1
|
Phiri K, Grill L. Development of a Candidate TMV Epitope Display Vaccine against SARS-CoV-2. Vaccines (Basel) 2024; 12:448. [PMID: 38793699 PMCID: PMC11125883 DOI: 10.3390/vaccines12050448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Essential in halting the COVID-19 pandemic caused by SARS-CoV-2, it is crucial to have stable, effective, and easy-to-manufacture vaccines. We developed a potential vaccine using a tobacco mosaic virus (TMV) epitope display model presenting peptides derived from the SARS-CoV-2 spike protein. The TMV-epitope fusions in laboratory tests demonstrated binding to the SARS-CoV-2 polyclonal antibodies. The fusion constructs maintained critical epitopes of the SARS-CoV-2 spike protein, and two in particular spanned regions of the receptor-binding domain that have mutated in the more recent SARS-CoV-2 variants. This would allow for the rapid modification of vaccines in response to changes in circulating variants. The TMV-peptide fusion constructs also remained stable for over 28 days when stored at temperatures between -20 and 37 °C, an ideal property when targeting developing countries. Immunogenicity studies conducted on BALB/c mice elicited robust antibody responses against SARS-CoV-2. A strong IFNγ response was also observed in immunized mice. Three of the six TMV-peptide fusion constructs produced virus-neutralizing titers, as measured with a pseudovirus neutralization assay. These TMV-peptide fusion constructs can be combined to make a multivalent vaccine that could be adapted to meet changing virus variants. These findings demonstrate the development of a stable COVID-19 vaccine candidate by combining SARS-CoV-2 spike protein-derived peptides presented on the surface of a TMV nanoparticle.
Collapse
Affiliation(s)
- Kelvin Phiri
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA 91711, USA;
| | | |
Collapse
|
2
|
Yuan B, Liu Y, Lv M, Sui Y, Hou S, Yang T, Belhadj Z, Zhou Y, Chang N, Ren Y, Sun C. Virus-like particle-based nanocarriers as an emerging platform for drug delivery. J Drug Target 2023; 31:433-455. [PMID: 36940208 DOI: 10.1080/1061186x.2023.2193358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
New nanocarrier technologies are emerging, and they have great potential for improving drug delivery, targeting efficiency, and bioavailability. Virus-like particles (VLPs) are natural nanoparticles from animal and plant viruses and bacteriophages. Hence, VLPs present several great advantages, such as morphological uniformity, biocompatibility, reduced toxicity, and easy functionalisation. VLPs can deliver many active ingredients to the target tissue and have great potential as a nanocarrier to overcome the limitations associated with other nanoparticles. This review will focus primarily on the construction and applications of VLPs, particularly as a novel nanocarrier to deliver active ingredients. Herein, the main methods for the construction, purification, and characterisation of VLPs, as well as various VLP-based materials used in delivery systems are summarised. The biological distribution of VLPs in drug delivery, phagocyte-mediated clearance, and toxicity are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, No.100, Kexue Avenue, Zhengzhou 450001, China
| | - Meilin Lv
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yilei Sui
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Shenghua Hou
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Tinghui Yang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yulong Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Naidan Chang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yachao Ren
- Harbin Medical University-Daqing, Daqing 163319, China.,School of Chemistry and Chemical Engineering, Tianjin University of Technology, tianjin, 300000, China
| | | |
Collapse
|
3
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
4
|
Switalski K, Fan J, Li L, Chu M, Sarnello E, Jemian P, Li T, Wang Q, Zhang Q. Direct measurement of Stokes-Einstein diffusion of Cowpea mosaic virus with 19 µs-resolved XPCS. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1429-1435. [PMID: 36345751 PMCID: PMC9641563 DOI: 10.1107/s1600577522008402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Brownian motion of Cowpea mosaic virus (CPMV) in water was measured using small-angle X-ray photon correlation spectroscopy (SA-XPCS) at 19.2 µs time resolution. It was found that the decorrelation time τ(Q) = 1/DQ2 up to Q = 0.091 nm-1. The hydrodynamic radius RH determined from XPCS using Stokes-Einstein diffusion D = kT/(6πηRH) is 43% larger than the geometric radius R0 determined from SAXS in the 0.007 M K3PO4 buffer solution, whereas it is 80% larger for CPMV in 0.5 M NaCl and 104% larger in 0.5 M (NH4)2SO4, a possible effect of aggregation as well as slight variation of the structures of the capsid resulting from the salt-protein interactions.
Collapse
Affiliation(s)
- Kacper Switalski
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Jingyu Fan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Luxi Li
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Miaoqi Chu
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Erik Sarnello
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Pete Jemian
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
5
|
Hemmati F, Hemmati-Dinarvand M, Karimzade M, Rutkowska D, Eskandari MH, Khanizadeh S, Afsharifar A. Plant-derived VLP: a worthy platform to produce vaccine against SARS-CoV-2. Biotechnol Lett 2021; 44:45-57. [PMID: 34837582 PMCID: PMC8626723 DOI: 10.1007/s10529-021-03211-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
After its emergence in late 2019 SARS-CoV-2 was declared a pandemic by the World Health Organization on 11 March 2020 and has claimed more than 2.8 million lives. There has been a massive global effort to develop vaccines against SARS-CoV-2 and the rapid and low cost production of large quantities of vaccine is urgently needed to ensure adequate supply to both developed and developing countries. Virus-like particles (VLPs) are composed of viral antigens that self-assemble into structures that mimic the structure of native viruses but lack the viral genome. Thus they are not only a safer alternative to attenuated or inactivated vaccines but are also able to induce potent cellular and humoral immune responses and can be manufactured recombinantly in expression systems that do not require viral replication. VLPs have successfully been produced in bacteria, yeast, insect and mammalian cell cultures, each production platform with its own advantages and limitations. Plants offer a number of advantages in one production platform, including proper eukaryotic protein modification and assembly, increased safety, low cost, high scalability as well as rapid production speed, a critical factor needed to control outbreaks of potential pandemics. Plant-based VLP-based viral vaccines currently in clinical trials include, amongst others, Hepatitis B virus, Influenza virus and SARS-CoV-2 vaccines. Here we discuss the importance of plants as a next generation expression system for the fast, scalable and low cost production of VLP-based vaccines.
