1
|
Jackson RW, Smathers CM, Robart AR. General Strategies for RNA X-ray Crystallography. Molecules 2023; 28:2111. [PMID: 36903357 PMCID: PMC10004510 DOI: 10.3390/molecules28052111] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
An extremely small proportion of the X-ray crystal structures deposited in the Protein Data Bank are of RNA or RNA-protein complexes. This is due to three main obstacles to the successful determination of RNA structure: (1) low yields of pure, properly folded RNA; (2) difficulty creating crystal contacts due to low sequence diversity; and (3) limited methods for phasing. Various approaches have been developed to address these obstacles, such as native RNA purification, engineered crystallization modules, and incorporation of proteins to assist in phasing. In this review, we will discuss these strategies and provide examples of how they are used in practice.
Collapse
Affiliation(s)
| | | | - Aaron R. Robart
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 20506, USA
| |
Collapse
|
2
|
Kiliszek A, Pluta M, Bejger M, Rypniewski W. Structure and thermodynamics of a UGG motif interacting with Ba2+ and other metal ions: accommodating changes in the RNA structure and the presence of a G(syn)-G(syn) pair. RNA (NEW YORK, N.Y.) 2022; 29:rna.079414.122. [PMID: 36319090 PMCID: PMC9808570 DOI: 10.1261/rna.079414.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The self-complementary triplet 5'UGG3'/5'UGG3' is a particular structural motif containing noncanonical G-G pair and two U·G wobble pairs. It constitutes a specific structural and electrostatic environment attracting metal ions, particularly Ba2+ ions. Crystallographic research has shown that two Ba2+ cations are located in the major groove of the helix and interact directly with the UGG triplet. A comparison with the unliganded structure has revealed global changes in the RNA structure in the presence of metal ions, whereas thermodynamic measurements have shown increased stability. Moreover, in the structure with Ba2+, an unusual noncanonical G(syn)-G(syn) pair is observed instead of the common G(anti)-G(syn). We further elucidate the metal binding properties of the UGG/UGG triplet by performing crystallographic and thermodynamic studies using DSC and UV melting with other metal ions. The results explain the preferences of the UGG sequence for Ba2+ cations and point to possible applications of this metal-binding propensity.
Collapse
|
3
|
Ruszkowska A, Zheng YY, Mao S, Ruszkowski M, Sheng J. Structural Insights Into the 5′UG/3′GU Wobble Tandem in Complex With Ba2+ Cation. Front Mol Biosci 2022; 8:762786. [PMID: 35096964 PMCID: PMC8793689 DOI: 10.3389/fmolb.2021.762786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
G•U wobble base pair frequently occurs in RNA structures. The unique chemical, thermodynamic, and structural properties of the G•U pair are widely exploited in RNA biology. In several RNA molecules, the G•U pair plays key roles in folding, ribozyme catalysis, and interactions with proteins. G•U may occur as a single pair or in tandem motifs with different geometries, electrostatics, and thermodynamics, further extending its biological functions. The metal binding affinity, which is essential for RNA folding, catalysis, and other interactions, differs with respect to the tandem motif type due to the different electrostatic potentials of the major grooves. In this work, we present the crystal structure of an RNA 8-mer duplex r[UCGUGCGA]2, providing detailed structural insights into the tandem motif I (5′UG/3′GU) complexed with Ba2+ cation. We compare the electrostatic potential of the presented motif I major groove with previously published structures of tandem motifs I, II (5′GU/3′UG), and III (5′GG/3′UU). A local patch of a strongly negative electrostatic potential in the major groove of the presented structure forms the metal binding site with the contributions of three oxygen atoms from the tandem. These results give us a better understanding of the G•U tandem motif I as a divalent metal binder, a feature essential for RNA functions.
Collapse
Affiliation(s)
| | - Ya Ying Zheng
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Song Mao
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Milosz Ruszkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
4
|
Kinetic Mechanism of RNA Helix-Terminal Basepairing-A Kinetic Minima Network Analysis. Biophys J 2019; 117:1674-1683. [PMID: 31590890 DOI: 10.1016/j.bpj.2019.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022] Open
Abstract
RNA functions are often kinetically controlled. The folding kinetics of RNAs involves global structural changes and local nucleotide movement, such as base flipping. The most elementary step in RNA folding is the closing and opening of a basepair. By integrating molecular dynamics simulation, master equation, and kinetic Monte Carlo simulation, we investigate the kinetics mechanism of RNA helix-terminal basepairing. The study reveals a six-state folding scheme with three dominant folding pathways of tens, hundreds, and thousands of nanoseconds of folding timescales, respectively. The overall kinetics is rate limited by the detrapping of a misfolded state with the overall folding time of 10-5 s. Moreover, the analysis examines the different roles of the various driving forces, such as the basepairing and stacking interactions and the ion binding/dissociation effects on structural changes. The results may provide useful insights for developing a basepair opening/closing rate model and further kinetics models of large RNAs.
Collapse
|
5
|
Ghosh S, Chatterjee A, Bhattacharya S. Accelerated Construction of Kinetic Network Model of Biomolecules Using Steered Molecular Dynamics. J Chem Theory Comput 2018; 14:5393-5405. [PMID: 30212629 DOI: 10.1021/acs.jctc.8b00398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new class of rare event acceleration techniques based on steered molecular dynamics (SMD) simulations is introduced. A stretching force applied on a biomolecule causes it to access large end-to-end distances. Under these conditions the biomolecule undergoes rapid conformational changes that are rare at zero-force conditions. A theory describing kinetics of a biomolecule at various stretching forces is presented. Using the theory, a master-Markov state model (master-MSM) is constructed from rates frequently accessed over a small range of force conditions. The master-MSM is shown to be applicable over a wide range of force conditions. We demonstrate application of the theory to three different biomolecular systems, namely, deca-alanine, TBA (thrombin binding aptamer), and a RNA hairpin. The master-MSM is used to estimate the kinetics at zero-force conditions, i.e., on the unbiased free-energy landscape, resulting inasmuch as 2-6 orders-of-magnitude speed-up over standard molecular dynamics.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Physics , Indian Institute of Technology Guwahati , Guwahati , India 781039
| | - Abhijit Chatterjee
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai , India 400076
| | - Swati Bhattacharya
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai , India 400076
| |
Collapse
|
6
|
Pechlaner M, Dominguez-Martin A, Sigel RKO. Influence of pH and Mg(ii) on the catalytic core domain 5 of a bacterial group II intron. Dalton Trans 2018; 46:3989-3995. [PMID: 28265619 DOI: 10.1039/c6dt04784j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA molecules fold into complex structures that allow them to perform specific functions. To compensate the relative lack of diversity of functional groups within nucleotides, metal ions work as crucial co-factors. In addition, shifted pKas are observed in RNA, enabling acid-base reactions at ambient pH. The central catalytic domain 5 (D5) hairpin of the Azotobacter vinelandii group II intron undergoes both metal ion binding and pH dependence, presumably playing an important functional role in the ribozyme's reaction. By NMR spectroscopy we have here characterized the metal ion binding sites and affinities for the hairpin's internal G-A mismatch, bulge, and pentaloop. The influence of Mg(ii) and pH on the local conformation of the catalytically crucial region is also explored by fluorescence spectroscopy.
Collapse
Affiliation(s)
- M Pechlaner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - A Dominguez-Martin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - R K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| |
Collapse
|
7
|
Gómez Ramos LM, Degtyareva NN, Kovacs NA, Holguin SY, Jiang L, Petrov AS, Biesiada M, Hu MY, Purzycka KJ, Arya DP, Williams LD. Eukaryotic Ribosomal Expansion Segments as Antimicrobial Targets. Biochemistry 2017; 56:5288-5299. [PMID: 28895721 DOI: 10.1021/acs.biochem.7b00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diversity in eukaryotic rRNA structure and function offers possibilities of therapeutic targets. Unlike ribosomes of prokaryotes, eukaryotic ribosomes contain species-specific rRNA expansion segments (ESs) with idiosyncratic structures and functions that are essential and specific to some organisms. Here we investigate expansion segment 7 (ES7), one of the largest and most variable expansions of the eukaryotic ribosome. We hypothesize that ES7 of the pathogenic fungi Candida albicans (ES7CA) could be a prototypic drug target. We show that isolated ES7CA folds reversibly to a native-like state. We developed a fluorescence displacement assay using an RNA binding fluorescent probe, F-neo. F-neo binds tightly to ES7CA with a Kd of 2.5 × 10-9 M but binds weakly to ES7 of humans (ES7HS) with a Kd estimated to be greater than 7 μM. The fluorescence displacement assay was used to investigate the affinities of a library of peptidic aminosugar conjugates (PAs) for ES7CA. For conjugates with highest affinities for ES7CA (NeoRH, NeoFH, and NeoYH), the lowest dose needed to induce mortality in C. albicans (minimum inhibitory concentration, MIC) was determined. PAs with the lowest MIC values were tested for cytotoxicity in HEK293T cells. Molecules with high affinity for ES7CA in vitro induce mortality in C. albicans but not in HEK293T cells. The results are consistent with the hypothesis that ESs represent useful targets for chemotherapeutics directed against eukaryotic pathogens.
