hiatula, was evaluated in vitro. Agar diffusion and broth dilution techniques were used to evaluate microbial susceptibility to the peptide extract. Microplate-based assays were also used to investigate time-dependent growth inhibition profiles of microbes in the presence of peptide and evaluate the peptide's ability to modulate the activities of standard antibiotics. Both Gram-positive and Gram-negative bacteria were inhibited by the peptide extract in the agar diffusion assay. The minimum inhibitory concentration (MIC) of peptide against test microorganisms was between 0.039 and 2.5 mg/mL. At the MIC, the peptide extract was bacteriostatic towards all tested microorganisms but bactericidal to Staphylococcus aureus. In the presence of the peptide extract, a prolonged lag phase was observed for all microbes, similar to standard ciprofloxacin. When administered together, peptide extracts enhanced the activities of ciprofloxacin and cefotaxime and were antagonistic towards erythromycin but indifferent towards metronidazole. Taken together, these results show the broad-spectrum antibacterial activity of peptide extract from Olivancillaria hiatula and demonstrate that antimicrobial peptides can be employed in combination with some conventional antibiotics for improved effects.
Collapse
Affiliation(s)
- Edward Ntim Gasu
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Hubert Senanu Ahor
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lawrence Sheringham Borquaye
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
17
|
Wei B, Kang M. Molecular Basis of Macrolide Resistance in Campylobacter Strains Isolated from Poultry in South Korea. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4526576. [PMID: 30069469 PMCID: PMC6057423 DOI: 10.1155/2018/4526576] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
Abstract
We investigated the molecular mechanisms underlying macrolide resistance in 38 strains of Campylobacter isolated from poultry. Twenty-seven strains were resistant to azithromycin and erythromycin, five showed intermediate azithromycin resistance and erythromycin susceptibility, and six showed azithromycin resistance and erythromycin susceptibility. Four Campylobacter jejuni and six Campylobacter coli strains had azithromycin MICs which were 8-16 and 2-8-fold greater than those of erythromycin, respectively. The A2075G mutation in the 23S rRNA gene was detected in 11 resistant strains with MICs ranging from 64 to ≥ 512 μg/mL. Mutations including V137A, V137S, and a six-amino acid insertion (114-VAKKAP-115) in ribosomal protein L22 were detected in the C. jejuni strains. Erythromycin ribosome methylase B-erm(B) was not detected in any strain. All strains except three showed increased susceptibility to erythromycin with twofold to 256-fold MIC change in the presence of phenylalanine arginine ß-naphthylamide (PAßN); the effects of PAßN on azithromycin MICs were limited in comparison to those on erythromycin MICs, and 13 strains showed no azithromycin MIC change in the presence of PAßN. Differences between azithromycin and erythromycin resistance and macrolide resistance phenotypes and genotypes were observed even in highly resistant strains. Further studies are required to better understand macrolide resistance in Campylobacter.
Collapse
Affiliation(s)
- Bai Wei
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Chonbuk National University, Jeonju, Republic of Korea
| | - Min Kang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
18
|
d'Aquino AE, Kim DS, Jewett MC. Engineered Ribosomes for Basic Science and Synthetic Biology. Annu Rev Chem Biomol Eng 2018; 9:311-340. [DOI: 10.1146/annurev-chembioeng-060817-084129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ribosome is the cell's factory for protein synthesis. With protein synthesis rates of up to 20 amino acids per second and at an accuracy of 99.99%, the extraordinary catalytic capacity of the bacterial translation machinery has attracted extensive efforts to engineer, reconstruct, and repurpose it for biochemical studies and novel functions. Despite these efforts, the potential for harnessing the translation apparatus to manufacture bio-based products beyond natural limits remains underexploited, and fundamental constraints on the chemistry that the ribosome's RNA-based active site can carry out are unknown. This review aims to cover the past and present advances in ribosome design and engineering to understand the fundamental biology of the ribosome to facilitate the construction of synthetic manufacturing machines. The prospects for the development of engineered, or designer, ribosomes for novel polymer synthesis are reviewed, future challenges are considered, and promising advances in a variety of applications are discussed.
Collapse
Affiliation(s)
- Anne E. d'Aquino
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Do Soon Kim
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael C. Jewett
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
19
|
Han D, Liu Y, Li J, Liu C, Gao Y, Feng J, Lu H, Yang G. Twenty-seven-nucleotide repeat insertion in the rplV gene confers specific resistance to macrolide antibiotics in Staphylococcus aureus. Oncotarget 2018; 9:26086-26095. [PMID: 29899844 PMCID: PMC5995244 DOI: 10.18632/oncotarget.25441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/28/2018] [Indexed: 11/29/2022] Open
Abstract
Macrolide antibiotics are used for treatment of soft-tissue infection caused by Staphylococcus aureus in humans. However, infections with S. aureus are increasingly difficult to treat owing to the emergence and rapid spread of multiple-drug resistant S. aureus. Resistance to macrolide in S. aureus is mostly due to the modification of 23 S rRNA by methylases encoded by erm genes. Here, we have identified that a 27-nucleotide repeat sequence insertion in the rplV gene induced a specific resistance to macrolide antibiotics. An erythromycin-resistant strain, 8325ER+, was screened by resistance to erythromycin from the macrolide-sensitive strain 8325-4. Comparative genome sequencing analysis showed that 8325ER+ contained a 27-nt repeat sequence insertion in the rplV gene that encodes the ribosomal protein L22, when compared to its parent strain. The 27-nt repeat sequence led to an insertion of 9 amino acids in L22, which had been identified to reduce the sensitivity to erythromycin and other macrolide antibiotics. Moreover, we show that the ectopic expression of the mutated rplV gene containing the 27-nt repeat sequence insertion in several susceptible strains specifically conferred resistance to macrolide antibiotics. Our findings present a potential mechanism of resistance to macrolide antibiotics in S. aureus.