Collapse
Affiliation(s)
- Farshad Hemmati
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mohsen Hemmati-Dinarvand
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marziye Karimzade
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Daria Rutkowska
- CSIR Next Generation Health, PO Box 395, Pretoria, 0001, South Africa
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
6
|
Schuphan J, Commandeur U. Analysis of Engineered Tobacco Mosaic Virus and Potato Virus X Nanoparticles as Carriers for Biocatalysts. FRONTIERS IN PLANT SCIENCE 2021; 12:710869. [PMID: 34421958 PMCID: PMC8377429 DOI: 10.3389/fpls.2021.710869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Plant virus nanoparticles are promising candidates for the development of novel materials, including nanocomposites and scaffolds/carriers for functional molecules such as enzymes. Their advantages for enzyme immobilization include a modular organization, a robust and programmable structure, and a simple, cost-effective production. However, the activity of many enzymes relies on posttranslational modification and most plant viruses replicate in the cytoplasm, so functional enzymes cannot be displayed on the virus surface by direct coat protein fusions. An alternative display system to present the Trichoderma reesei endoglucanase Cel12A on potato virus X (PVX) using SpyTag/SpyCatcher (ST/SC) technology was recently developed by the authors, which allows the carrier and enzyme to be produced separately before isopeptide conjugation. Although kinetic analysis clearly indicated efficient biocatalyst activity, the PVX carrier interfered with substrate binding. To overcome this, the suitability of tobacco mosaic virus (TMV) was tested, which can also accommodate a larger number of ST peptides. We produced TMV particles displaying ST as a new platform for the immobilization of enzymes such as Cel12A, and compared its performance to the established PVX-ST platform in terms of catalytic efficiency. Although more enzyme molecules were immobilized on the TMV-ST particles, we found that the rigid scaffold and helical spacing significantly affected enzyme activity.
Collapse
|
7
|
Stable Display of Artificially Long Foreign Antigens on Chimeric Bamboo mosaic virus Particles. Viruses 2021; 13:v13040572. [PMID: 33805417 PMCID: PMC8067224 DOI: 10.3390/v13040572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Plant viruses can be genetically modified to generate chimeric virus particles (CVPs) carrying heterologous peptides fused on the surface of coat protein (CP) subunits as vaccine candidates. However, some factors may be especially significant in determining the properties of chimeras. In this study, peptides from various sources and of various lengths were inserted into the Bamboo mosaic virus-based (BaMV) vector CP N-terminus to examine the chimeras infecting and accumulating in plants. Interestingly, it was found that the two different strains Foot-and-mouth disease virus (FMDV) VP1 antigens with flexible linker peptides (77 or 82 amino acids) were directly expressed on the BaMV CP, and the chimeric particles self-assembled and continued to express FMDV antigens. The chimeric CP, when directly fused with a large foreign protein (117 amino acids), can self-fold into incomplete virus particles or disks. The physicochemical properties of heterologus peptides N-terminus, complex strand structures of heterologus peptides C-terminus and different flexible linker peptides, can affect the chimera accumulation. Based on these findings, using plant virus-based chimeras to express foreign proteins can increase their length limitations, and engineered plant-made CVP-based vaccines have increasing potential for further development as novel vaccines.
Collapse
|
8
|
Li L, Steinmetz NF, Eppell SJ, Zypman FR. Charge Calibration Standard for Atomic Force Microscope Tips in Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13621-13632. [PMID: 33155810 DOI: 10.1021/acs.langmuir.0c02455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An electric charge standard with nanoscale resolution is created using the known charge distribution of a single tobacco mosaic virus coat protein combined with the known packing of these proteins in the virus capsid. This advances the ability to measure charge on nanometric samples. Experimental atomic force microscope (AFM) force-distance curves are collected under aqueous conditions with controlled pH and ion concentration. A mathematical model that considers a polarizable dielectric tip immersed in an electrolyte is used to obtain charge density from the AFM measurements. Interactions between the tip and the sample are modeled using theory that includes monopolar electrostatic interactions, dipolar interactions, screening from both the dielectric nature of ambient water and solvated ions as described by the linear Poisson-Boltzmann equation, and hard-core repulsion. It is found that the tip charge density changes on a timescale of hours requiring recalibration of the tip for experiments lasting more than an hour. As an example of how a charge-calibrated tip may be used, the surface charge densities on 20 individual carboxylate-modified polystyrene (PS) beads are measured. The average of these AFM-measured bead charge densities is compared with the value obtained from conventional titration combined with electron microscopy. The two values are found to agree within 20%. While the comparison demonstrates similarity of the two charge measurements, hypotheses are put forward as to why the two techniques might be expected not to provide identical mean charge densities. The considerations used to build these hypotheses thus underscore the relevance of the method performed here if charge information is required on individual nanoparticles.
Collapse
Affiliation(s)
- Li Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Departments of NanoEngineering, Bioengineering, and Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California 92039, United States
| | - Steven J Eppell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Fredy R Zypman
- Department of Physics, Yeshiva University, Manhattan, New York 10033, United States
| |
Collapse
|
9
|
Shahgolzari M, Pazhouhandeh M, Milani M, Yari Khosroushahi A, Fiering S. Plant viral nanoparticles for packaging and in vivo delivery of bioactive cargos. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1629. [PMID: 32249552 DOI: 10.1002/wnan.1629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 01/15/2023]
Abstract
Nanoparticles have unique capabilities and considerable promise for many different biological uses. One capability is delivering bioactive cargos to specific cells, tissues, or organisms. Depending on the task, there are multiple variables to consider including nanoparticle selection, targeting strategies, and incorporating cargo so it can be delivered in a biologically active form. One nanoparticle option, genetically controlled plant viral nanoparticles (PVNPs), is highly uniform within a given virus but quite variable between viruses with a broad range of useful properties. PVNPs are flexible and versatile tools for incorporating and delivering a wide range of small or large molecule cargos. Furthermore, PVNPs can be modified to create nanostructures that can solve problems in medical, environmental, and basic research. This review discusses the currently available techniques for delivering bioactive cargos with PVNPs and potential cargos that can be delivered with these strategies. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsoud Pazhouhandeh
- Biotechnology Department, Agricultural Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
10
|
Santoni M, Zampieri R, Avesani L. Plant Virus Nanoparticles for Vaccine Applications. Curr Protein Pept Sci 2020; 21:344-356. [PMID: 32048964 DOI: 10.2174/1389203721666200212100255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/16/2019] [Accepted: 10/19/2019] [Indexed: 12/29/2022]
Abstract
In the rapidly evolving field of nanotechnology, plant virus nanoparticles (pVNPs) are emerging as powerful tools in diverse applications ranging from biomedicine to materials science. The proteinaceous structure of plant viruses allows the capsid structure to be modified by genetic engineering and/or chemical conjugation with nanoscale precision. This means that pVNPs can be engineered to display peptides and proteins on their external surface, including immunodominant peptides derived from pathogens allowing pVNPs to be used for active immunization. In this context, pVNPs are safer than VNPs derived from mammalian viruses because there is no risk of infection or reversion to pathogenicity. Furthermore, pVNPs can be produced rapidly and inexpensively in natural host plants or heterologous production platforms. In this review, we discuss the use of pVNPs for the delivery of peptide antigens to the host immune in pre-clinical studies with the final aim of promoting systemic immunity against the corresponding pathogens. Furthermore, we described the versatility of plant viruses, with innate immunostimulatory properties, in providing a huge natural resource of carriers that can be used to develop the next generation of sustainable vaccines.