Collapse
Affiliation(s)
- Lizzette M Gómez Ramos
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 315 Ferst Drive NW, Atlanta, Georgia 30332-0363, United States.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Natalya N Degtyareva
- NUBAD, LLC , 900 B West Farris Road, Greenville, South Carolina 29605, United States
| | - Nicholas A Kovacs
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 315 Ferst Drive NW, Atlanta, Georgia 30332-0363, United States
| | - Stefany Y Holguin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Liuwei Jiang
- Department of Chemistry, Clemson University , 436 Hunter Laboratories, Clemson, South Carolina 29634-0973, United States
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 315 Ferst Drive NW, Atlanta, Georgia 30332-0363, United States
| | - Marcin Biesiada
- RNA Structure and Function Laboratory, Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan 61-704, Poland
| | - Michael Y Hu
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 315 Ferst Drive NW, Atlanta, Georgia 30332-0363, United States
| | - Katarzyna J Purzycka
- RNA Structure and Function Laboratory, Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan 61-704, Poland
| | - Dev P Arya
- NUBAD, LLC , 900 B West Farris Road, Greenville, South Carolina 29605, United States.,Department of Chemistry, Clemson University , 436 Hunter Laboratories, Clemson, South Carolina 29634-0973, United States
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 315 Ferst Drive NW, Atlanta, Georgia 30332-0363, United States
| |
Collapse
|
8
|
Hayatshahi H, Roe DR, Galindo-Murillo R, Hall KB, Cheatham TE. Computational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA. J Phys Chem B 2017; 121:451-462. [PMID: 27983843 PMCID: PMC5278497 DOI: 10.1021/acs.jpcb.6b08764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/15/2016] [Indexed: 01/24/2023]
Abstract
An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results.
Collapse
Affiliation(s)
- Hamed
S. Hayatshahi
- Department
of Medicinal Chemistry, College of Pharmacy,
The University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112-5820, United States
| | - Daniel R. Roe
- Department
of Medicinal Chemistry, College of Pharmacy,
The University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112-5820, United States
| | - Rodrigo Galindo-Murillo
- Department
of Medicinal Chemistry, College of Pharmacy,
The University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112-5820, United States
| | - Kathleen B. Hall
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Thomas E. Cheatham
- Department
of Medicinal Chemistry, College of Pharmacy,
The University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112-5820, United States
| |
Collapse
|
9
|
Gómez Ramos LM, Smeekens JM, Kovacs NA, Bowman JC, Wartell RM, Wu R, Williams LD. Yeast rRNA Expansion Segments: Folding and Function. J Mol Biol 2016; 428:4048-4059. [PMID: 27521697 DOI: 10.1016/j.jmb.2016.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Divergence between prokaryotic and eukaryotic ribosomal RNA (rRNA) and among eukaryotic ribosomal RNAs is focused in expansion segments (ESs). Eukaryotic ribosomes are significantly larger than prokaryotic ribosomes partly because of their ESs. We hypothesize that larger rRNAs of complex organisms could confer increased functionality to the ribosome. Here, we characterize the binding partners of Saccharomyces cerevisiae expansion segment 7 (ES7), which is the largest and most variable ES of the eukaryotic large ribosomal subunit and is located at the surface of the ribosome. In vitro RNA-protein pull-down experiments using ES7 as a bait indicate that ES7 is a binding hub for a variety of non-ribosomal proteins essential to ribosomal function in eukaryotes. ES7-associated proteins observed here cluster into four groups based on biological process, (i) response to abiotic stimulus (e.g., response to external changes in temperature, pH, oxygen level, etc.), (ii) ribosomal large subunit biogenesis, (iii) protein transport and localization, and (iv) transcription elongation. Seven synthetases, Ala-, Arg-, Asp-, Asn-, Leu-, Lys- and TyrRS, appear to associate with ES7. Affinities of AspRS, TyrRS and LysRS for ES7 were confirmed by in vitro binding assays. The results suggest that ES7 in S. cerevisiae could play a role analogous to the multi-synthetase complex present in higher order organisms and could be important for the appropriate function of the ribosome. Thermal denaturation studies and footprinting experiments confirm that isolated ES7 is stable and maintains a near-native secondary and tertiary structure.
Collapse
Affiliation(s)
- Lizzette M Gómez Ramos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - Johanna M Smeekens
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - Nicholas A Kovacs
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - Jessica C Bowman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - Roger M Wartell
- School of Biology, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA.
| |
Collapse
|
10
|
Drozdetski AV, Tolokh IS, Pollack L, Baker N, Onufriev AV. Opposing Effects of Multivalent Ions on the Flexibility of DNA and RNA. PHYSICAL REVIEW LETTERS 2016; 117:028101. [PMID: 27447528 PMCID: PMC5493319 DOI: 10.1103/physrevlett.117.028101] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 05/22/2023]
Abstract
Increasing the concentration of counterions (salt) is known to reduce the bending persistence length of DNA. Here we use atomistic molecular dynamics simulations to predict that multivalent counterions have the opposite effect on double-stranded RNA, increasing its bending rigidity by at least 30%. This counterintuitive effect is observed for various tri- and tetravalent ions alike, and is robust to methodological details and the RNA sequence. In contrast to DNA, multivalent counterions bind inside the RNA major groove, causing significant contraction of the molecule along its helical axis-as a result, its further deformation due to bending becomes energetically more expensive compared to bending without bound multivalent ions. Thus, the relationship between mechanical properties of a charged polymer and its ionic atmosphere may be richer than previously thought.
Collapse
Affiliation(s)
| | - Igor S Tolokh
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853-3501, USA
| | - Nathan Baker
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| | - Alexey V Onufriev
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
11
|
Batey RT, Kieft JS. Soaking Hexammine Cations into RNA Crystals to Obtain Derivatives for Phasing Diffraction Data. Methods Mol Biol 2016; 1320:219-32. [PMID: 26227046 DOI: 10.1007/978-1-4939-2763-0_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Solving a novel RNA structure by x-ray crystallography requires a means to obtain initial phase estimates. This is a challenge because many of the tools available for solving protein structures are not available for RNA. We have developed a reliable means to use hexammine cations to address this challenge. The process involves engineering the RNA to introduce a reliable hexammine binding site into the structure, then soaking crystals of these RNAs with an iridium (III) or cobalt (III) compound in a "directed soaking" strategy. Diffraction data obtained from these crystals then can be used in SAD or MAD phasing. In many cases, suitable derivatives can be obtained by soaking the hexammine into RNA crystals that have not been engineered. Considerations for using this method and example protocols are presented.
Collapse
Affiliation(s)
- Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 596 UCB, Boulder, CO, 80309, USA,
| | | |
Collapse
|
12
|
Bonneau E, Legault P. NMR localization of divalent cations at the active site of the Neurospora VS ribozyme provides insights into RNA-metal-ion interactions. Biochemistry 2014; 53:579-90. [PMID: 24364590 PMCID: PMC3906864 DOI: 10.1021/bi401484a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metal cations represent key elements of RNA structure and function. In the Neurospora VS ribozyme, metal cations play diverse roles; they are important for substrate recognition, formation of the active site, and shifting the pKa's of two key nucleobases that contribute to the general acid-base mechanism. Recently, we determined the NMR structure of the A730 loop of the VS ribozyme active site (SLVI) that contributes the general acid (A756) in the enzymatic mechanism of the cleavage reaction. Our studies showed that magnesium (Mg(2+)) ions are essential to stabilize the formation of the S-turn motif within the A730 loop that exposes the A756 nucleobase for catalysis. In this article, we extend these NMR investigations by precisely mapping the Mg(2+)-ion binding sites using manganese-induced paramagnetic relaxation enhancement and cadmium-induced chemical-shift perturbation of phosphorothioate RNAs. These experiments identify five Mg(2+)-ion binding sites within SLVI. Four Mg(2+) ions in SLVI are associated with known RNA structural motifs, including the G-U wobble pair and the GNRA tetraloop, and our studies reveal novel insights about Mg(2+) ion binding to these RNA motifs. Interestingly, one Mg(2+) ion is specifically associated with the S-turn motif, confirming its structural role in the folding of the A730 loop. This Mg(2+) ion is likely important for formation of the active site and may play an indirect role in catalysis.