Collapse
Affiliation(s)
- Dianpeng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jingjing Li
- Henan University School of Basic Medical Science, Kaifeng, China
| | - Chenghua Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jiannan Feng
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| |
Collapse
|
20
|
Erythromycin leads to differential protein expression through differences in electrostatic and dispersion interactions with nascent proteins. Sci Rep 2018; 8:6460. [PMID: 29691429 PMCID: PMC5915450 DOI: 10.1038/s41598-018-24344-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
The antibiotic activity of erythromycin, which reversibly binds to a site within the bacterial ribosome exit tunnel, against many gram positive microorganisms indicates that it effectively inhibits the production of proteins. Similar to other macrolides, the activity of erythromycin is far from universal, as some peptides can bypass the macrolide-obstructed exit tunnel and become partially or fully synthesized. It is unclear why, at the molecular level, some proteins can be synthesized while others cannot. Here, we use steered molecular dynamics simulations to examine how erythromycin inhibits synthesis of the peptide ErmCL but not the peptide H-NS. By pulling these peptides through the exit tunnel of the E.coli ribosome with and without erythromycin present, we find that erythromycin directly interacts with both nascent peptides, but the force required for ErmCL to bypass erythromycin is greater than that of H-NS. The largest forces arise three to six residues from their N-terminus as they start to bypass Erythromycin. Decomposing the interaction energies between erythromycin and the peptides at this point, we find that there are stronger electrostatic and dispersion interactions with the more C-terminal residues of ErmCL than with H-NS. These results suggest that erythromycin slows or stalls synthesis of ErmCL compared to H-NS due to stronger interactions with particular residue positions along the nascent protein.
Collapse
|
21
|
Wang R, Suo L, Chen HX, Song LJ, Shen YY, Luo YP. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from the Chinese People’s Liberation Army General Hospital in China. Int J Infect Dis 2018; 67:86-91. [DOI: 10.1016/j.ijid.2017.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022] Open
|
22
|
Ribosomal Mutations Conferring Macrolide Resistance in Legionella pneumophila. Antimicrob Agents Chemother 2017; 61:AAC.02188-16. [PMID: 28069647 DOI: 10.1128/aac.02188-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/04/2017] [Indexed: 01/15/2023] Open
Abstract
Monitoring the emergence of antibiotic resistance is a recent issue in the treatment of Legionnaires' disease. Macrolides are recommended as first-line therapy, but resistance mechanisms have not been studied in Legionella species. Our aim was to determine the molecular basis of macrolide resistance in L. pneumophila Twelve independent lineages from a common susceptible L. pneumophila ancestral strain were propagated under conditions of erythromycin or azithromycin pressure to produce high-level macrolide resistance. Whole-genome sequencing was performed on 12 selected clones, and we investigated mutations common to all lineages. We reconstructed the dynamics of mutation for each lineage and demonstrated their involvement in decreased susceptibility to macrolides. The resistant mutants were produced in a limited number of passages to obtain a 4,096-fold increase in erythromycin MICs. Mutations affected highly conserved 5-amino-acid regions of L4 and L22 ribosomal proteins and of domain V of 23S rRNA (G2057, A2058, A2059, and C2611 nucleotides). The early mechanisms mainly affected L4 and L22 proteins and induced a 32-fold increase in the MICs of the selector drug. Additional mutations related to 23S rRNA mostly occurred later and were responsible for a major increase of macrolide MICs, depending on the mutated nucleotide, the substitution, and the number of mutated genes among the three rrl copies. The major mechanisms of the decreased susceptibility to macrolides in L. pneumophila and their dynamics were determined. The results showed that macrolide resistance could be easily selected in L. pneumophila and warrant further investigations in both clinical and environmental settings.
Collapse
|
23
|
Harvala H, Alm E, Åkerlund T, Rizzardi K. Emergence and spread of moxifloxacin-resistant Clostridium difficile ribotype 231 in Sweden between 2006 and 2015. New Microbes New Infect 2016; 14:58-66. [PMID: 27752322 PMCID: PMC5061077 DOI: 10.1016/j.nmni.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
An aggregation of moxifloxacin-resistant Clostridium difficile ribotype 231 (RT231) isolates was first identified in the county of Stockholm in 2008, and by the end of 2015 isolates of RT231 had spread to 13 of 21 Swedish counties. We investigated the epidemiology of C. difficile RT231 in Sweden between 2006 and 2015 using whole genome sequencing (WGS) and evaluated whether its emergence could be associated with extended moxifloxacin use. We performed WGS and phylogenetic analysis of 51 C. difficile RT231 strains isolated in Sweden over a 10-year period. We also calculated the county-specific prescription rates for moxifloxacin between 2005 and 2015. Using WGS and detailed single nucleotide polymorphism analysis, we demonstrated three divergent sublineages of moxifloxacin-resistant C. difficile RT231 in Sweden from 2008 to 2015. A set of closely related RT231 was identified in hospitals located in the counties of Stockholm and Uppsala in 2008. Another set of RT231 isolates was found in four different counties in the Uppsala-Örebro Health Care Region. A gradual drop in moxifloxacin use in the county of Stockholm coincided with a reduction of RT231 in the area. However, RT231 continued to be frequent in surrounding counties including Uppsala, a county that also had the highest moxifloxacin prescription rates. We demonstrated frequent transmission of C. difficile RT231 within and between counties, indicating the importance of careful monitoring of hospitalized individuals infected with moxifloxacin-resistant C. difficile as well as the need for a strict moxifloxacin prescription policy.