Collapse
Affiliation(s)
- Mattia Santoni
- Department of Biotechnology, University of Verona. Strada Le Grazie, 15. 37134 Verona, Italy
| | | | - Linda Avesani
- Department of Biotechnology, University of Verona. Strada Le Grazie, 15. 37134 Verona, Italy
- Diamante srl. Strada Le Grazie, 15. 37134 Verona, Italy
| |
Collapse
|
11
|
Anaya-Plaza E, Aljarilla A, Beaune G, Timonen JVI, de la Escosura A, Torres T, Kostiainen MA. Phthalocyanine-Virus Nanofibers as Heterogeneous Catalysts for Continuous-Flow Photo-Oxidation Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902582. [PMID: 31392780 DOI: 10.1002/adma.201902582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Indexed: 06/10/2023]
Abstract
The generation of highly reactive oxygen species (ROS) at room temperature for application in organic synthesis and wastewater treatment represents a great challenge of the current chemical industry. In fact, the development of biodegradable scaffolds to support ROS-generating active sites is an important prerequisite for the production of environmentally benign catalysts. Herein, the electrostatic cocrystallization of a cationic phthalocyanine (Pc) and negatively charged tobacco mosaic virus (TMV) is described, together with the capacity of the resulting crystals to photogenerate ROS. To this end, a novel peripherally crowded zinc Pc (1) is synthesized. With 16 positive charges, this photosensitizer shows no aqueous aggregation, and is able to act as a molecular glue in the unidimensional assembly of TMV. A step-wise decrease of ionic strength in mixtures of both components results in exceptionally long fibers, constituted by hexagonally bundled viruses thoroughly characterized by electron and confocal microscopy. The fibers are able to produce ROS in a proof-of-concept microfluidic device, where they are immobilized and irradiated in several cycles, showing a resilient performance. The bottom-up approach also enables the light-triggered disassembly of fibers after use. This work represents an important example of a biohybrid material with projected application in light-mediated heterogeneous catalysis.
Collapse
Affiliation(s)
- Eduardo Anaya-Plaza
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Ana Aljarilla
- Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Grégory Beaune
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, Campus de Cantoblanco, 28049, Madrid, Spain
- IMDEA-Nanociencia, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| |
Collapse
|
12
|
Atanasova P, Atanasov V, Wittum L, Southan A, Choi E, Wege C, Kerres J, Eiben S, Bill J. Hydrophobization of Tobacco Mosaic Virus to Control the Mineralization of Organic Templates. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E800. [PMID: 31137720 PMCID: PMC6567237 DOI: 10.3390/nano9050800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022]
Abstract
The robust, anisotropic tobacco mosaic virus (TMV) provides a monodisperse particle size and defined surface chemistry. Owing to these properties, it became an excellent bio-template for the synthesis of diverse nanostructured organic/inorganic functional materials. For selective mineralization of the bio-template, specific functional groups were introduced by means of different genetically encoded amino acids or peptide sequences into the polar virus surface. An alternative approach for TMV surface functionalization is chemical coupling of organic molecules. To achieve mineralization control in this work, we developed a synthetic strategy to manipulate the surface hydrophilicity of the virus through covalent coupling of polymer molecules. Three different types of polymers, namely the perfluorinated (poly(pentafluorostyrene) (PFS)), the thermo-responsive poly(propylene glycol) acrylate (PPGA), and the block-copolymer polyethylene-block-poly(ethylene glycol) were examined. We have demonstrated that covalent attachment of hydrophobic polymer molecules with proper features retains the integrity of the virus structure. In addition, it was found that the degree of the virus hydrophobicity, examined via a ZnS mineralization test, could be tuned by the polymer properties.
Collapse
Affiliation(s)
- Petia Atanasova
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Vladimir Atanasov
- Institute of Chemical Process Engineering, University of Stuttgart, Böblinger Straße 78, 70199 Stuttgart, Germany.
| | - Lisa Wittum
- Institute of Biomaterials and Biological Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany.
| | - Eunjin Choi
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Christina Wege
- Institute of Biomaterials and Biological Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Jochen Kerres
- Institute of Chemical Process Engineering, University of Stuttgart, Böblinger Straße 78, 70199 Stuttgart, Germany.
| | - Sabine Eiben
- Institute of Biomaterials and Biological Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| |
Collapse
|
13
|
Lomonossoff GP, Wege C. TMV Particles: The Journey From Fundamental Studies to Bionanotechnology Applications. Adv Virus Res 2018; 102:149-176. [PMID: 30266172 PMCID: PMC7112118 DOI: 10.1016/bs.aivir.2018.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ever since its initial characterization in the 19th century, tobacco mosaic virus (TMV) has played a prominent role in the development of modern virology and molecular biology. In particular, research on the three-dimensional structure of the virus particles and the mechanism by which these assemble from their constituent protein and RNA components has made TMV a paradigm for our current view of the morphogenesis of self-assembling structures, including viral particles. More recently, this knowledge has been applied to the development of novel reagents and structures for applications in biomedicine and bionanotechnology. In this article, we review how fundamental science has led to TMV being at the vanguard of these new technologies.
Collapse
Affiliation(s)
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
14
|
Narayanan KB, Han SS. Recombinant helical plant virus-based nanoparticles for vaccination and immunotherapy. Virus Genes 2018; 54:623-637. [PMID: 30008053 DOI: 10.1007/s11262-018-1583-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/23/2018] [Indexed: 01/15/2023]
Abstract
Plant virus-based nanoparticles (PVNs) are self-assembled capsid proteins of plant viruses, and can be virus-like nanoparticles (VLPs) or virus nanoparticles (VNPs). Plant viruses showing helical capsid symmetry are used as a versatile platform for the presentation of multiple copies of well-arrayed immunogenic antigens of various disease pathogens. Helical PVNs are non-infectious, biocompatible, and naturally immunogenic, and thus, they are suitable antigen carriers for vaccine production and can trigger humoral and/or cellular immune responses. Furthermore, recombinant PVNs as vaccines and adjuvants can be expressed in prokaryotic and eukaryotic systems, and plant expression systems can be used to produce cost-effective antigenic peptides on the surfaces of recombinant helical PVNs. This review discusses various recombinant helical PVNs based on different plant viral capsid shells that have been developed as prophylactic and/or therapeutic vaccines against bacterial, viral, and protozoal diseases, and cancer.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.,Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea. .,Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
15
|
Röder J, Dickmeis C, Fischer R, Commandeur U. Systemic Infection of Nicotiana benthamiana with Potato virus X Nanoparticles Presenting a Fluorescent iLOV Polypeptide Fused Directly to the Coat Protein. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9328671. [PMID: 29662905 PMCID: PMC5831704 DOI: 10.1155/2018/9328671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/25/2017] [Indexed: 02/01/2023]
Abstract
Plant virus-based nanoparticles can be produced in plants on a large scale and are easily modified to introduce new functions, making them suitable for applications such as vaccination and drug delivery, tissue engineering, and in vivo imaging. The latter is often achieved using green fluorescent protein and its derivatives, but the monovalent fluorescent protein iLOV is smaller and more robust. Here, we fused the iLOV polypeptide to the N-terminus of the Potato virus X (PVX) coat protein, directly or via the Foot-and-mouth disease virus 2A sequence, for expression in Nicotiana benthamiana. Direct fusion of the iLOV polypeptide did not prevent the assembly or systemic spread of the virus and we verified the presence of fusion proteins and iLOV hybrid virus particles in leaf extracts. Compared to wild-type PVX virions, the PVX particles displaying the iLOV peptide showed an atypical, intertwined morphology. Our results confirm that a direct fusion of the iLOV fluorescent protein to filamentous PVX nanoparticles offers a promising tool for imaging applications.