Collapse
Affiliation(s)
- Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
13
|
Chen J, Dishler AL, Kennedy SD, Yildirim I, Liu B, Turner DH, Serra MJ. Testing the nearest neighbor model for canonical RNA base pairs: revision of GU parameters. Biochemistry 2012; 51:3508-22. [PMID: 22490167 PMCID: PMC3335265 DOI: 10.1021/bi3002709] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Indexed: 11/30/2022]
Abstract
Thermodynamic parameters for GU pairs are important for predicting the secondary structures of RNA and for finding genomic sequences that code for structured RNA. Optical melting curves were measured for 29 RNA duplexes with GU pairs to improve nearest neighbor parameters for predicting stabilities of helixes. The updated model eliminates a prior penalty assumed for terminal GU pairs. Six additional duplexes with the 5'GG/3'UU motif were added to the single representation in the previous database. This revises the ΔG°(37) for the 5'GG/3'UU motif from an unfavorable 0.5 kcal/mol to a favorable -0.2 kcal/mol. Similarly, the ΔG°(37) for the 5'UG/3'GU motif changes from 0.3 to -0.6 kcal/mol. The correlation coefficients between predicted and experimental ΔG°(37), ΔH°, and ΔS° for the expanded database are 0.95, 0.89, and 0.87, respectively. The results should improve predictions of RNA secondary structure.
Collapse
Affiliation(s)
- Jonathan
L. Chen
- Department
of Chemistry, University of Rochester,
Rochester, New York 14627, United States
| | - Abigael L. Dishler
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| | - Scott D. Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Ilyas Yildirim
- Department
of Chemistry, University of Rochester,
Rochester, New York 14627, United States
| | - Biao Liu
- Department
of Chemistry, University of Rochester,
Rochester, New York 14627, United States
| | - Douglas H. Turner
- Department
of Chemistry, University of Rochester,
Rochester, New York 14627, United States
- Center for RNA Biology, University of Rochester, Rochester, New York 14627, United States
| | - Martin J. Serra
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| |
Collapse
|
14
|
Cantara WA, Bilbille Y, Kim J, Kaiser R, Leszczyńska G, Malkiewicz A, Agris PF. Modifications Modulate Anticodon Loop Dynamics and Codon Recognition of E. coli tRNAArg1,2. J Mol Biol 2012; 416:579-97. [DOI: 10.1016/j.jmb.2011.12.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 12/13/2011] [Accepted: 12/27/2011] [Indexed: 10/14/2022]
|
15
|
Abstract
Metal ions are inextricably involved with nucleic acids due to their polyanionic nature. In order to understand the structure and function of RNAs and DNAs, one needs to have detailed pictures on the structural, thermodynamic, and kinetic properties of metal ion interactions with these biomacromolecules. In this review we first compile the physicochemical properties of metal ions found and used in combination with nucleic acids in solution. The main part then describes the various methods developed over the past decades to investigate metal ion binding by nucleic acids in solution. This includes for example hydrolytic and radical cleavage experiments, mutational approaches, as well as kinetic isotope effects. In addition, spectroscopic techniques like EPR, lanthanide(III) luminescence, IR and Raman as well as various NMR methods are summarized. Aside from gaining knowledge about the thermodynamic properties on the metal ion-nucleic acid interactions, especially NMR can be used to extract information on the kinetics of ligand exchange rates of the metal ions applied. The final section deals with the influence of anions, buffers, and the solvent permittivity on the binding equilibria between metal ions and nucleic acids. Little is known on some of these aspects, but it is clear that these three factors have a large influence on the interaction between metal ions and nucleic acids.
Collapse
Affiliation(s)
- Maria Pechlaner
- Institute of Inorganic Chemistry, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
16
|
Fürtig B, Buck J, Richter C, Schwalbe H. Functional dynamics of RNA ribozymes studied by NMR spectroscopy. Methods Mol Biol 2012; 848:185-199. [PMID: 22315070 DOI: 10.1007/978-1-61779-545-9_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Catalytic RNA motifs (ribozymes) are involved in various cellular processes. Although functional cleavage of the RNA phosphodiester backbone for self-cleaving ribozymes strongly differs with respect to sequence specificity, the structural context, and the underlying mechanism, these ribozyme motifs constitute evolved RNA molecules that carry out identical chemical functionality. Therefore, they represent ideal systems for detailed studies of the underlying structure-function relationship, illustrating the diversity of RNA's functional role in biology. Nuclear magnetic resonance (NMR) spectroscopic methods in solution allow investigation of structure and dynamics of functional RNA motifs at atomic resolution. In addition, characterization of RNA conformational transitions initiated either through addition of specific cofactors, as e.g. ions or small molecules, or by photo-chemical triggering of essential RNA functional groups provides insights into the reaction mechanism. Here, we discuss applications of static and time-resolved NMR spectroscopy connected with the design of suitable NMR probes that have been applied to characterize global and local RNA functional dynamics together with cleavage-induced conformational transitions of two RNA ribozyme motifs: a minimal hammerhead ribozyme and an adenine-dependent hairpin ribozyme.
Collapse
Affiliation(s)
- Boris Fürtig
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
17
|
An NMR study elucidating the binding of Mg(II) and Mn(II) to spinach plastocyanin. Regulation of the binding of plastocyanin to subunit PsaF of photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1539-48. [DOI: 10.1016/j.bbabio.2011.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/16/2011] [Accepted: 09/21/2011] [Indexed: 12/17/2022]
|
18
|
Li W, Nordenskiöld L, Mu Y. Sequence-Specific Mg2+–DNA Interactions: A Molecular Dynamics Simulation Study. J Phys Chem B 2011; 115:14713-20. [DOI: 10.1021/jp2052568] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weifeng Li
- School of Physical and Mathematical Sciences, 21 Nanyang Link, and ‡School of Biological Sciences, 60 Nanyang Drive, Nanyang Technological University, Singapore
| | - Lars Nordenskiöld
- School of Physical and Mathematical Sciences, 21 Nanyang Link, and ‡School of Biological Sciences, 60 Nanyang Drive, Nanyang Technological University, Singapore
| | - Yuguang Mu
- School of Physical and Mathematical Sciences, 21 Nanyang Link, and ‡School of Biological Sciences, 60 Nanyang Drive, Nanyang Technological University, Singapore
| |
Collapse
|
19
|
Veeraraghavan N, Ganguly A, Chen JH, Bevilacqua PC, Hammes-Schiffer S, Golden BL. Metal binding motif in the active site of the HDV ribozyme binds divalent and monovalent ions. Biochemistry 2011; 50:2672-82. [PMID: 21348498 PMCID: PMC3068245 DOI: 10.1021/bi2000164] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme uses both metal ion and nucleobase catalysis in its cleavage mechanism. A reverse G·U wobble was observed in a recent crystal structure of the precleaved state. This unusual base pair positions a Mg(2+) ion to participate in catalysis. Herein, we used molecular dynamics (MD) and X-ray crystallography to characterize the conformation and metal binding characteristics of this base pair in product and precleaved forms. Beginning with a crystal structure of the product form, we observed formation of the reverse G·U wobble during MD trajectories. We also demonstrated that this base pair is compatible with the diffraction data for the product-bound state. During MD trajectories of the product form, Na(+) ions interacted with the reverse G·U wobble in the RNA active site, and a Mg(2+) ion, introduced in certain trajectories, remained bound at this site. Beginning with a crystal structure of the precleaved form, the reverse G·U wobble with bound Mg(2+) remained intact during MD simulations. When we removed Mg(2+) from the starting precleaved structure, Na(+) ions interacted with the reverse G·U wobble. In support of the computational results, we observed competition between Na(+) and Mg(2+) in the precleaved ribozyme crystallographically. Nonlinear Poisson-Boltzmann calculations revealed a negatively charged patch near the reverse G·U wobble. This anionic pocket likely serves to bind metal ions and to help shift the pK(a) of the catalytic nucleobase, C75. Thus, the reverse G·U wobble motif serves to organize two catalytic elements, a metal ion and catalytic nucleobase, within the active site of the HDV ribozyme.
Collapse
Affiliation(s)
- Narayanan Veeraraghavan
- Huck Institutes of Life Sciences, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Abir Ganguly
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907
| | - Philip C. Bevilacqua
- Huck Institutes of Life Sciences, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802,Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802,To whom correspondence should be addressed. B.L.G.: telephone (765) 496-6165; fax (765) 494-7897; . S.H.-S. telephone (814) 865-6442; fax (814) 865-2927; . P.C.B. telephone (814) 863-3812; fax (814) 865-2927.
| | - Sharon Hammes-Schiffer
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802,To whom correspondence should be addressed. B.L.G.: telephone (765) 496-6165; fax (765) 494-7897; . S.H.-S. telephone (814) 865-6442; fax (814) 865-2927; . P.C.B. telephone (814) 863-3812; fax (814) 865-2927.