Collapse
Affiliation(s)
- H. Harvala
- Public Health Agency of Sweden, Solna, Sweden
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - E. Alm
- Public Health Agency of Sweden, Solna, Sweden
| | - T. Åkerlund
- Public Health Agency of Sweden, Solna, Sweden
| | - K. Rizzardi
- Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
24
|
Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS, Bentley SD, Trees D, Lipsitch M. Genomic Epidemiology of Gonococcal Resistance to Extended-Spectrum Cephalosporins, Macrolides, and Fluoroquinolones in the United States, 2000-2013. J Infect Dis 2016; 214:1579-1587. [PMID: 27638945 PMCID: PMC5091375 DOI: 10.1093/infdis/jiw420] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Treatment of Neisseria gonorrhoeae infection is empirical and based on population-wide susceptibilities. Increasing antimicrobial resistance underscores the potential importance of rapid diagnostic tests, including sequence-based tests, to guide therapy. However, the usefulness of sequence-based diagnostic tests depends on the prevalence and dynamics of the resistance mechanisms. Methods. We define the prevalence and dynamics of resistance markers to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in 1102 resistant and susceptible clinical N. gonorrhoeae isolates collected from 2000 to 2013 via the Centers for Disease Control and Prevention's Gonococcal Isolate Surveillance Project. Results. Reduced extended-spectrum cephalosporin susceptibility is predominantly clonal and associated with the mosaic penA XXXIV allele and derivatives (sensitivity 98% for cefixime and 91% for ceftriaxone), but alternative resistance mechanisms have sporadically emerged. Reduced azithromycin susceptibility has arisen through multiple mechanisms and shows limited clonal spread; the basis for resistance in 36% of isolates with reduced azithromycin susceptibility is unclear. Quinolone-resistant N. gonorrhoeae has arisen multiple times, with extensive clonal spread. Conclusions. Quinolone-resistant N. gonorrhoeae and reduced cefixime susceptibility appear amenable to development of sequence-based diagnostic tests, whereas the undefined mechanisms of resistance to ceftriaxone and azithromycin underscore the importance of phenotypic surveillance. The identification of multidrug-resistant isolates highlights the need for additional measures to respond to the threat of untreatable gonorrhea.
Collapse
Affiliation(s)
- Yonatan H Grad
- Department of Immunology and Infectious Diseases.,Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School
| | | | | | - Anna G Green
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Stephen D Bentley
- Wellcome Trust Sanger Institute, Hinxton.,Department of Medicine, University of Cambridge and Addenbrookes Hospital, Cambridge, United Kingdom
| | - David Trees
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marc Lipsitch
- Department of Immunology and Infectious Diseases.,Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health
| |
Collapse
|
25
|
Auerbach-Nevo T, Baram D, Bashan A, Belousoff M, Breiner E, Davidovich C, Cimicata G, Eyal Z, Halfon Y, Krupkin M, Matzov D, Metz M, Rufayda M, Peretz M, Pick O, Pyetan E, Rozenberg H, Shalev-Benami M, Wekselman I, Zarivach R, Zimmerman E, Assis N, Bloch J, Israeli H, Kalaora R, Lim L, Sade-Falk O, Shapira T, Taha-Salaime L, Tang H, Yonath A. Ribosomal Antibiotics: Contemporary Challenges. Antibiotics (Basel) 2016; 5:antibiotics5030024. [PMID: 27367739 PMCID: PMC5039520 DOI: 10.3390/antibiotics5030024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 11/30/2022] Open
Abstract
Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.
Collapse
Affiliation(s)
- Tamar Auerbach-Nevo
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - David Baram
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Matthew Belousoff
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Elinor Breiner
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Chen Davidovich
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Giuseppe Cimicata
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Zohar Eyal
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Yehuda Halfon
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Miri Krupkin
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Markus Metz
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Mruwat Rufayda
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Moshe Peretz
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ophir Pick
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Erez Pyetan
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Itai Wekselman
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Raz Zarivach
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ella Zimmerman
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Nofar Assis
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Joel Bloch
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Hadar Israeli
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Rinat Kalaora
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Lisha Lim
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ofir Sade-Falk
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Tal Shapira
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Leena Taha-Salaime
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Hua Tang
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
26
|
Safety evaluation of AB-LIFE® (Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food Chem Toxicol 2016; 92:117-28. [DOI: 10.1016/j.fct.2016.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/12/2016] [Accepted: 03/21/2016] [Indexed: 01/07/2023]
|
27
|
Proteomic analysis of tylosin-resistant Mycoplasma gallisepticum reveals enzymatic activities associated with resistance. Sci Rep 2015; 5:17077. [PMID: 26584633 PMCID: PMC4653647 DOI: 10.1038/srep17077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/18/2015] [Indexed: 01/18/2023] Open
Abstract
Mycoplasma gallisepticum is a significant pathogenic bacterium that infects poultry, causing chronic respiratory disease and sinusitis in chickens and turkeys, respectively. M. gallisepticum infection poses a substantial economic threat to the poultry industry, and this threat is made worse by the emergence of antibiotic-resistant strains. The mechanisms of resistance are often difficult to determine; for example, little is known about antibiotic resistance of M. gallisepticum at the proteome level. In this study, we performed comparative proteomic analyses of an antibiotic (tylosin)-resistant M. gallisepticum mutant and a susceptible parent strain using a combination of two-dimensional differential gel electrophoresis and nano-liquid chromatography-quadrupole-time of flight mass spectrometry. Thirteen proteins were identified as differentially expressed in the resistant strain compared to the susceptible strain. Most of these proteins were related to catalytic activity, including catalysis that promotes the formylation of initiator tRNA and energy production. Elongation factors Tu and G were over-expressed in the resistant strains, and this could promote the binding of tRNA to ribosomes and catalyze ribosomal translocation, the coordinated movement of tRNA, and conformational changes in the ribosome. Taken together, our results indicate that M. gallisepticum develops resistance to tylosin by regulating associated enzymatic activities.