Collapse
Affiliation(s)
- Juliane Röder
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| | - Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| |
Collapse
|
16
|
Röder J, Fischer R, Commandeur U. Engineering Potato Virus X Particles for a Covalent Protein Based Attachment of Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702151. [PMID: 29125698 DOI: 10.1002/smll.201702151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/25/2017] [Indexed: 05/23/2023]
Abstract
Plant virus nanoparticles are often used to display functional amino acids or small peptides, thus serving as building blocks in application areas as diverse as nanoelectronics, bioimaging, vaccination, drug delivery, and bone differentiation. This is most easily achieved by expressing coat protein fusions, but the assembly of the corresponding virus particles can be hampered by factors such as the fusion protein size, amino acid composition, and post-translational modifications. Size constraints can be overcome by using the Foot and mouth disease virus 2A sequence, but the compositional limitations cannot be avoided without the introduction of time-consuming chemical modifications. SpyTag/SpyCatcher technology is used in the present study to covalently attach the Trichoderma reesei endoglucanase Cel12A to Potato virus X (PVX) nanoparticles. The formation of PVX particles is confirmed by western blot, and the ability of the particles to display Cel12A is demonstrated by enzyme-linked immunosorbent assays and transmission electron microscopy. Enzymatic assays show optimal reaction conditions of 50 °C and pH 6.5, and an increased substrate conversion rate compared to free enzymes. It is concluded that PVX displaying the SpyTag can serve as new scaffold for protein display, most notably for proteins with post-translational modifications.
Collapse
Affiliation(s)
- Juliane Röder
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
17
|
Braun M, Gebauer W, Krczal G, Ziegler C, Müller-Renno C, Boonrod K. A simple method to estimate the isoelectric point of modified Tomato bushy stunt virus (TBSV) particles. Electrophoresis 2017; 38:2771-2776. [PMID: 28758677 DOI: 10.1002/elps.201700209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 11/10/2022]
Abstract
We present a simple method to estimate the isoelectric point (pI) of Tomato Bushy Stunt particles. We demonstrate that the combination of agarose gels with different pH buffers can be used to electrophorese the virus particles and their migration patterns can be compared. This method allows us to estimate the pI of the virus particles (wild type, wt, and genetically modified particles) and to monitor the effect of the pI of modified peptide side chains of the viral capsid subunit on the pI of the whole virus particle.
Collapse
Affiliation(s)
- Mario Braun
- RLP Agroscience GmbH, Neustadt/Weinstraße, Germany
| | - Wolfgang Gebauer
- Institute für Molekulare Physiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | | | - Christiane Ziegler
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany
| | - Christine Müller-Renno
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
18
|
González-Gamboa I, Manrique P, Sánchez F, Ponz F. Plant-made potyvirus-like particles used for log-increasing antibody sensing capacity. J Biotechnol 2017. [DOI: 10.1016/j.jbiotec.2017.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Röder J, Fischer R, Commandeur U. Adoption of the 2A Ribosomal Skip Principle to Tobacco Mosaic Virus for Peptide Display. FRONTIERS IN PLANT SCIENCE 2017; 8:1125. [PMID: 28702043 PMCID: PMC5487473 DOI: 10.3389/fpls.2017.01125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/12/2017] [Indexed: 05/20/2023]
Abstract
Plant viruses are suitable as building blocks for nanomaterials and nanoparticles because they are easy to modify and can be expressed and purified using plants or heterologous expression systems. Plant virus nanoparticles have been utilized for epitope presentation in vaccines, for drug delivery, as nanospheres and nanowires, and for biomedical imaging applications. Fluorescent protein fusions have been instrumental for the tagging of plant virus particles. The monomeric non-oxygen-dependent fluorescent protein iLOV can be used as an alternative to green fluorescent protein. In this study, the iLOV sequence was genetically fused either directly or via a glycine-serine linker to the C-terminus of the Tobacco mosaic virus (TMV) coat protein (CP) and also carried an N-terminal Foot-and-mouth disease virus (FMDV) 2A sequence. Nicotiana benthamiana plants were inoculated with recombinant viral vectors and a systemic infection was achieved. The presence of iLOV fusion proteins and hybrid particles was confirmed by western blot analysis and transmission electron microscopy. Our data suggest that TMV-based vectors are suitable for the production of proteins at least as large as iLOV when combined with the FMDV 2A sequence. This approach allowed the simultaneous production of foreign proteins fused to the CP as well as free CP subunits.
Collapse
Affiliation(s)
| | | | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|
20
|
Chen TH, Hu CC, Liao JT, Lee YL, Huang YW, Lin NS, Lin YL, Hsu YH. Production of Japanese Encephalitis Virus Antigens in Plants Using Bamboo Mosaic Virus-Based Vector. Front Microbiol 2017; 8:788. [PMID: 28515719 PMCID: PMC5413549 DOI: 10.3389/fmicb.2017.00788] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022] Open
Abstract
Japanese encephalitis virus (JEV) is among the major threats to public health in Asia. For disease control and prevention, the efficient production of safe and effective vaccines against JEV is in urgent need. In this study, we produced a plant-made JEV vaccine candidate using a chimeric virus particle (CVP) strategy based on bamboo mosaic virus (BaMV) for epitope presentation. The chimeric virus, designated BJ2A, was constructed by fusing JEV envelope protein domain III (EDIII) at the N-terminus of BaMV coat protein, with an insertion of the foot-and-mouth disease virus 2A peptide to facilitate the production of both unfused and epitope-presenting for efficient assembly of the CVP vaccine candidate. The strategy allowed stable maintenance of the fusion construct over long-term serial passages in plants. Immuno-electron microscopy examination and immunization assays revealed that BJ2A is able to present the EDIII epitope on the surface of the CVPs, which stimulated effective neutralizing antibodies against JEV infection in mice. This study demonstrates the efficient production of an effective CVP vaccine candidate against JEV in plants by the BaMV-based epitope presentation system.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Jia-Teh Liao
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Na-Sheng Lin
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan.,Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
21
|
Makarov VV, Kalinina NO. Structure and Noncanonical Activities of Coat Proteins of Helical Plant Viruses. BIOCHEMISTRY (MOSCOW) 2016; 81:1-18. [PMID: 26885578 DOI: 10.1134/s0006297916010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The main function of virus coat protein is formation of the capsid that protects the virus genome against degradation. However, besides the structural function, coat proteins have many additional important activities in the infection cycle of the virus and in the defense response of host plants to viral infection. This review focuses on noncanonical functions of coat proteins of helical RNA-containing plant viruses with positive genome polarity. Analysis of data on the structural organization of coat proteins of helical viruses has demonstrated that the presence of intrinsically disordered regions within the protein structure plays an important role in implementation of nonstructural functions and largely determines the multifunctionality of coat proteins.