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907,To whom correspondence should be addressed. B.L.G.: telephone (765) 496-6165; fax (765) 494-7897; . S.H.-S. telephone (814) 865-6442; fax (814) 865-2927; . P.C.B. telephone (814) 863-3812; fax (814) 865-2927.
| |
Collapse
|
20
|
Petrov AS, Bowman JC, Harvey SC, Williams LD. Bidentate RNA-magnesium clamps: on the origin of the special role of magnesium in RNA folding. RNA (NEW YORK, N.Y.) 2011; 17:291-7. [PMID: 21173199 PMCID: PMC3022278 DOI: 10.1261/rna.2390311] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/04/2010] [Indexed: 05/18/2023]
Abstract
Magnesium plays a special role in RNA function and folding. Although water is magnesium's most common first-shell ligand, the oxyanions of RNA have significant affinity for magnesium. Here we provide a quantum mechanical description of first-shell RNA-magnesium and DNA-magnesium interactions, demonstrating the unique features that characterize the energetics and geometry of magnesium complexes within large folded RNAs. Our work focuses on bidentate chelation of magnesium by RNA or DNA, where multiple phosphate oxyanions enter the first coordination shell of magnesium. These bidentate RNA clamps of magnesium occur frequently in large RNAs. The results here suggest that magnesium, compared to calcium and sodium, has an enhanced ability to form bidentate clamps with RNA. Bidentate RNA-sodium clamps, in particular, are unstable and spontaneously open. Due to magnesium's size and charge density it binds more intimately than other cations to the oxyanions of RNA, so that magnesium clamps are stabilized not only by electrostatic interactions, but also by charge transfer, polarization, and exchange interactions. These nonelectrostatic components of the binding are quite substantial with the high charge and small interatomic distances within the magnesium complexes, but are less pronounced for calcium due to its larger size, and for sodium due to its smaller charge. Additionally, bidentate RNA clamps of magnesium are more stable than those with DNA. The source of the additional stability of RNA complexes is twofold: there is a slightly attenuated energetic penalty for ring closure in the formation of RNA bidentate chelation complexes and elevated electrostatic interactions between the RNA and cations. In sum, it can be seen why sodium and calcium cannot replicate the structures or energetics of RNA-magnesium complexes.
Collapse
Affiliation(s)
- Anton S Petrov
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
21
|
Wang W, Zhao J, Han Q, Wang G, Yang G, Shallop AJ, Liu J, Gaffney BL, Jones RA. Modulation of RNA metal binding by flanking bases: 15N NMR evaluation of GC, tandem GU, and tandem GA sites. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:424-34. [PMID: 20183593 DOI: 10.1080/15257770903044234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
(15)N NMR chemical shift changes in the presence of Mg(H(2)O)(6)(2+), Zn(2+), Cd(2+), and Co(NH(3))(6)(3+) were used to probe the effect of flanking bases on metal binding sites in three different RNA motifs. We found that: for GC pairs, the presence of a flanking purine creates a site for the soft metals Zn(2+) and Cd(2+) only; a GG.UU motif selectively binds only Co(NH(3))(6)(3+), while a UG.GU motif binds none of these metals; a 3' guanosine flanking the adenosine of a sheared GA.AG pair creates an unusually strong binding site that precludes binding to the cross-strand stacked guanosines within the tandem pair.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nozinovic S, Fürtig B, Jonker HRA, Richter C, Schwalbe H. High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res 2009; 38:683-94. [PMID: 19906714 PMCID: PMC2811024 DOI: 10.1093/nar/gkp956] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We present a high-resolution nuclear magnetic resonance (NMR) solution structure of a 14-mer RNA hairpin capped by cUUCGg tetraloop. This short and very stable RNA presents an important model system for the study of RNA structure and dynamics using NMR spectroscopy, molecular dynamics (MD) simulations and RNA force-field development. The extraordinary high precision of the structure (root mean square deviation of 0.3 A) could be achieved by measuring and incorporating all currently accessible NMR parameters, including distances derived from nuclear Overhauser effect (NOE) intensities, torsion-angle dependent homonuclear and heteronuclear scalar coupling constants, projection-angle-dependent cross-correlated relaxation rates and residual dipolar couplings. The structure calculations were performed with the program CNS using the ARIA setup and protocols. The structure quality was further improved by a final refinement in explicit water using OPLS force field parameters for non-bonded interactions and charges. In addition, the 2'-hydroxyl groups have been assigned and their conformation has been analyzed based on NOE contacts. The structure currently defines a benchmark for the precision and accuracy amenable to RNA structure determination by NMR spectroscopy. Here, we discuss the impact of various NMR restraints on structure quality and discuss in detail the dynamics of this system as previously determined.
Collapse
Affiliation(s)
- Senada Nozinovic
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
23
|
Keel AY, Rambo RP, Batey RT, Kieft JS. A general strategy to solve the phase problem in RNA crystallography. Structure 2007; 15:761-72. [PMID: 17637337 PMCID: PMC1995091 DOI: 10.1016/j.str.2007.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 06/12/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
X-ray crystallography of biologically important RNA molecules has been hampered by technical challenges, including finding heavy-atom derivatives to obtain high-quality experimental phase information. Existing techniques have drawbacks, limiting the rate at which important new structures are solved. To address this, we have developed a reliable means to localize heavy atoms specifically to virtually any RNA. By solving the crystal structures of thirteen variants of the G*U wobble pair cation binding motif, we have identified a version that when inserted into an RNA helix introduces a high-occupancy cation binding site suitable for phasing. This "directed soaking" strategy can be integrated fully into existing RNA crystallography methods, potentially increasing the rate at which important structures are solved and facilitating routine solving of structures using Cu-Kalpha radiation. This method already has been used to solve several crystal structures.
Collapse
Affiliation(s)
- Amanda Y. Keel
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO, 80045
| | - Robert P. Rambo
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720
| | - Robert T. Batey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309-0215
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO, 80045
- *to whom correspondence should be addressed: , Phone: 303-724-3257, Fax: 303-724-3215
| |
Collapse
|
24
|
Xu D, Landon T, Greenbaum NL, Fenley MO. The electrostatic characteristics of G.U wobble base pairs. Nucleic Acids Res 2007; 35:3836-47. [PMID: 17526525 PMCID: PMC1920249 DOI: 10.1093/nar/gkm274] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
G.U wobble base pairs are the most common and highly conserved non-Watson-Crick base pairs in RNA. Previous surface maps imply uniformly negative electrostatic potential at the major groove of G.U wobble base pairs embedded in RNA helices, suitable for entrapment of cationic ligands. In this work, we have used a Poisson-Boltzmann approach to gain a more detailed and accurate characterization of the electrostatic profile. We found that the major groove edge of an isolated G.U wobble displays distinctly enhanced negativity compared with standard GC or AU base pairs; however, in the context of different helical motifs, the electrostatic pattern varies. G.U wobbles with distinct widening have similar major groove electrostatic potentials to their canonical counterparts, whereas those with minimal widening exhibit significantly enhanced electronegativity, ranging from 0.8 to 2.5 kT/e, depending upon structural features. We propose that the negativity at the major groove of G.U wobble base pairs is determined by the combined effect of the base atoms and the sugar-phosphate backbone, which is impacted by stacking pattern and groove width as a result of base sequence. These findings are significant in that they provide predictive power with respect to which G.U sites in RNA are most likely to bind cationic ligands.
Collapse
Affiliation(s)
- Darui Xu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, Department of Physics, Florida State University, Tallahassee, FL 32306-4390, USA and Institute of Molecular Biophysics Florida State University, Tallahassee, FL 32306-4390, USA
| | - Theresa Landon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, Department of Physics, Florida State University, Tallahassee, FL 32306-4390, USA and Institute of Molecular Biophysics Florida State University, Tallahassee, FL 32306-4390, USA
| | - Nancy L. Greenbaum
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, Department of Physics, Florida State University, Tallahassee, FL 32306-4390, USA and Institute of Molecular Biophysics Florida State University, Tallahassee, FL 32306-4390, USA
- *To whom correspondence should be addressed. Marcia O. Fenley. +1-850-644-7961+1-850-644-7244 Correspondence may also be addressed to Nancy L. Greenbaum. +1-850-644-2005 +1-850-644-8281
| | - Marcia O. Fenley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, Department of Physics, Florida State University, Tallahassee, FL 32306-4390, USA and Institute of Molecular Biophysics Florida State University, Tallahassee, FL 32306-4390, USA
- *To whom correspondence should be addressed. Marcia O. Fenley. +1-850-644-7961+1-850-644-7244 Correspondence may also be addressed to Nancy L. Greenbaum. +1-850-644-2005 +1-850-644-8281
| |
Collapse
|
25
|
Sigel RKO, Pyle AM. Alternative Roles for Metal Ions in Enzyme Catalysis and the Implications for Ribozyme Chemistry. Chem Rev 2006; 107:97-113. [PMID: 17212472 DOI: 10.1021/cr0502605] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roland K O Sigel
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | |
Collapse
|
26
|
Campbell DO, Bouchard P, Desjardins G, Legault P. NMR structure of varkud satellite ribozyme stem-loop V in the presence of magnesium ions and localization of metal-binding sites. Biochemistry 2006; 45:10591-605. [PMID: 16939211 DOI: 10.1021/bi0607150] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the Neurospora VS ribozyme, magnesium ions facilitate formation of a loop-loop interaction between stem-loops I and V, which is important for recognition and activation of the stem-loop I substrate. Here, we present the high-resolution NMR structure of stem-loop V (SL5) in the presence of Mg(2+) (SL5(Mg)) and demonstrate that Mg(2+) induces a conformational change in which the SL5 loop adopts a compact structure with most characteristics of canonical U-turn structures. Divalent cation-binding sites were probed with Mn(2+)-induced paramagnetic line broadening and intermolecular NOEs to Co(NH(3))(6)(3+). Structural modeling of Mn(H(2)O)(6)(2+) in SL5(Mg) revealed four divalent cation-binding sites in the loop. Sites 1, 3, and 4 are located in the major groove near multiple phosphate groups, whereas site 2 is adjacent to N7 of G697 and N7 of A698 in the minor groove. Cation-binding sites equivalent to sites 1-3 in SL5 are present in other U-turn motifs, and these metal-binding sites may represent a common feature of the U-turn fold. Although magnesium ions affect the loop conformation, they do not significantly change the conformation of residues 697-699 involved in the proposed Watson-Crick base pairs with stem-loop I. In both the presence and the absence of Mg(2+), G697, A698, and C699 adopt an A-form structure that exposes their Watson-Crick faces, and this is compatible with their proposed interaction with stem-loop I. In SL5(Mg), however, U700 becomes exposed on the minor groove face of the loop in the proximity of the bases of G697, A698, and C699, suggesting that the Mg(2+)-bound conformation of stem-loop V allows additional contacts with stem-loop I. These studies improve our understanding of the role of Mg(2+) in U-turn structures and in substrate recognition by the VS ribozyme.