Collapse
|
28
|
Eyal Z, Matzov D, Krupkin M, Wekselman I, Paukner S, Zimmerman E, Rozenberg H, Bashan A, Yonath A. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc Natl Acad Sci U S A 2015; 112:E5805-14. [PMID: 26464510 PMCID: PMC4629319 DOI: 10.1073/pnas.1517952112] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of bacterial multidrug resistance to antibiotics threatens to cause regression to the preantibiotic era. Here we present the crystal structure of the large ribosomal subunit from Staphylococcus aureus, a versatile Gram-positive aggressive pathogen, and its complexes with the known antibiotics linezolid and telithromycin, as well as with a new, highly potent pleuromutilin derivative, BC-3205. These crystal structures shed light on specific structural motifs of the S. aureus ribosome and the binding modes of the aforementioned antibiotics. Moreover, by analyzing the ribosome structure and comparing it with those of nonpathogenic bacterial models, we identified some unique internal and peripheral structural motifs that may be potential candidates for improving known antibiotics and for use in the design of selective antibiotic drugs against S. aureus.
Collapse
Affiliation(s)
- Zohar Eyal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miri Krupkin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Itai Wekselman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Ella Zimmerman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
29
|
Rodriguez de Evgrafov M, Gumpert H, Munck C, Thomsen TT, Sommer MOA. Collateral Resistance and Sensitivity Modulate Evolution of High-Level Resistance to Drug Combination Treatment in Staphylococcus aureus. Mol Biol Evol 2015; 32:1175-85. [PMID: 25618457 DOI: 10.1093/molbev/msv006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
As drug-resistant pathogens continue to emerge, combination therapy will increasingly be relied upon to treat infections and to help combat further development of multidrug resistance. At present a dichotomy exists between clinical practice, which favors therapeutically synergistic combinations, and the scientific model emerging from in vitro experimental work, which maintains that this interaction provides greater selective pressure toward resistance development than other interaction types. We sought to extend the current paradigm, based on work below or near minimum inhibitory concentration levels, to reflect drug concentrations more likely to be encountered during treatment. We performed a series of adaptive evolution experiments using Staphylococcus aureus. Interestingly, no relationship between drug interaction type and resistance evolution was found as resistance increased significantly beyond wild-type levels. All drug combinations, irrespective of interaction types, effectively limited resistance evolution compared with monotreatment. Cross-resistance and collateral sensitivity were found to be important factors in the extent of resistance evolution toward a combination. Comparative genomic analyses revealed that resistance to drug combinations was mediated largely by mutations in the same genes as single-drug-evolved lineages highlighting the importance of the component drugs in determining the rate of resistance evolution. Results of this work suggest that the mechanisms of resistance to constituent drugs should be the focus of future resistance evolution work.
Collapse
Affiliation(s)
| | - Heidi Gumpert
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Christian Munck
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Thomas T Thomsen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Morten O A Sommer
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
30
|
Abstract
Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial “stringent response” mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.
Collapse
|
31
|
Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from a university teaching hospital in Japan. Eur J Clin Microbiol Infect Dis 2014; 34:763-72. [PMID: 25471195 DOI: 10.1007/s10096-014-2290-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/24/2014] [Indexed: 02/08/2023]
Abstract
Clostridium difficile infection control strategies require an understanding of its epidemiology. In this study, we analysed the toxin genotypes of 130 non-duplicate clinical isolates of C. difficile from a university hospital in Tokyo, Japan. Multilocus sequence typing (MLST) and eBURST analysis were performed for these isolates and nine strains previously analysed by polymerase chain reaction (PCR) ribotyping. Minimum inhibitory concentrations (MICs) were determined for six antibiotics, and the bacterial resistance mechanisms were investigated. Ninety-five toxigenic strains (73%), including seven tcdA-negative, tcdB-positive and cdtA/cdtB-negative strains (A(-)B(+)CDT(-)) and three A(+)B(+)CDT(+) strains, and 35 (27%) non-toxigenic strains, were classified into 23 and 12 sequence types, respectively. Of these, sequence type (ST)17 (21.8%) was the most predominant. MLST and eBURST analysis showed that 139 strains belonged to seven groups and singletons, and most A(+)B(+)CDT(-) strains (98%, 89/91) were classified into group 1. All isolates were susceptible to metronidazole, vancomycin and meropenem; the ceftriaxone, clindamycin and ciprofloxacin resistance rates were 49, 59 and 99%, respectively. Resistance rates to ceftriaxone and clindamycin were higher in toxigenic strains than in non-toxigenic strains (P < 0.001). All ST17 and ST81 strains were resistant to these antibiotics. The clindamycin- and fluoroquinolone-resistant strains carried erm(B) and mutations in GyrA and/or GyrB, respectively. To our knowledge, this is the first MLST-based study of the molecular epidemiology of toxigenic and non-toxigenic strains in Japan, providing evidence that non-toxigenic and toxigenic strains exhibit high genetic diversity and that toxigenic strains are more likely than non-toxigenic strains to exhibit multidrug resistance.