Collapse
Affiliation(s)
- V V Makarov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
22
|
Gasanova TV, Petukhova NV, Ivanov PA. Chimeric particles of tobacco mosaic virus as a platform for the development of next-generation nanovaccines. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1995078016020051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Muthamilselvan T, Lee CW, Cho YH, Wu FC, Hu CC, Liang YC, Lin NS, Hsu YH. A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:231-9. [PMID: 25879277 PMCID: PMC11388831 DOI: 10.1111/pbi.12377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system.
Collapse
Affiliation(s)
| | - Chin-Wei Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsin Cho
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Feng-Chao Wu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chuan Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Na-Sheng Lin
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
24
|
McComb RC, Ho CL, Bradley KA, Grill LK, Martchenko M. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine. Vaccine 2015; 33:6745-51. [PMID: 26514421 DOI: 10.1016/j.vaccine.2015.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/26/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines.
Collapse
Affiliation(s)
| | - Chi-Lee Ho
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenneth A Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
25
|
Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants. Vaccines (Basel) 2015; 3:620-37. [PMID: 26350598 PMCID: PMC4586470 DOI: 10.3390/vaccines3030620] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022] Open
Abstract
Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.
Collapse
|
26
|
Ferreira de Lima Neto D, Bonafe CFS, Arns CW. Influence of high hydrostatic pressure on epitope mapping of tobacco mosaic virus coat protein. Viral Immunol 2014; 27:60-74. [PMID: 24605789 DOI: 10.1089/vim.2013.0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the effect of high hydrostatic pressure (HHP) on tobacco mosaic virus (TMV), a model virus in immunology and one of the most studied viruses to date. Exposure to HHP significantly altered the recognition epitopes when compared to sera from mice immunized with native virus. These alterations were studied further by combining HHP with urea or low temperature and then inoculating the altered virions into Balb-C mice. The antibody titers and cross-reactivity of the resulting sera were determined by ELISA. The antigenicity of the viral particles was maintained, as assessed by using polyclonal antibodies against native virus. The antigenicity of canonical epitopes was maintained, although binding intensities varied among the treatments. The patterns of recognition determined by epitope mapping were cross checked with the prediction algorithms for the TMVcp amino acid sequence to infer which alterations had occurred. These findings suggest that different cleavage sites were exposed after the treatments and this was confirmed by epitope mapping using sera from mice immunized with virus previously exposed to HHP.
Collapse
Affiliation(s)
- Daniel Ferreira de Lima Neto
- 1 Laboratório de Virologia Animal, Departamentos de 1Genética, Evolução e Bioagentes, e Universidade Estadual de Campinas (UNICAMP) , Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | | | | |
Collapse
|
27
|
Nap R, Božič A, Szleifer I, Podgornik R. The Role of Solution Conditions in the Bacteriophage PP7 Capsid Charge Regulation. Biophys J 2014; 107:1970-1979. [DOI: 10.1016/j.bpj.2014.08.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/18/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022] Open
|
28
|
Li C, Yamagishi N, Kaido M, Yoshikawa N. Presentation of epitope sequences from foreign viruses on the surface of apple latent spherical virus particles. Virus Res 2014; 190:118-26. [PMID: 25058477 DOI: 10.1016/j.virusres.2014.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 02/07/2023]
Abstract
Apple latent spherical virus (ALSV) has small isometric particles that are comprised of two single-stranded RNA species (RNA1 and RNA2) and three capsid proteins (Vp25, Vp20, and Vp24). We constructed ALSV vectors for presenting foreign peptides on the surface of virus particles. In these vectors, peptides can be fused to either of two C-terminal regions of Vp20 (amino acid positions between G171 and P172 or between P172 and L173) or the C-terminus (T192) of Vp24. An ALSV vector presenting the epitope sequences of the coat protein (CP) of zucchini yellow mosaic virus (ZYMV) could systemically infect host plants and was specifically recognized by antiserum against ZYMV by ELISA, immunoelectron microscopy, and immunoblotting. RT-PCR showed that the epitope sequences up to 20 amino acids were stably maintained in the chimeric ALSV for more than 10 serial passages and at least six months. Purified chimeric ALSV particles induced an immune response and the production of antibodies against ZYMV-CP in rabbits. The ALSV vector was also used for expression of an epitope from VP1 of foot-and-mouth disease virus.
Collapse
Affiliation(s)
- C Li
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - N Yamagishi
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - M Kaido
- Department of Bioresource, Kyoto University, Kyoto 606-8502, Japan
| | - N Yoshikawa
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan.
| |
Collapse
|
29
|
Eiben S, Stitz N, Eber F, Wagner J, Atanasova P, Bill J, Wege C, Jeske H. Tailoring the surface properties of tobacco mosaic virions by the integration of bacterially expressed mutant coat protein. Virus Res 2014; 180:92-6. [DOI: 10.1016/j.virusres.2013.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 12/19/2022]
|
30
|
McCormick AA, Palmer KE. Genetically engineered Tobacco mosaic virus as nanoparticle vaccines. Expert Rev Vaccines 2014; 7:33-41. [DOI: 10.1586/14760584.7.1.33] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Abstract
The capsids of most plant viruses are simple and robust structures consisting of multiple copies of one or a few types of protein subunit arranged with either icosahedral or helical symmetry. In many cases, capsids can be produced in large quantities either by the infection of plants or by the expression of the subunit(s) in a variety of heterologous systems. In view of their relative simplicity, stability and ease of production, plant virus particles or virus-like particles (VLPs) have attracted attention as potential reagents for applications in bionanotechnology. As a result, plant virus particles have been subjected to both genetic and chemical modification, have been used to encapsulate foreign material and have, themselves, been incorporated into supramolecular structures.
Collapse
Affiliation(s)
- George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK,
| | | |
Collapse
|
32
|
Saunders K, Lomonossoff GP. Exploiting plant virus-derived components to achieve in planta expression and for templates for synthetic biology applications. THE NEW PHYTOLOGIST 2013; 200:16-26. [PMID: 23452220 PMCID: PMC7167714 DOI: 10.1111/nph.12204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/31/2013] [Indexed: 05/04/2023]
Abstract
This review discusses the varying roles that have been played by many plant-viral regulatory sequences and proteins in the creation of plant-based expression systems and virus particles for use in nanotechnology. Essentially, there are two ways of expressing an exogenous protein: the creation of transgenic plants possessing a stably integrated gene construction, or the transient expression of the desired gene following the infiltration of the gene construct. Both depend on disarmed strains of Agrobacterium tumefaciens to deliver the created gene construction into cell nuclei, usually through the deployment of virus-derived components. The importance of efficient mRNA translation in the latter process is highlighted. Plant viruses replicate to sustain an infection to promote their survival. The major product of this, the virus particle, is finding increasing roles in the emerging field of bionanotechnology. One of the major products of plant-viral expression is the virus-like particle (VLP). These are increasingly playing a role in vaccine development. Similarly, many VLPs are suitable for the investigation of the many facets of the emerging field of synthetic biology, which encompasses the design and construction of new biological functions and systems not found in nature. Genetic and chemical modifications to plant-generated VLPs serve as ideal starter templates for many downstream synthetic biology applications.