Collapse
Affiliation(s)
- Dean O Campbell
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
27
|
Stefan LR, Zhang R, Levitan AG, Hendrix DK, Brenner SE, Holbrook SR. MeRNA: a database of metal ion binding sites in RNA structures. Nucleic Acids Res 2006; 34:D131-4. [PMID: 16381830 PMCID: PMC1347421 DOI: 10.1093/nar/gkj058] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Metal ions are essential for the folding of RNA into stable tertiary structures and for the catalytic activity of some RNA enzymes. To aid in the study of the roles of metal ions in RNA structural biology, we have created MeRNA (Metals in RNA), a comprehensive compilation of all metal binding sites identified in RNA 3D structures available from the PDB and Nucleic Acid Database. Currently, our database contains information relating to binding of 9764 metal ions corresponding to 23 distinct elements, in 256 RNA structures. The metal ion locations were confirmed and ligands characterized using original literature references. MeRNA includes eight manually identified metal-ion binding motifs, which are described in the literature. MeRNA is searchable by PDB identifier, metal ion, method of structure determination, resolution and R-values for X-ray structure and distance from metal to any RNA atom or to water. New structures with their respective binding motifs will be added to the database as they become available. The MeRNA database will further our understanding of the roles of metal ions in RNA folding and catalysis and have applications in structural and functional analysis, RNA design and engineering. The MeRNA database is accessible at .
Collapse
Affiliation(s)
- Liliana R. Stefan
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
| | - Rui Zhang
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
| | - Aaron G. Levitan
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
| | - Donna K. Hendrix
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
- Department of Plant and Microbial Biology111 Koshland Hall #3102University of California at BerkeleyBerkeley, CA 94720-3102, USA
| | - Steven E. Brenner
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
- Department of Plant and Microbial Biology111 Koshland Hall #3102University of California at BerkeleyBerkeley, CA 94720-3102, USA
| | - Stephen R. Holbrook
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
- To whom correspondence should be addressed. Tel: +1 510 486 4304; Fax: +1 510 486 6798;
| |
Collapse
|
28
|
Abstract
We investigate theoretically the translocation of structured RNA/DNA molecules through narrow pores which allow single but not double strands to pass. The unzipping of basepaired regions within the molecules presents significant kinetic barriers for the translocation process. We show that this circumstance may be exploited to determine the full basepairing pattern of polynucleotides, including RNA pseudoknots. The crucial requirement is that the translocation dynamics (i.e. the length of the translocated molecular segment) needs to be recorded as a function of time with a spatial resolution of a few nucleotides. This could be achieved, for instance, by applying a mechanical driving force for translocation and recording force-extension curves (FECs) with a device such as an atomic force microscope or optical tweezers. Our analysis suggests that, with this added spatial resolution, nanopores could be transformed into a powerful experimental tool to study the folding of nucleic acids.
Collapse
Affiliation(s)
- Ulrich Gerland
- Department of Physics and Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA 92093-0319, USA.
| | | | | |
Collapse
|
29
|
Zhao Q, Nagaswamy U, Lee H, Xia Y, Huang HC, Gao X, Fox GE. NMR structure and Mg2+ binding of an RNA segment that underlies the L7/L12 stalk in the E.coli 50S ribosomal subunit. Nucleic Acids Res 2005; 33:3145-53. [PMID: 15939932 PMCID: PMC1143578 DOI: 10.1093/nar/gki621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Helix 42 of Domain II of Escherichia coli 23S ribosomal RNA underlies the L7/L12 stalk in the ribosome and may be significant in positioning this feature relative to the rest of the 50S ribosomal subunit. Unlike the Haloarcula marismortui and Deinococcus radiodurans examples, the lower portion of helix 42 in E.coli contains two consecutive G*A oppositions with both adenines on the same side of the stem. Herein, the structure of an analog of positions 1037-1043 and 1112-1118 in the helix 42 region is reported. NMR spectra and structure calculations support a cis Watson-Crick/Watson-Crick (cis W.C.) G*A conformation for the tandem (G*A)2 in the analog and a minimally perturbed helical duplex stem. Mg2+ titration studies imply that the cis W.C. geometry of the tandem (G*A)2 probably allows O6 of G20 and N1 of A4 to coordinate with a Mg2+ ion as indicated by the largest chemical shift changes associated with the imino group of G20 and the H8 of G20 and A4. A cross-strand bridging Mg2+ coordination has also been found in a different sequence context in the crystal structure of H.marismortui 23S rRNA, and therefore it may be a rare but general motif in Mg2+ coordination.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Uma Nagaswamy
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Hunjoong Lee
- Department of Chemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Youlin Xia
- Department of Chemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Hung-Chung Huang
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Xiaolian Gao
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
- Department of Chemistry, University of HoustonHouston, TX 77204-5001, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
- To whom correspondence should be addressed. Tel: +1 713 743 8363; Fax: +1 713 743 8351;
| |
Collapse
|
30
|
Abstract
The problem of how ions influence the folding of RNA into specific tertiary structures is being addressed from both thermodynamic (by how much do different salts affect the free energy change of folding) and structural (how are ions arranged on or near an RNA and what kinds of environments do they occupy) points of view. The challenge is to link these different approaches in a theoretical framework that relates the energetics of ion-RNA interactions to the spatial distribution of ions. This review distinguishes three different kinds of ion environments that differ in the extent of direct ion-RNA contacts and the degree to which the ion hydration is perturbed, and summarizes the current understanding of the way each environment relates to the overall energetics of RNA folding.
Collapse
Affiliation(s)
- David E Draper
- Department of Chemistry and 2Program in Molecular and Computational Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
31
|
Petrov AS, Lamm G, Pack GR. Calculation of the binding free energy for magnesium-RNA interactions. Biopolymers 2005; 77:137-54. [PMID: 15633198 DOI: 10.1002/bip.20171] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nature of the interaction between nucleic acids and divalent ions in solution is complex. It includes long-range electrostatic and short-range nonelectrostatic forces. Water molecules can be in an inner coordination shell that intervenes between the ion and its binding site. This work describes a method for calculating the binding free energy and applies it to a specific Mg-RNA system in the presence of monovalent salt. The approach combines high-level ab initio theory with Poisson-Boltzmann calculations and provides an accurate description of all terms of the binding free energy for magnesium ions located at the RNA surface (including nonelectrostatic interactions). Some alternative macroscopic approaches are also discussed.
Collapse
Affiliation(s)
- Anton S Petrov
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
32
|
Znosko BM, Kennedy SD, Wille PC, Krugh TR, Turner DH. Structural features and thermodynamics of the J4/5 loop from the Candida albicans and Candida dubliniensis group I introns. Biochemistry 2005; 43:15822-37. [PMID: 15595837 DOI: 10.1021/bi049256y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The J4/5 loop of group I introns has tertiary interactions with the P1 helix that position the P1 substrate for the self-splicing reaction. The J4/5 loop of Candida albicans and Candida dubliniensis, 5'GAAGG3'/3'UAAUU5', potentially contains two A.A pairs flanked by one G.U pair on one side and two G.U pairs on the other side. Results from optical melting, nuclear magnetic resonance spectroscopy, and functional group substitution experiments with a mimic of the C. albicans and C. dubliniensis J4/5 loop are consistent with the adenosines forming tandem sheared A.A pairs with a cross-strand stack and only the G.U pair not adjacent to an A.A pair forming a static wobble G.U pair. The two G.U pairs adjacent to the tandem A.A pairs are likely in a dynamic equilibrium between multiple conformations. Although Co(NH(3))(6)(3+) stabilizes the loop by several kilocalories per mole at 37 degrees C, addition of Mg(2+) or Co(NH(3))(6)(3+) has no effect on the structure of the loop. The tandem G.U pairs provide a pocket of negative charge for Co(NH(3))(6)(3+) to bind. The results contribute to understanding the structure and dynamics of purine-rich internal loops and potential G.U pairs adjacent to internal loops.