Collapse
|
32
|
Binh TT, Shiota S, Suzuki R, Matsuda M, Trang TTH, Kwon DH, Iwatani S, Yamaoka Y. Discovery of novel mutations for clarithromycin resistance in Helicobacter pylori by using next-generation sequencing. J Antimicrob Chemother 2014; 69:1796-803. [PMID: 24648504 DOI: 10.1093/jac/dku050] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Resistance to clarithromycin is the most important factor causing failure of Helicobacter pylori eradication. Although clarithromycin resistance is mainly associated with three point mutations in the 23S rRNA genes, it is unclear whether other mutations are associated with this resistance. METHODS Two types of clarithromycin-resistant strains (low- and high-resistance strains) were obtained from clarithromycin-susceptible H. pylori following exposure to low clarithromycin concentrations. The genome sequences were determined with a next-generation sequencer. Natural transformation was used to introduce the candidate mutations into strain 26695. Etest and an agar dilution method were used to determine the MICs. RESULTS High-resistance strains contained the mutation A2143G in the 23S rRNA genes, whereas low-resistance strains did not. There were seven candidate mutations in six genes outside of the 23S rRNA genes. The mutated sequences in hp1048 (infB), hp1314 (rpl22) and the 23S rRNA gene were successfully transformed into strain 26695 and the transformants showed an increased MIC of and low resistance to clarithromycin. The transformants containing a single mutation in infB or rpl22 (either a 9 bp insertion or a 3 bp deletion) or the 23S rRNA gene showed low MICs (0.5, 2.0, 4.0 and 32 mg/L, respectively) while the transformants containing double mutations (mutation in the 23S rRNA genes and mutation in infB or rpl22) showed higher MICs (>256 mg/L). CONCLUSIONS Next-generation sequencing can be a useful tool for screening mutations related to drug resistance. We discovered novel mutations related to clarithromycin resistance in H. pylori (infB and rpl22), which have synergic effects with 23S rRNA resulting in higher MICs.
Collapse
Affiliation(s)
- Tran Thanh Binh
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | - Seiji Shiota
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Rumiko Suzuki
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Miyuki Matsuda
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Tran Thi Huyen Trang
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Dong Hyeon Kwon
- Biology Department, Long Island University, Brooklyn, NY, USA
| | - Shun Iwatani
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan Department of Medicine-Gastroenterology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan Department of Medicine-Gastroenterology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| |
Collapse
|
33
|
Kannan K, Mankin AS. Macrolide antibiotics in the ribosome exit tunnel: species-specific binding and action. Ann N Y Acad Sci 2012; 1241:33-47. [PMID: 22191525 DOI: 10.1111/j.1749-6632.2011.06315.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macrolide antibiotics bind in the nascent peptide exit tunnel of the ribosome and inhibit protein synthesis. The majority of information on the principles of binding and action of these antibiotics comes from studies that employed model organisms. However, there is a growing understanding that the binding of macrolides to their target, as well as the mode of inhibition of translation, can be strongly influenced by variations in ribosome structure between bacterial species. Awareness of the existence of species-specific differences in drug action and appreciation of the extent of these differences can stimulate future work on developing better macrolide drugs. In this review, representative cases illustrating the organism-specific binding and action of macrolide antibiotics, as well as species-specific mechanisms of resistance are analyzed.
Collapse
Affiliation(s)
- Krishna Kannan
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 60607, USA
| | | |
Collapse
|
34
|
Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 2012; 56:603-12. [PMID: 22143525 PMCID: PMC3264260 DOI: 10.1128/aac.05702-11] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Linezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little evidence has been presented to confirm this. Furthermore, recent findings on the Cfr methyltransferase underscore the modification of 23S rRNA as a highly effective and transferable form of linezolid resistance. On a positive note, detailed knowledge of the linezolid binding site has facilitated the design of a new generation of oxazolidinones that show improved properties against the known resistance mechanisms.
Collapse
Affiliation(s)
- Katherine S. Long
- Department of Systems Biology and Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Birte Vester
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
35
|
Martínez AK, Shirole NH, Murakami S, Benedik MJ, Sachs MS, Cruz-Vera LR. Crucial elements that maintain the interactions between the regulatory TnaC peptide and the ribosome exit tunnel responsible for Trp inhibition of ribosome function. Nucleic Acids Res 2011; 40:2247-57. [PMID: 22110039 PMCID: PMC3299997 DOI: 10.1093/nar/gkr1052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Translation of the TnaC nascent peptide inhibits ribosomal activity in the presence of l-tryptophan, inducing expression of the tnaCAB operon in Escherichia coli. Using chemical methylation, this work reveals how interactions between TnaC and the ribosome are affected by mutations in both molecules. The presence of the TnaC-tRNAPro peptidyl-tRNA within the ribosome protects the 23S rRNA nucleotide U2609 against chemical methylation. Such protection was not observed in mutant ribosomes containing changes in 23S rRNA nucleotides of the A748–A752 region. Nucleotides A752 and U2609 establish a base-pair interaction. Most replacements of either A752 or U2609 affected Trp induction of a TnaC-regulated LacZ reporter. However, the single change A752G, or the dual replacements A752G and U2609C, maintained Trp induction. Replacements at the conserved TnaC residues W12 and D16 also abolished the protection of U2609 by TnaC-tRNAPro against chemical methylation. These data indicate that the TnaC nascent peptide in the ribosome exit tunnel interacts with the U2609 nucleotide when the ribosome is Trp responsive. This interaction is affected by mutational changes in exit tunnel nucleotides of 23S rRNA, as well as in conserved TnaC residues, suggesting that they affect the structure of the exit tunnel and/or the nascent peptide configuration in the tunnel.