Collapse
Affiliation(s)
- Keith Saunders
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - George P. Lomonossoff
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
33
|
Alonso J, Górzny M, Bittner A. The physics of tobacco mosaic virus and virus-based devices in biotechnology. Trends Biotechnol 2013; 31:530-8. [DOI: 10.1016/j.tibtech.2013.05.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/23/2013] [Accepted: 05/31/2013] [Indexed: 12/16/2022]
|
34
|
Alonso JM, Ondarçuhu T, Bittner AM. Integration of plant viruses in electron beam lithography nanostructures. NANOTECHNOLOGY 2013; 24:105305. [PMID: 23435288 DOI: 10.1088/0957-4484/24/10/105305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Tobacco mosaic virus (TMV) is the textbook example of a virus, and also of a self-assembling nanoscale structure. This tubular RNA/protein architecture has also found applications as biotemplate for the synthesis of nanomaterials such as wires, as tubes, or as nanoparticle assemblies. Although TMV is, being a biological structure, quite resilient to environmental conditions (temperature, chemicals), it cannot be processed in electron beam lithography (eBL) fabrication, which is the most important and most versatile method of nanoscale structuring. Here we present adjusted eBL-compatible processes that allow the incorporation of TMV in nanostructures made of positive and negative tone eBL resists. The key steps are covering TMV by polymer resists, which are only heated to 50 °C, and development (selective dissolution) in carefully selected organic solvents. We demonstrate the post-lithography biochemical functionality of TMV by selective immunocoating of the viral particles, and the use of immobilized TMV as direct immunosensor. Our modified eBL process should be applicable to incorporate a wide range of sensitive materials in nanofabrication schemes.
Collapse
Affiliation(s)
- Jose M Alonso
- CIC nanoGUNE Consolider, E-20018, Donostia-San Sebastián, Spain.
| | | | | |
Collapse
|
35
|
Zeitler B, Bernhard A, Meyer H, Sattler M, Koop HU, Lindermayr C. Production of a de-novo designed antimicrobial peptide in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2013; 81:259-72. [PMID: 23242916 DOI: 10.1007/s11103-012-9996-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
Antimicrobial peptides are important defense compounds of higher organisms that can be used as therapeutic agents against bacterial and/or viral infections. We designed several antimicrobial peptides containing hydrophobic and positively charged clusters that are active against plant and human pathogens. Especially peptide SP1-1 is highly active with a MIC value of 0.1 μg/ml against Xanthomonas vesicatoria, Pseudomonas corrugata and Pseudomonas syringae pv syringae. However, for commercial applications high amounts of peptide are necessary. The synthetic production of peptides is still quite expensive and, depending on the physico-chemical features, difficult. Therefore we developed a plant/tobacco mosaic virus-based production system following the 'full virus vector strategy' with the viral coat protein as fusion partner for the designed antimicrobial peptide. Infection of Nicotiana benthamiana plants with such recombinant virus resulted in production of huge amounts of virus particles presenting the peptides all over their surface. After extraction of recombinant virions, peptides were released from the coat protein by chemical cleavage. A protocol for purification of the antimicrobial peptides using high resolution chromatographic methods has been established. Finally, we yielded up to 0.025 mg of peptide per g of infected leaf biomass. Mass spectrometric and NMR analysis revealed that the in planta produced peptide differs from the synthetic version only in missing of N-terminal amidation. But its antimicrobial activity was in the range of the synthetic one. Taken together, we developed a protocol for plant-based production and purification of biologically active, hydrophobic and positively charged antimicrobial peptide.
Collapse
Affiliation(s)
- Benjamin Zeitler
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Munich, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Pushko P, Pumpens P, Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013; 56:141-65. [DOI: 10.1159/000346773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Chen Q, Lai H. Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 2013; 9:26-49. [PMID: 22995837 PMCID: PMC3667944 DOI: 10.4161/hv.22218] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/06/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023] Open
Abstract
Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of "humanized" glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future.
Collapse
Affiliation(s)
- Qiang Chen
- Center for Infectious Diseases and Vaccinology, Biodesign Institute at Arizona State University, Tempe, AZ USA.
| | | |
Collapse
|
38
|
Cerovska N, Hoffmeisterova H, Moravec T, Plchova H, Folwarczna J, Synkova H, Ryslava H, Ludvikova V, Smahel M. Transient expression of Human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants. J Biosci 2012; 37:125-33. [PMID: 22357210 DOI: 10.1007/s12038-011-9177-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/13/2011] [Indexed: 01/29/2023]
Abstract
Transient expression of foreign genes based on plant viral vectors is a suitable system for the production of relevant immunogens that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present study the epitope derived from HPV-16 L2 minor capsid protein (amino acids 108-120) was expressed from Potato virus X (PVX)-based vector pGR106 as N- or C-terminal fusion with the PVX coat protein (PVX CP) in transgenic Nicotiana benthamiana plants. The fusion protein L2 108-120-PVX CP was successfully expressed in plants at a level of 170 mg/kg of fresh leaf tissue. The C-terminal fusion protein PVX CP- L2 108-120 was expressed using mutated vector sequence to avoid homologous recombination at a level of 8 mg/kg of fresh leaf tissue. Immunogenicity of L2 108-120-PVX CP virus-like particles was tested after immunization of mice by subcutaneous injection or tattoo administration. In animal sera the antibodies against the PVX CP and the L2 108-120 epitope were found after both methods of vaccine delivery.
Collapse
Affiliation(s)
- Noemi Cerovska
- Institute of Experimental Botany, v. v. i., Academy of Sciences of Czech Republic, Na Karlovce 1a, 16000 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee LA, Nguyen QL, Wu L, Horvath G, Nelson RS, Wang Q. Mutant Plant Viruses with Cell Binding Motifs Provide Differential Adhesion Strengths and Morphologies. Biomacromolecules 2012; 13:422-31. [DOI: 10.1021/bm2014558] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- L. Andrew Lee
- Department of Chemistry
and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Quyen L. Nguyen
- Department of Chemistry
and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Laying Wu
- College of Science and Mathematics, Montclair State University, 1 Normal Avenue, Montclair,
New Jersey 07043, United States
| | - Gary Horvath
- Department of Chemistry
and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Richard S. Nelson
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma
73401, United States
| | - Qian Wang
- Department of Chemistry
and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
40
|
Abstract
The capsids of most plant viruses are simple and robust structures consisting of multiple copies of one or a few types of protein subunit arranged with either icosahedral or helical symmetry. In many cases, capsids can be produced in large quantities either by the infection of plants or by the expression of the subunit(s) in a variety of heterologous systems. In view of their relative simplicity, stability and ease of production, plant virus particles or virus-like particles (VLPs) have attracted attention as potential reagents for applications in bionanotechnology. As a result, plant virus particles have been subjected to both genetic and chemical modification, have been used to encapsulate foreign material and have, themselves, been incorporated into supramolecular structures.