Collapse
Affiliation(s)
- Brent M Znosko
- Department of Chemistry, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Nucleic acids possess several metal cation recognition sites, including phosphates, nucleobases and possibly riboses. This article focuses on the detection of nucleobase-metal interactions by NMR spectroscopy.
Collapse
Affiliation(s)
- Yoshiyuki Tanaka
- Laboratory of Molecular Transformation, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan.
| | | |
Collapse
|
34
|
Schmitz M. Change of RNase P RNA function by single base mutation correlates with perturbation of metal ion binding in P4 as determined by NMR spectroscopy. Nucleic Acids Res 2004; 32:6358-66. [PMID: 15576680 PMCID: PMC535670 DOI: 10.1093/nar/gkh961] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The solution structures of two 27 nt RNA hairpins and their complexes with cobalt(III)-hexammine [Co(NH(3))(6)(3+)] were determined by NMR spectroscopy. The RNA hairpins are variants of the P4 region from Escherichia coli RNase P RNA: a U-to-A mutant changing the identity of the bulged nucleotide, and a U-to-C, C-to-U double mutant changing only the bulge position. Structures calculated from NMR constraints show that the RNA hairpins adopt different conformations. In the U-to-C, C-to-U double mutant, the conserved bulged uridine in the P4 wild-type stem is found to be shifted in the 3'-direction by one nucleotide when compared with the wild-type structure. Co(NH(3))(6)(3+) is used as a spectroscopic probe for Mg(H(2)O)(6)(2+) binding sites because both complexes have octahedral symmetry and have similar radii. Intermolecular NOE crosspeaks between Co(NH(3))(6)(3+) and RNA protons were used to locate the site of Co(NH(3))(6)(3+) binding to both RNA hairpins. The metal ion binds in the major groove near a bulge loop in both mutants, but is shifted 3' by about one base pair in the double mutant. The change of the metal ion binding site is compared with results obtained on corresponding mutant RNase P RNA molecules as reported by Harris and co-workers (RNA, 1, 210-218).
Collapse
Affiliation(s)
- Michael Schmitz
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.
| |
Collapse
|
35
|
Adams PL, Stahley MR, Gill ML, Kosek AB, Wang J, Strobel SA. Crystal structure of a group I intron splicing intermediate. RNA (NEW YORK, N.Y.) 2004; 10:1867-87. [PMID: 15547134 PMCID: PMC1370676 DOI: 10.1261/rna.7140504] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 10/04/2004] [Indexed: 05/21/2023]
Abstract
A recently reported crystal structure of an intact bacterial group I self-splicing intron in complex with both its exons provided the first molecular view into the mechanism of RNA splicing. This intron structure, which was trapped in the state prior to the exon ligation reaction, also reveals the architecture of a complex RNA fold. The majority of the intron is contained within three internally stacked, but sequence discontinuous, helical domains. Here the tertiary hydrogen bonding and stacking interactions between the domains, and the single-stranded joiner segments that bridge between them, are fully described. Features of the structure include: (1) A pseudoknot belt that circumscribes the molecule at its longitudinal midpoint; (2) two tetraloop-tetraloop receptor motifs at the peripheral edges of the structure; (3) an extensive minor groove triplex between the paired and joiner segments, P6-J6/6a and P3-J3/4, which provides the major interaction interface between the intron's two primary domains (P4-P6 and P3-P9.0); (4) a six-nucleotide J8/7 single stranded element that adopts a mu-shaped structure and twists through the active site, making critical contacts to all three helical domains; and (5) an extensive base stacking architecture that realizes 90% of all possible stacking interactions. The intron structure was validated by hydroxyl radical footprinting, where strong correlation was observed between experimental and predicted solvent accessibility. Models of the pre-first and pre-second steps of intron splicing are proposed with full-sized tRNA exons. They suggest that the tRNA undergoes substantial angular motion relative to the intron between the two steps of splicing.
Collapse
Affiliation(s)
- Peter L Adams
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Ave., New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
NMR spectroscopy is a powerful tool for studying proteins and nucleic acids in solution. This is illustrated by the fact that nearly half of all current RNA structures were determined by using NMR techniques. Information about the structure, dynamics, and interactions with other RNA molecules, proteins, ions, and small ligands can be obtained for RNA molecules up to 100 nucleotides. This review provides insight into the resonance assignment methods that are the first and crucial step of all NMR studies, into the determination of base-pair geometry, into the examination of local and global RNA conformation, and into the detection of interaction sites of RNA. Examples of NMR investigations of RNA are given by using several different RNA molecules to illustrate the information content obtainable by NMR spectroscopy and the applicability of NMR techniques to a wide range of biologically interesting RNA molecules.
Collapse
Affiliation(s)
- Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Marie-Curie-Strasse 11, 60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
37
|
Chandrasekhar K, Malathhi R. Non-Watson Crick base pairs might stabilize RNA structural motifs in ribozymes -- a comparative study of group-I intron structures. J Biosci 2004; 28:547-55. [PMID: 14517358 DOI: 10.1007/bf02703330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In recent decades studies on RNA structure and function have gained significance due to discoveries on diversified functions of RNA. A common element for RNA secondary structure formed by series of non- Watson/Watson Crick base pairs, internal loops and pseudoknots have been the highlighting feature of recent structural determination of RNAs. The recent crystal structure of group-I introns has demonstrated that these might constitute RNA structural motifs in ribozymes, playing a crucial role in their enzymatic activity. To understand the functional significance of these non-canonical base pairs in catalytic RNA, we analysed the sequences of group-I introns from nuclear genes. The results suggest that they might form the building blocks of folded RNA motifs which are crucial to the catalytic activity of the ribozyme. The conservation of these, as observed from divergent organisms, argues for the presence of non-canonical base pairs as an important requisite for the structure and enzymatic property of ribozymes by enabling them to carry out functions such as replication, polymerase activity etc. in primordial conditions in the absence of proteins.
Collapse
Affiliation(s)
- K Chandrasekhar
- Department of Genetics, Dr ALM PG Institute of Basic Medical Sciences, University of Madras,Taramani Campus, Chennai 600 113, India
| | | |
Collapse
|
38
|
Abstract
RNA folding into stable tertiary structures is remarkably sensitive to the concentrations and types of cations present; an understanding of the physical basis of ion-RNA interactions is therefore a prerequisite for a quantitative accounting of RNA stability. This article summarizes the energetic factors that must be considered when ions interact with two different RNA environments. "Diffuse ions" accumulate near the RNA because of the RNA electrostatic field and remain largely hydrated. A "chelated" ion directly contacts a specific location on the RNA surface and is held in place by electrostatic forces. Energetic costs of ion chelation include displacement of some of the waters of hydration by the RNA surface and repulsion of diffuse ions. Methods are discussed for computing both the free energy of the set of diffuse ions associated with an RNA and the binding free energies of individual chelated ions. Such calculations quantitatively account for the effects of Mg(2+) on RNA stability where experimental data are available. An important conclusion is that diffuse ions are a major factor in the stabilization of RNA tertiary structures.
Collapse
Affiliation(s)
- David E Draper
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| |
Collapse
|
39
|
Ennifar E, Walter P, Dumas P. A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res 2003; 31:2671-82. [PMID: 12736317 PMCID: PMC156032 DOI: 10.1093/nar/gkg350] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Metal ions, and magnesium in particular, are known to be involved in RNA folding by stabilizing secondary and tertiary structures, and, as cofactors, in RNA enzymatic activity. We have conducted a systematic crystallographic analysis of cation binding to the duplex form of the HIV-1 RNA dimerization initiation site for the subtype-A and -B natural sequences. Eleven ions (K+, Pb2+, Mn2+, Ba2+, Ca2+, Cd2+, Sr2+, Zn2+, Co2+, Au3+ and Pt4+) and two hexammines [Co (NH3)6]3+ and [Ru (NH3)6]3+ were found to bind to the DIS duplex structure. Although the two sequences are very similar, strong differences were found in their cation binding properties. Divalent cations bind almost exclusively, as Mg2+, at 'Hoogsteen' sites of guanine residues, with a cation-dependent affinity for each site. Notably, a given cation can have very different affinities for a priori equivalent sites within the same molecule. Surprisingly, none of the two hexammines used were able to efficiently replace hexahydrated magnesium. Instead, [Co (NH3)4]3+ was seen bound by inner-sphere coordination to the RNA. This raises some questions about the practical use of [Co (NH3)6]3+ as a [Mg (H2O)6]2+ mimetic. Also very unexpected was the binding of the small Au3+ cation exactly between the Watson-Crick sites of a G-C base pair after an obligatory deprotonation of N1 of the guanine base. This extensive study of metal ion binding using X-ray crystallography significantly enriches our knowledge on the binding of middleweight or heavy metal ions to RNA, particularly compared with magnesium.