Collapse
Affiliation(s)
- Allyson K Martínez
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
36
|
Spigaglia P, Barbanti F, Mastrantonio P. Multidrug resistance in European Clostridium difficile clinical isolates. J Antimicrob Chemother 2011; 66:2227-34. [PMID: 21771851 DOI: 10.1093/jac/dkr292] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Multidrug resistance and antibiotic resistance mechanisms were investigated in 316 Clostridium difficile clinical isolates collected during the first European surveillance on C. difficile in 2005. METHODS MICs of eight different antibiotics were determined using Etest. Reserpine- and carbonyl cyanide m-chlorophenylhydrazone-sensitive efflux was tested using the agar dilution method. Molecular analysis of the resistance mechanisms was performed using PCR assays, PCR mapping and sequencing. RESULTS One hundred and forty-eight C. difficile strains were resistant to at least one antibiotic and 82 (55%) were multidrug resistant. In particular, 48% of these isolates were resistant to erythromycin, clindamycin, moxifloxacin and rifampicin. New genetic elements or determinants conferring resistance to erythromycin/clindamycin or tetracycline were identified. Even if most multiresistant strains carried an erm(B) gene, quite a few were erm(B) negative. In-depth analysis of the underlying mechanism in these isolates was carried out, including analysis of 23S rDNA and the ribosomal proteins L4 and L22. Interestingly, resistance to rifampicin was observed in multidrug-resistant strains in association with resistance to fluoroquinolones. Mutations in the rpo(B) and gyrA genes were identified as the cause of resistance to these antibiotics, respectively. CONCLUSIONS Characterization of multidrug-resistant C. difficile clinical isolates shows that antibiotic resistance is changing, involving new determinants and mechanisms and providing this pathogen with potential advantages over the co-resident gut flora. The present paper provides, for the first time, a comprehensive picture of the different characteristics of multidrug-resistant C. difficile strains in Europe in 2005 and represents an important source of data for future comparative European studies.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | |
Collapse
|
37
|
Lee Y, Choi JY, Fu H, Harvey C, Ravindran S, Roush WR, Boothroyd JC, Khosla C. Chemistry and biology of macrolide antiparasitic agents. J Med Chem 2011; 54:2792-804. [PMID: 21428405 DOI: 10.1021/jm101593u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrolide antibacterial agents inhibit parasite proliferation by targeting the apicoplast ribosome. Motivated by the long-term goal of identifying antiparasitic macrolides that lack antibacterial activity, we have systematically analyzed the structure-activity relationships among erythromycin analogues and have also investigated the mechanism of action of selected compounds. Two lead compounds, N-benzylazithromycin (11) and N-phenylpropylazithromycin (30), were identified with significantly higher antiparasitic activity and lower antibacterial activity than erythromycin or azithromycin. Molecular modeling based on the cocrystal structure of azithromycin bound to the bacterial ribosome suggested that a substituent at the N-9 position of desmethylazithromycin could improve selectivity because of species-specific interactions with the ribosomal L22 protein. Like other macrolides, these lead compounds display a strong "delayed death phenotype"; however, their early effects on T. gondii replication are more pronounced.
Collapse
Affiliation(s)
- Younjoo Lee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bogdanov AA, Sumbatyan NV, Shishkina AV, Karpenko VV, Korshunova GA. Ribosomal tunnel and translation regulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1501-16. [DOI: 10.1134/s0006297910130018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Burakovsky DE, Sergiev PV, Steblyanko MA, Kubarenko AV, Konevega AL, Bogdanov AA, Rodnina MV, Dontsova OA. Mutations at the accommodation gate of the ribosome impair RF2-dependent translation termination. RNA (NEW YORK, N.Y.) 2010; 16:1848-1853. [PMID: 20668033 PMCID: PMC2924543 DOI: 10.1261/rna.2185710] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/16/2010] [Indexed: 05/29/2023]
Abstract
During protein synthesis, aminoacyl-tRNA (aa-tRNA) and release factors 1 and 2 (RF1 and RF2) have to bind at the catalytic center of the ribosome on the 50S subunit where they take part in peptide bond formation or peptidyl-tRNA hydrolysis, respectively. Computer simulations of aa-tRNA movement into the catalytic site (accommodation) suggested that three nucleotides of 23S rRNA, U2492, C2556, and C2573, form a "gate" at which aa-tRNA movement into the A site is retarded. Here we examined the role of nucleotides C2573 of 23S rRNA, a part of the putative accommodation gate, and of the neighboring A2572 for aa-tRNA binding followed by peptide bond formation and for the RF2-dependent peptide release. Mutations at the two positions did not affect aa-tRNA accommodation, peptide bond formation, or the fidelity of aa-tRNA selection, but impaired RF2-catalyzed peptide release. The data suggest that the ribosome is a robust machine that allows rapid aa-tRNA accommodation despite the defects at the accommodation gate. In comparison, peptide release by RF2 appears more sensitive to these mutations, due to slower accommodation of the factor or effects on RF2 positioning in the A site.
Collapse
|
40
|
Linezolid Resistance in Staphylococci. Pharmaceuticals (Basel) 2010; 3:1988-2006. [PMID: 27713338 PMCID: PMC4036669 DOI: 10.3390/ph3071988] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/03/2010] [Accepted: 06/23/2010] [Indexed: 11/21/2022] Open
Abstract
Linezolid, the first oxazolidinone to be used clinically, is effective in the treatment of infections caused by various Gram-positive pathogens, including multidrug resistant enterococci and methicillin-resistant Staphylococus aureus. It has been used successfully for the treatment of patients with endocarditis and bacteraemia, osteomyelitis, joint infections and tuberculosis and it is often used for treatment of complicated infections when other therapies have failed. Linezolid resistance in Gram-positive cocci has been encountered clinically as well as in vitro, but it is still a rare phenomenon. The resistance to this antibiotic has been, until now, entirely associated with distinct nucleotide substitutions in domain V of the 23S rRNA genes. The number of mutated rRNA genes depends on the dose and duration of linezolid exposure and has been shown to influence the level of linezolid resistance. Mutations in associated ribosomal proteins also affect linezolid activity. A new phenicol and clindamycin resistance phenotype has recently been found to be caused by an RNA methyltransferase designated Cfr. This gene confers resistance to lincosamides, oxazolidinones, streptogramin A, phenicols and pleuromutilins, decrease the susceptibility of S. aureus to tylosin, to josamycin and spiramycin and thus differs from erm rRNA methylase genes. Research into new oxazolidinones with improved characteristics is ongoing. Data reported in patent applications demonstrated that some oxazolidinone derivatives, also with improved characteristics with respect to linezolid, are presently under study: at least three of them are in an advanced phase of development.