Collapse
|
41
|
Lee LA, Nguyen HG, Wang Q. Altering the landscape of viruses and bionanoparticles. Org Biomol Chem 2011; 9:6189-95. [PMID: 21750835 DOI: 10.1039/c1ob05700f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, protein-based nanoparticles or bionanoparticles (BNPs), have been used as primary building blocks to generate ornate nanomaterials for a wide-range of applications. Over the past fifty years, numerous BNPs have been chemically modified or genetically engineered to function as smart drug/gene delivery vehicles, advanced vaccine vehicles, and isolated reaction vessels for inorganic, metallic, and semi-conductive depositions. These studies have contributed invaluable insights to the expansive capabilities of these simple, yet highly robust, nanosized building materials. Here we highlight some of the recent progress in the chemical modifications of BNPs and hopefully inspire the development of many new materials in the near future.
Collapse
Affiliation(s)
- L Andrew Lee
- University of South Carolina, Department of Chemistry and Biochemistry and Nanocenter, Columbia, SC 29208, USA
| | | | | |
Collapse
|
42
|
Yaroslavov AA, Kaplan IB, Erokhina TN, Morozov SY, Solovyev AG, Leshchiner AD, Rakhnyanskaya AA, Malinin AS, Stepanova LA, Kiselev OI, Atabekov JG. A new method for producing biologically active nanocomplexes by a noncovalent conjugation of proteins with viral particles. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:496-503. [DOI: 10.1134/s1068162011040169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Mueller A, Eber FJ, Azucena C, Petershans A, Bittner AM, Gliemann H, Jeske H, Wege C. Inducible site-selective bottom-up assembly of virus-derived nanotube arrays on RNA-equipped wafers. ACS NANO 2011; 5:4512-4520. [PMID: 21591634 DOI: 10.1021/nn103557s] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Tobacco mosaic virus (TMV) is a tube-shaped, exceptionally stable plant virus, which is among the biomolecule complexes offering most promising perspectives for nanotechnology applications. Every viral nanotube self-assembles from a single RNA strand and numerous identical coat protein (CP) subunits. Here we demonstrate that biotechnologically engineered RNA species containing the TMV origin of assembly can be selectively attached to solid surfaces via one end and govern the bottom-up growth of surface-linked TMV-like nanotubes in situ on demand. SiO(2) wafers patterned by polymer blend lithography were modified in a chemically selective manner, which allowed positioning of in vitro produced RNA scaffolds into predefined patches on the 100-500 nm scale. The RNA operated as guiding strands for the self-assembly of spatially ordered nanotube 3D arrays on the micrometer scale. This novel approach may promote technically applicable production routes toward a controlled integration of multivalent biotemplates into miniaturized devices to functionalize poorly accessible components prior to use. Furthermore, the results mark a milestone in the experimental verification of viral nucleoprotein complex self-assembly mechanisms.
Collapse
Affiliation(s)
- Anna Mueller
- Department of Molecular Biology and Virology of Plants, Institute of Biology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zilian E, Maiss E. An optimized mRFP-based bimolecular fluorescence complementation system for the detection of protein-protein interactions in planta. J Virol Methods 2011; 174:158-65. [PMID: 21473882 DOI: 10.1016/j.jviromet.2011.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/22/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
Abstract
An existing bimolecular fluorescence complementation (BiFC) system, based on a monomeric red fluorescent protein (mRFP), has been optimized for the investigation of protein-protein interactions in planta. The expression plasmids, encoding the N-terminal amino acids (aa) 1-168 and the C-terminal aa 169-225 of the mRFP, allow N- or C-terminal fusion of a split mRFP, with the genes of interest. Two major improvements over the original vectors have been made. Firstly, the coding sequence of a GGGSGGG-linker has been integrated between mRFP sequences and the genes of interest. Secondly, a modified mini binary vector (∼3.5 kb) was introduced as the backbone for the plant expression plasmids. Based on the results of yeast two-hybrid studies with plant viral proteins, interaction of viral proteins was tested in Nicotiana benthamiana plants and monitored by confocal laser scanning microscopy (CLSM). Plum pox virus coat protein and mutants thereof served as controls. The system was validated using the N-protein of Capsicum chlorosis virus for which a self-interaction was shown for the first time, the Tobacco mosaic virus coat protein and BC1 and BV1 of the Tomato yellow leaf curl Thailand virus. This optimized BiFC system provides a convenient alternative to other BiFC, as well as yeast two-hybrid assays, for detecting protein-protein interactions.
Collapse
Affiliation(s)
- Eva Zilian
- Gottfried Wilhelm Leibniz University of Hannover, Institute of Plant Diseases and Plant Protection, Hannover, Germany
| | | |
Collapse
|
45
|
Kadri A, Maiss E, Amsharov N, Bittner AM, Balci S, Kern K, Jeske H, Wege C. Engineered Tobacco mosaic virus mutants with distinct physical characteristics in planta and enhanced metallization properties. Virus Res 2011; 157:35-46. [PMID: 21310199 DOI: 10.1016/j.virusres.2011.01.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/25/2011] [Accepted: 01/29/2011] [Indexed: 12/19/2022]
Abstract
Tobacco mosaic virus mutants were engineered to alter either the stability or surface chemistry of the virion: within the coat protein, glutamic acid was exchanged for glutamine in a buried portion to enhance the inter-subunit binding stability (E50Q), or a hexahistidine tract was fused to the surface-exposed carboxy terminus of the coat protein (6xHis). Both mutant viruses were expected to possess specific metal ion affinities. They accumulated to high titers in plants, induced distinct phenotypes, and their physical properties during purification differed from each other and from wild type (wt) virus. Whereas 6xHis and wt virions contained RNA, the majority of E50Q protein assembled essentially without RNA into rods which frequently exceeded 2 μm in length. Electroless deposition of nickel metallized the outer surface of 6xHis virions, but the central channel of E50Q rods, with significantly more nanowires of increased length in comparison to those formed in wtTMV.