Collapse
Affiliation(s)
- Eric Ennifar
- Institut de Biologie Moléculaire et Cellulaire, CNRS-UPR 9002, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | |
Collapse
|
40
|
Misra VK, Shiman R, Draper DE. A thermodynamic framework for the magnesium-dependent folding of RNA. Biopolymers 2003; 69:118-36. [PMID: 12717727 DOI: 10.1002/bip.10353] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The goal of this review is to present a unified picture of the relationship between ion binding and RNA folding based on recent theoretical and computational advances. In particular, we present a model describing how the association of magnesium ions is coupled to the tertiary structure folding of several well-characterized RNA molecules. This model is developed in terms of the nonlinear Poisson-Boltzmann (NLPB) equation, which provides a rigorous electrostatic description of the interaction between Mg(2+) and specific RNA structures. In our description, most of the ions surrounding an RNA behave as a thermally fluctuating ensemble distributed according to a Boltzmann weighted average of the mean electrostatic potential around the RNA. In some cases, however, individual ions near the RNA may shed some of their surrounding waters to optimize their Coulombic interactions with the negatively charged ligands on the RNA. These chelated ions are energetically distinct from the surrounding ensemble and must be treated explicitly. This model is used to explore several different RNA systems that interact differently with Mg(2+). In each case, the NLPB equation accurately describes the stoichiometric and energetic linkage between Mg(2+) binding and RNA folding without requiring any fitted parameters in the calculation. Based on this model, we present a physical description of how Mg(2+) binds and stabilizes specific RNA structures to promote the folding reaction.
Collapse
Affiliation(s)
- Vinod K Misra
- Department of Chemistry, The University of Michigan, 1924 Taubman Center, 1500 E. Medical Center Drive, Ann Arbor 48109-0318, USA.
| | | | | |
Collapse
|
41
|
Santini GPH, Pakleza C, Cognet JAH. DNA tri- and tetra-loops and RNA tetra-loops hairpins fold as elastic biopolymer chains in agreement with PDB coordinates. Nucleic Acids Res 2003; 31:1086-96. [PMID: 12560507 PMCID: PMC149216 DOI: 10.1093/nar/gkg196] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Revised: 11/07/2002] [Accepted: 11/23/2002] [Indexed: 01/30/2023] Open
Abstract
The biopolymer chain elasticity (BCE) approach and the new molecular modelling methodology presented previously are used to predict the tri- dimensional backbones of DNA and RNA hairpin loops. The structures of eight remarkably stable DNA or RNA hairpin molecules closed by a mispair, recently determined in solution by NMR and deposited in the PDB, are shown to verify the predicted trajectories by an analysis automated for large numbers of PDB conformations. They encompass: one DNA tetraloop, -GTTA-; three DNA triloops, -AAA- or -GCA-; and four RNA tetraloops, -UUCG-. Folding generates no distortions and bond lengths and bond angles of main atoms of the sugar-phosphate backbone are well restored upon energy refinement. Three different methods (superpositions, distance of main chain atoms to the elastic line and RMSd) are used to show a very good agreement between the trajectories of sugar-phosphate backbones and between entire molecules of theoretical models and of PDB conformations. The geometry of end conditions imposed by the stem is sufficient to dictate the different characteristic DNA or RNA folding shapes. The reduced angular space, consisting of the new parameter, angle Omega, together with the chi angle offers a simple, coherent and quantitative description of hairpin loops.
Collapse
Affiliation(s)
- Guillaume P H Santini
- Laboratoire de Physico-chimie Biomoléculaire et Cellulaire, UMR 7033 CNRS, T22-12, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France
| | | | | |
Collapse
|
42
|
Nishikawa F, Shirai M, Nishikawa S. Site-specific modification of functional groups in genomic hepatitis delta virus (HDV) ribozyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5792-803. [PMID: 12444967 DOI: 10.1046/j.1432-1033.2002.03280.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human hepatitis delta (HDV) ribozyme is one of small ribozymes, such as hammerhead and hairpin ribozymes, etc. Its secondary structure shows pseudoknot structure composed of four stems (I to IV) and three single-stranded regions (SSrA, -B and -C). The 3D structure of 3'-cleaved product of genomic HDV ribozyme provided extensive information about tertiary hydrogen bonding interactions between nucleotide bases, phosphate oxygens and 2'OHs including new stem structure P1.1. To analyze the role of these hydrogen bond networks in the catalytic reaction, site-specific atomic-level modifications (such as deoxynucleotides, deoxyribosyl-2-aminopurine, deoxyribosylpurine, 7-deaza-ribonucleotide and inosine) were incorporated in the smallest trans-acting HDV ribozyme (47-mer). Kinetic analysis of these ribozyme variants demonstrated the importance of the two W-C base pairs of P1.1 for cleavage; in addition, the results suggest that all hydrogen bond interactions detected in the crystal structure involving 2'-OH and N7 atoms are present in the active ribozyme structure. In most of the variants, the relative reduction in kobs caused by substitution of the 2'-OH group correlated with the number of hydrogen bonds affected by the substitution. However G74 and C75 may have more than one hydrogen bond involving the 2'-OH in both the trans- and cis-acting HDV ribozyme. Moreover, in variants in which N7 was deleted, kobs was reduced 5- to 15-fold, it may suggest that N7 assists in coordinating Mg2+ ions or water molecules which bind with weak affinity in the active structure.
Collapse
Affiliation(s)
- Fumiko Nishikawa
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | | | | |
Collapse
|
43
|
Comolli LR, Ulyanov NB, Soto AM, Marky LA, James TL, Gmeiner WH. NMR structure of the 3' stem-loop from human U4 snRNA. Nucleic Acids Res 2002; 30:4371-9. [PMID: 12384583 PMCID: PMC137124 DOI: 10.1093/nar/gkf560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The NMR structure of the 3' stem-loop (3'SL) from human U4 snRNA was determined to gain insight into the structural basis for conservation of this stem-loop sequence from vertebrates. 3'SL sequences from human, rat, mouse and chicken U4 snRNA each consist of a 7 bp stem capped by a UACG tetraloop. No high resolution structure has previously been reported for a UACG tetraloop. The UACG tetraloop portion of the 3'SL was especially well defined by the NMR data, with a total of 92 NOE-derived restraints (about 15 per residue), including 48 inter-residue restraints (about 8 per residue) for the tetraloop and closing C-G base pair. Distance restraints were derived from NOESY spectra using MARDIGRAS with random error analysis. Refinement of the 20mer RNA hairpin structure was carried out using the programs DYANA and miniCarlo. In the UACG tetraloop, U and G formed a base pair stabilized by two hydrogen bonds, one between the 2'-hydroxyl proton of U and carbonyl oxygen of G, another between the imino proton of G and carbonyl oxygen O2 of U. In addition, the amino group of C formed a hydrogen bond with the phosphate oxygen of A. G adopted a syn orientation about the glycosidic bond, while the sugar puckers of A and C were either C2'-endo or flexible. The conformation of the UACG tetraloop was, overall, similar to that previously reported for UUCG tetraloops, another member of the UNCG class of tetraloops. The presence of an A, rather than a U, at the variable position, however, presents a distinct surface for interaction of the 3'SL tetraloop with either RNA or protein residues that may stabilize interactions important for active spliceosome formation. Such tertiary interactions may explain the conservation of the UACG tetraloop motif in 3'SL sequences from U4 snRNA in vertebrates.