Collapse
|
41
|
Abstract
Protein synthesis is one of the major targets in the cell for antibiotics. This review endeavors to provide a comprehensive "post-ribosome structure" A-Z of the huge diversity of antibiotics that target the bacterial translation apparatus, with an emphasis on correlating the vast wealth of biochemical data with more recently available ribosome structures, in order to understand function. The binding site, mechanism of action, and modes of resistance for 26 different classes of protein synthesis inhibitors are presented, ranging from ABT-773 to Zyvox. In addition to improving our understanding of the process of translation, insight into the mechanism of action of antibiotics is essential to the development of novel and more effective antimicrobial agents to combat emerging bacterial resistance to many clinically-relevant drugs.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, LMU, Munich, Germany.
| |
Collapse
|
42
|
Locke JB, Hilgers M, Shaw KJ. Novel ribosomal mutations in Staphylococcus aureus strains identified through selection with the oxazolidinones linezolid and torezolid (TR-700). Antimicrob Agents Chemother 2009; 53:5265-74. [PMID: 19752277 PMCID: PMC2786364 DOI: 10.1128/aac.00871-09] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/31/2009] [Accepted: 09/03/2009] [Indexed: 11/20/2022] Open
Abstract
TR-700 (torezolid), the active moiety of the novel oxazolidinone phosphate prodrug TR-701, is highly potent against gram-positive pathogens, including strains resistant to linezolid (LZD). Here we investigated the potential of Staphylococcus aureus strains ATCC 29213 (methicillin-susceptible S. aureus [MSSA]) and ATCC 33591 (methicillin-resistant S. aureus [MRSA]) to develop resistance to TR-700. The spontaneous frequencies of mutation of MSSA 29213 and MRSA 33591 resulting in reduced susceptibility to TR-700 at 2 x the MIC were 1.1 x 10(-10) and 1.9 x 10(-10), respectively. These values are approximately 16-fold lower than the corresponding LZD spontaneous mutation frequencies of both strains. Following 30 serial passages in the presence of TR-700, the MIC for MSSA 29213 remained constant (0.5 microg/ml) while increasing eightfold (0.25 to 2.0 microg/ml) for MRSA 33591. Serial passage of MSSA 29213 and MRSA 33591 in LZD resulted in 64- and 32-fold increases in LZD resistance (2 to 128 microg/ml and 1 to 32 microg/ml, respectively). Domain V 23S rRNA gene mutations (Escherichia coli numbering) found in TR-700-selected mutants included T2500A and a novel coupled T2571C/G2576T mutation, while LZD-selected mutants included G2447T, T2500A, and G2576T. We also identified mutations correlating with decreased susceptibility to TR-700 and LZD in the rplC and rplD genes, encoding the 50S ribosomal proteins L3 and L4, respectively. L3 mutations included Gly152Asp, Gly155Arg, Gly155Arg/Met169Leu, and DeltaPhe127-His146. The only L4 mutation detected was Lys68Gln. TR-700 maintained a fourfold or greater potency advantage over LZD against all strains with ribosomal mutations. These data bring to light a variety of novel and less-characterized mutations associated with S. aureus resistance to oxazolidinones and demonstrate the low resistance potential of torezolid.
Collapse
Affiliation(s)
- Jeffrey B. Locke
- Trius Therapeutics, Inc., 6310 Nancy Ridge Drive, Suite 105, San Diego, California 92121
| | - Mark Hilgers
- Trius Therapeutics, Inc., 6310 Nancy Ridge Drive, Suite 105, San Diego, California 92121
| | - Karen Joy Shaw
- Trius Therapeutics, Inc., 6310 Nancy Ridge Drive, Suite 105, San Diego, California 92121
| |
Collapse
|
43
|
|
44
|
He J, Sun H, Zhang D, Sun Y, Ma L, Chen L, Liu Z, Xiong C, Yan G, Zhu C. Cloning and characterization of 60S ribosomal protein L22 (RPL22) from Culex pipiens pallens. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:216-22. [PMID: 19298862 DOI: 10.1016/j.cbpb.2009.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 03/02/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
The 60S ribosomal protein L22 (GenBank accession no. EF990190) was cloned from Culex pipiens pallens. An open reading frame (ORF) of 447 bps was found to encode a putative 148 amino acids protein which shares 90% and 80% identity with RPL22 genes from Aedes aegypti and Anopheles gambiae respectively. Real-time quantitative PCR analysis demonstrated that the transcription level of RPL22 in deltamethrin-resistant strain was 2.57 folds higher than in deltamethrin-susceptible strain of Cx. pipiens pallens. Overexpression of RPL22 in C6/36 cells showed that the deltamethrin-resistance was decreased in C6/36-RPL22 cell compared to the control. The mRNA level of cytochrome P450 6A1 (CYP6A1, GenBank accession no. FJ423553) showed that CYP6A1 was down-regulated in the C6/36 transfected with RPL22 (C6/36-RPL22) cells, suggesting that CYP6A1 was repressed by RPL22. Our study provides the first evidence that RPL22 may play some role in the regulation of deltamethrin-resistance in Cx. pipiens pallens.