Collapse
Affiliation(s)
- Anan Kadri
- Universität Stuttgart, Institute of Biology, Department of Plant Molecular Biology and Plant Virology, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The 'easiest' vaccines, base on production of neutralizing antibodies, have been made. With the emergence of chronic diseases, vaccine developers have understood the importance to trigger an efficient cellular mediated immune response (CTL response) to respond to this medical need. Several options are currently in development and the utilization of plant virus as vaccine platform for the trigger of a CTL response is considered as an interesting avenue. The highly ordered structures of plant viruses are good triggers of the innate immune system, which in turn, is used to initiate an immune response to a vaccine target. It is likely that plant viruses will play an important role in the development of the vaccine of the futures even if there is still several challenges to face.
Collapse
|
47
|
Li M, Li P, Song R, Xu Z. An induced hypersensitive-like response limits expression of foreign peptides via a recombinant TMV-based vector in a susceptible tobacco. PLoS One 2010; 5:e15087. [PMID: 21124743 PMCID: PMC2993970 DOI: 10.1371/journal.pone.0015087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/19/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND By using tobacco mosaic virus (TMV)-based vectors, foreign epitopes of the VP1 protein from food-and-month disease virus (FMDV) could be fused near to the C-terminus of the TMV coat protein (CP) and expressed at high levels in susceptible tobacco plants. Previously, we have shown that the recombinant TMV vaccines displaying FMDV VP1 epitopes could generate protection in guinea pigs and swine against the FMDV challenge. Recently, some recombinant TMV, such as TMVFN20 that contains an epitope FN20 from the FMDV VP1, were found to induce local necrotic lesions (LNL) on the inoculated leaves of a susceptible tobacco, Nicotiana tabacum Samsun nn. This hypersensitive-like response (HLR) blocked amplification of recombinant TMVFN20 in tobacco and limited the utility of recombinant TMV vaccines against FMDV. METHODOLOGY/PRINCIPAL FINDINGS Here we investigate the molecular mechanism of the HLR in the susceptible Samsun nn. Histochemical staining analyses show that these LNL are similar to those induced in a resistant tobacco Samsun NN inoculated with wild type (wt) TMV. The recombinant CP subunits are specifically related to the HLR. Interestingly, this HLR in Samsun nn (lacking the N/N'-gene) was able to be induced by the recombinant TMV at both 25°C and 33°C, whereas the hypersensitive response (HR) in the resistant tobacco plants induced by wt TMV through the N/N'-gene pathways only at a permissive temperature (below 30°C). Furthermore, we reported for the first time that some of defense response (DR)-related genes in tobacco were transcriptionally upregulated during HLR. CONCLUSIONS Unlike HR, HLR is induced in the susceptible tobacco through N/N'-gene independent pathways. Induction of the HLR is associated with the expression of the recombinant CP subunits and upregulation of the DR-related genes.
Collapse
Affiliation(s)
- Mangmang Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhengkai Xu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
48
|
Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL. Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 2010; 9:859-76. [PMID: 20673010 DOI: 10.1586/erv.10.85] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the molecular farming area, transient expression approaches for pharmaceutical proteins production, mainly recombinant monoclonal antibodies and vaccines, were developed almost two decades ago and, to date, these systems basically depend on Agrobacterium-mediated delivery and virus expression machinery. We survey here the current state-of-the-art of this research field. Several vectors have been designed on the basis of DNA- and RNA-based plant virus genomes and viral vectors are used both as single- and multicomponent expression systems in different combinations depending on the protein of interest. The obvious advantages of these systems are ease of manipulation, speed, low cost and high yield of proteins. In addition, Agrobacterium-mediated expression also allows the production in plants of complex proteins assembled from subunits. Currently, the transient expression methods are preferential over any other transgenic system for the exploitation of large and unrestricted numbers of plants in a contained environment. By designing optimal constructs and related means of delivery into plant cells, the overall technology plan considers scenarios that envisage high yield of bioproducts and ease in monitoring the whole spectrum of upstream production, before entering good manufacturing practice facilities. In this way, plant-derived bioproducts show promise of high competitiveness towards classical eukaryotic cell factory systems.
Collapse
Affiliation(s)
- Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | |
Collapse
|
49
|
Grasso S, Santi L. Viral nanoparticles as macromolecular devices for new therapeutic and pharmaceutical approaches. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2010; 2:161-178. [PMID: 21383892 PMCID: PMC3047266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 06/28/2010] [Indexed: 05/30/2023]
Abstract
Viral nanoparticles are molecular cages derived from the assembly of viral structural proteins. They bear several peculiar features as proper dimensions for nanoscale applications, size homogeneity, an intrinsic robustness, a large surface area to mass ratio and a defined, repetitive and symmetric macromolecular organization. A number of expression strategies, using various biological systems, efficiently enable the production of significant quantities of viral nanoparticles, which can be easily purified. Genetic engineering and in vitro chemical modification consent to manipulate of the outer and inner surface of these nanocages, allowing specific changes of the original physico-chemical and biological properties. Moreover, several studies have focused on the in vitro disassembly/reassembly and gating of viral nanoparticles, with the aim of encapsulating exogenous molecules inside and therefore improving their potential as containment delivery devices. These technological progresses have led research to a growing variety of applications in different fields such as biomedicine, pharmacology, separation science, catalytic chemistry, crop pest control and material science. In this review we will focus on the strategies used to modify the characteristics of viral nanoparticles and on their use in biomedicine and pharmacology.
Collapse
Affiliation(s)
- Simone Grasso
- Department of Biology, University of Rome Tor Vergata Rome, Italy
| | | |
Collapse
|
50
|
Uhde-Holzem K, Schlösser V, Viazov S, Fischer R, Commandeur U. Immunogenic properties of chimeric potato virus X particles displaying the hepatitis C virus hypervariable region I peptide R9. J Virol Methods 2010; 166:12-20. [PMID: 20138085 DOI: 10.1016/j.jviromet.2010.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 01/20/2010] [Accepted: 01/25/2010] [Indexed: 12/11/2022]
Abstract
The immunogenic properties of chimeric potato virus X (PVX) particles engineered to display the synthetic R9 peptide have been evaluated. The R9 peptide is a consensus sequence derived from diverse variants of the hypervariable region 1 from the hepatitis C virus (HCV) envelope protein E2. Two different constructs were designed, with the R9 peptide expressed either as an indirect fusion via the ribosomal skip 2A (PVX(R9-2A)CP) sequence or as a direct PVX coat protein fusion (PVX(R9)CP). Systemic infection of Nicotiana benthamiana plants was only achieved with PVX(R9-2A)CP constructs, and the presence of the R9 peptide was detected in extracts from these plants by ELISA, Western blot and electron microscopy using specific anti-R9 antibodies. The virus particles were recovered at yields of up to 125mg/kg from leaf material. BALB/c mice immunized with purified PVX(R9-2A)CP particles developed specific anti-R9 IgG titers of up to 1:50,000. Monoclonal anti-R9 antibodies were obtained from the spleen of a mouse immunized with PVX(R9-2A)CP particles and characterized by Western blot and electron microscopy. Sera from patients infected chronically with HCV were found to react specifically with PVX(R9-2A)CP particles in 35% of cases.
Collapse
Affiliation(s)
- Kerstin Uhde-Holzem
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|