Collapse
Affiliation(s)
- Luis R Comolli
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
44
|
Olejniczak M, Gdaniec Z, Fischer A, Grabarkiewicz T, Bielecki L, Adamiak RW. The bulge region of HIV-1 TAR RNA binds metal ions in solution. Nucleic Acids Res 2002; 30:4241-9. [PMID: 12364603 PMCID: PMC140541 DOI: 10.1093/nar/gkf541] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Binding of Mg2+, Ca2+ and Co(NH3)6(3+) ions to the HIV-1 TAR RNA in solution was analysed by 19F NMR spectroscopy, metal ion-induced RNA cleavages and Brownian dynamics (BD) simulations. Chemically synthesised 29mer oligoribonucleotides of the TAR sequence labelled with 5-fluorouridine (FU) were used for 19F NMR-monitored metal ion titration. The chemical shift changes of fluorine resonances FU-23, FU-25 and FU-40 upon titration with Mg2+ and Ca2+ ions indicated specific, although weak, binding at the bulge region with the dissociation constants (K(d)) of 0.9 +/- 0.6 and 2.7 +/- 1.7 mM, respectively. Argininamide, inducing largest (19)F chemical shifts changes at FU-23, was used as a reference ligand (K(d) = 0.3 +/- 0.1 mM). In the Pb2+-induced TAR RNA cleavage experiment, strong and selective cleavage of the C24-U25 phosphodiester bond was observed, while Mg2+ and Ca2+ induced cuts at all 3-nt residues of the bulge. The inhibition of Pb2+-specific TAR cleavage by di- and trivalent metal ions revealed a binding specificity [in the order Co(NH3)6(3+) > Mg2+ > Ca2+] at the bulge site. A BD simulation search of potential magnesium ion sites within the NMR structure of HIV-1 TAR RNA was conducted on a set of 20 conformers (PDB code 1ANR). For most cases, the bulge region was targeted by magnesium cations.
Collapse
Affiliation(s)
- Mikołaj Olejniczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | | | | | | | | |
Collapse
|
45
|
Kurz JC, Fierke CA. The affinity of magnesium binding sites in the Bacillus subtilis RNase P x pre-tRNA complex is enhanced by the protein subunit. Biochemistry 2002; 41:9545-58. [PMID: 12135377 DOI: 10.1021/bi025553w] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The RNA subunit of bacterial ribonuclease P (RNase P) requires high concentrations of magnesium ions for efficient catalysis of tRNA 5'-maturation in vitro. The protein component of RNase P, required for cleavage of precursor tRNA in vivo, enhances pre-tRNA binding by directly contacting the 5'-leader sequence. Using a combination of transient kinetics and equilibrium binding measurements, we now demonstrate that the protein component of RNase P also facilitates catalysis by specifically increasing the affinities of magnesium ions bound to the RNase P x pre-tRNA(Asp) complex. The protein component does not alter the number or apparent affinity of magnesium ions that are either diffusely associated with the RNase P RNA polyanion or required for binding mature tRNA(Asp). Nor does the protein component alter the pH dependence of pre-tRNA(Asp) cleavage catalyzed by RNase P, providing further evidence that the protein component does not directly stabilize the catalytic transition state. However, the protein subunit does increase the affinities of at least four magnesium sites that stabilize pre-tRNA binding and, possibly, catalysis. Furthermore, this stabilizing effect is coupled to the P protein/5'-leader contact in the RNase P holoenzyme x pre-tRNA complex. These results suggest that the protein component enhances the magnesium affinity of the RNase P x pre-tRNA complex indirectly by binding and positioning pre-tRNA. Furthermore, RNase P is inhibited by cobalt hexammine (K(I) = 0.11 +/- 0.01 mM) while magnesium, manganese, cobalt, and zinc compete with cobalt hexammine to activate RNase P. These data are consistent with the hypothesis that catalysis by RNase P requires at least one metal-water ligand or one inner-sphere metal contact.
Collapse
Affiliation(s)
- Jeffrey C Kurz
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
46
|
Gong Q, Guo Q, Tong KL, Zhu G, Wong JTF, Xue H. NMR analysis of bovine tRNATrp: conformation dependence of Mg2+ binding. J Biol Chem 2002; 277:20694-701. [PMID: 11919203 DOI: 10.1074/jbc.m202299200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NMR was used to study the solution structure of bovine tRNA(Trp) hyperexpressed in Escherichia coli. With the use of (15)N labeling and site-directed mutagenesis to assign overlapping resonances through the base pair replacement of U(71)A(2) by G(2)C(71), U(27)A(43) by G(27)C(43), and G(12)C(23) by U(12)A(23), the resonances of all 26 observable imino protons in the helical regions and in the tertiary interactions were assigned unambiguously by means of two-dimensional nuclear Overhauser effect spectroscopy and heteronuclear single quantum coherence methods. When the discriminator base A(73) and the G(12)C(23) base pair on the D stem, two identity elements on bovine tRNA(Trp) that are important for effective recognition by tryptophanyl-tRNA synthetase, were mutated to the ineffective forms of G(73) and U(12)A(23), respectively, NMR analysis revealed an important conformational change in the U(12)A(23) mutant but not in the G(73) mutant molecule. Thus A(73) appears to be directly recognized by tryptophanyl-tRNA synthetase, and G(12)C(23) represents an important structural determinant. Mg(2+) effects on the assigned resonances of imino protons allowed the identification of strong, medium, and weak Mg(2+) binding sites in tRNA(Trp). Strong Mg(2+) binding modes were associated with the residues G(7), s(4)U(8) (where s(4)U is 4-thiouridine), G(12), and U(52). The observations that G(42) was associated with strong Mg(2+) binding in only the U(12)A(23) mutant tRNA(Trp) but not the wild type or G(73) mutant tRNA(Trp) and that the G(7), s(4)U(8), G(24), and G(22) imino protons are associated with a two-site Mg(2+) binding mode in wild type and G(73) mutant but only a one-site mode in the U(12)A(23) mutant established the occurrence of conformational change in the U(12)A(23) mutant tRNA(Trp). These observations also established the dependence of Mg(2+) binding on tRNA conformation and the usefulness of Mg(2+) binding sites as conformational probes. The thermal titration of tRNA(Trp) in the presence and absence of 10 mm Mg(2+) indicated that overall tRNA(Trp) structure stability was increased by more than 15 degrees C by the presence of Mg(2+).
Collapse
Affiliation(s)
- Qingguo Gong
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- R L Gonzalez
- Department of Structural Biology, Physical Biosciences Division, University of California, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | |
Collapse
|
48
|
Abstract
The NMR-based structure is described for an RNA model of stem-loop 4 (SL4) from the HIV-1 major packaging domain. The GAGA tetraloop adopts a conformation similar to the classic GNRA form, although there are differences in the details. The type II tandem G.U pairs have a combination of wobble and bifurcated hydrogen bonds where the uracil 2-carbonyl oxygen is hydrogen-bonded to both G,H1 and G,H2. There is the likelihood of a Na(+) ion coordinated to the four carbonyl oxygens in the major groove for these G.U pairs and perhaps to the N7 lone pairs of the G bases as well. A continuous stack of five bases extends over nearly the whole length of the stem to the base of the loop in the RNA 16mer: C15/U14/G13/G5/C6. There is no evidence for a terminal G.A pair; instead, G1 appears quite unrestrained, and A16 stacks on both C15 and G2. Residues G2 through G5 exhibit broadened resonances, especially G3 and U4, suggesting enhanced mobility for the 5'-side of the stem. The structure shows G2/G3/U4 stacking along the same strand, nearly isolated from interaction with the other bases. This is probably an important factor in the signal broadening and apparent mobility of these residues and the low stability of the 16mer hairpin against thermal denaturation.
Collapse
Affiliation(s)
- D J Kerwood
- Department of Chemistry, Graduate Program in Structural Biology, Biochemistry, and Biophysics, Syracuse University, Syracuse, New York 13244-4100, USA
| | | | | |
Collapse
|
49
|
Tsui V, Case DA. Calculations of the Absolute Free Energies of Binding between RNA and Metal Ions Using Molecular Dynamics Simulations and Continuum Electrostatics. J Phys Chem B 2001. [DOI: 10.1021/jp011923z] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vickie Tsui
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - David A. Case
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
50
|
Abstract
We present a model describing how Mg(2+) binds and stabilizes specific RNA structures. In this model, RNA stabilization arises from two energetically distinct modes of Mg(2+) binding: diffuse- and site-binding. Diffusely bound Mg(2+) are electrostatically attracted to the strong anionic field around the RNA and are accurately described by the Poisson-Boltzmann equation as an ensemble distributed according to the electrostatic potentials around the nucleic acid. Site-bound Mg(2+) are strongly attracted to specifically arranged electronegative ligands that desolvate the ion and the RNA binding site. Thus, site-binding is a competition between the strong coulombic attraction and the large cost of desolvating the ion and its binding pocket. By using this framework, we analyze three systems where a single site-bound Mg(2+) may be important for stability: the P5 helix and the P5b stem loop from the P4-P6 domain of the Tetrahymena thermophila group I intron and a 58-nt fragment of the Escherichia coli 23S ribosomal RNA. Diffusely bound Mg(2+) play a dominant role in stabilizing these RNA structures. These ions stabilize the folded structures, in part, by accumulating in regions of high negative electrostatic potential. These regions of Mg(2+) localization correspond to ions that are observed in the x-ray crystallographic and NMR structures of the RNA. In contrast, the contribution of site-binding to RNA stability is often quite small because of the large desolvation penalty. However, in special cases, site-binding of partially dehydrated Mg(2+) to locations with extraordinarily high electrostatic potential can also help stabilize folded RNA structures.
Collapse
Affiliation(s)
- V K Misra
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|