Collapse
Affiliation(s)
- Ji He
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wekselman I, Davidovich C, Agmon I, Zimmerman E, Rozenberg H, Bashan A, Berisio R, Yonath A. Ribosome's mode of function: myths, facts and recent results. J Pept Sci 2009; 15:122-30. [DOI: 10.1002/psc.1077] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Diner EJ, Hayes CS. Recombineering reveals a diverse collection of ribosomal proteins L4 and L22 that confer resistance to macrolide antibiotics. J Mol Biol 2009; 386:300-15. [PMID: 19150357 DOI: 10.1016/j.jmb.2008.12.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/18/2008] [Accepted: 12/20/2008] [Indexed: 11/19/2022]
Abstract
Mutations in ribosomal proteins L4 and L22 confer resistance to erythromycin and other macrolide antibiotics in a variety of bacteria. L4 and L22 have elongated loops whose tips converge in the peptide exit tunnel near the macrolide-binding site, and resistance mutations typically affect residues within these loops. Here, we used bacteriophage lambda Red-mediated recombination, or "recombineering," to uncover new L4 and L22 alleles that confer macrolide resistance in Escherichia coli. We randomized residues at the tips of the L4 and L22 loops using recombineered oligonucleotide libraries and selected the mutagenized cells for erythromycin-resistant mutants. These experiments led to the identification of 341 resistance mutations encoding 278 unique L4 and L22 proteins-the overwhelming majority of which are novel. Many resistance mutations were complex, involving multiple missense mutations, in-frame deletions, and insertions. Transfer of L4 and L22 mutations into wild-type cells by phage P1-mediated transduction demonstrated that each allele was sufficient to confer macrolide resistance. Although L4 and L22 mutants are typically resistant to most macrolides, selections carried out on different antibiotics revealed macrolide-specific resistance mutations. L22 Lys90Trp is one such allele that confers resistance to erythromycin but not to tylosin and spiramycin. Purified L22 Lys90Trp ribosomes show reduced erythromycin binding but have the same affinity for tylosin as wild-type ribosomes. Moreover, dimethyl sulfate methylation protection assays demonstrated that L22 Lys90Trp ribosomes bind tylosin more readily than erythromycin in vivo. This work underscores the exceptional functional plasticity of the L4 and L22 proteins and highlights the utility of Red-mediated recombination in targeted genetic selections.
Collapse
Affiliation(s)
- Elie J Diner
- University of California, Santa Barbara, 93106-9610, USA
| | | |
Collapse
|
47
|
Ribosome: an Ancient Cellular Nano-Machine for Genetic Code Translation. NATO SCIENCE FOR PEACE AND SECURITY SERIES B: PHYSICS AND BIOPHYSICS 2009. [DOI: 10.1007/978-90-481-2368-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Structural basis for cross-resistance to ribosomal PTC antibiotics. Proc Natl Acad Sci U S A 2008; 105:20665-70. [PMID: 19098107 DOI: 10.1073/pnas.0810826105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clinically relevant antibiotics that target the ribosomal peptidyl transferase center (PTC), a highly conserved ribosomal region, exert their inhibitory action by exploiting the flexibility of PTC nucleotides, which trigger modulations of the shape of the antibiotic binding pocket. Resistance to these antibiotics was observed clinically and in vitro. Based on the crystal structures of the large ribosomal subunit from eubacterium suitable to represent pathogens in complex with these antibiotics, it was found that all nucleotides mediating resistance to PTC antibiotics cluster on one side of the PTC. Over half of the nucleotides affecting resistance reside in regions of lower sequence conservation, and are too distal to make Van der Waals interactions with the bound drugs. Alterations of the identity of these nucleotides may not lethally affect ribosome function, but can hamper antibiotic binding through changes in the conformation and flexibility of specific PTC nucleotides. Comparative analysis revealed properties likely to lead to cross-resistance and enabled their parameterization. As the same nucleotides are frequently involved in resistance to more than a single family of antibiotics, the common pattern explains medically observed cross-resistance to PTC antibiotics and suggests the potential for a wider clinical threat.
Collapse
|
49
|
Revisiting the mechanism of macrolide-antibiotic resistance mediated by ribosomal protein L22. Proc Natl Acad Sci U S A 2008; 105:18261-6. [PMID: 19015512 DOI: 10.1073/pnas.0810357105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial antibiotic resistance can occur by many mechanisms. An intriguing class of mutants is resistant to macrolide antibiotics even though these drugs still bind to their targets. For example, a 3-residue deletion (DeltaMKR) in ribosomal protein L22 distorts a loop that forms a constriction in the ribosome exit tunnel, apparently allowing nascent-chain egress and translation in the presence of bound macrolides. Here, however, we demonstrate that DeltaMKR and wild-type ribosomes show comparable macrolide sensitivity in vitro. In Escherichia coli, we find that this mutation reduces antibiotic occupancy of the target site on ribosomes in a manner largely dependent on the AcrAB-TolC efflux system. We propose a model for antibiotic resistance in which DeltaMKR ribosomes alter the translation of specific proteins, possibly via changes in programmed stalling, and modify the cell envelope in a manner that lowers steady-state macrolide levels.
Collapse
|
50
|
Abstract
The assignment of specific ribosomal functions to individual ribosomal proteins is difficult due to the enormous cooperativity of the ribosome; however, important roles for distinct ribosomal proteins are becoming evident. Although rRNA has a major role in certain aspects of ribosomal function, such as decoding and peptidyl-transferase activity, ribosomal proteins are nevertheless essential for the assembly and optimal functioning of the ribosome. This is particularly true in the context of interactions at the entrance pore for mRNA, for the translation-factor binding site and at the tunnel exit, where both chaperones and complexes associated with protein transport through membranes bind.
Collapse
|