1
|
Gomez JB, Waters CM. A Vibrio cholerae Type IV restriction system targets glucosylated 5-hydroxymethylcytosine to protect against phage infection. J Bacteriol 2024; 206:e0014324. [PMID: 39230524 PMCID: PMC11411926 DOI: 10.1128/jb.00143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
A major challenge faced by Vibrio cholerae is constant predation by bacteriophage (phage) in aquatic reservoirs and during infection of human hosts. To overcome phage predation, V. cholerae has acquired and/or evolved a myriad of phage defense systems. Although several novel defense systems have been discovered, we hypothesized that more were encoded in V. cholerae given the low diversity of phages that have been isolated, which infect this species. Using a V. cholerae genomic library, we identified a Type IV restriction system consisting of two genes within a 16-kB region of the Vibrio pathogenicity island-2, which we name TgvA and TgvB (Type I-embedded gmrSD-like system of VPI-2). We show that both TgvA and TgvB are required for defense against T2, T4, and T6 by targeting glucosylated 5-hydroxymethylcytosine (5hmC). T2 or T4 phages that lose the glucose modifications are resistant to TgvAB defense but exhibit a significant evolutionary tradeoff, becoming susceptible to other Type IV restriction systems that target unglucosylated 5hmC. We also show that the Type I restriction-modification system that embeds the tgvAB genes protects against phage T3, secΦ18, secΦ27, and λ, suggesting that this region is a phage defense island. Our study uncovers a novel Type IV restriction system in V. cholerae, increasing our understanding of the evolution and ecology of V. cholerae, while highlighting the evolutionary interplay between restriction systems and phage genome modification.IMPORTANCEBacteria are constantly being predated by bacteriophage (phage). To counteract this predation, bacteria have evolved a myriad of defense systems. Some of these systems specifically digest infecting phage by recognizing unique base modifications present on the phage DNA. In this study, we discover a Type IV restriction system encoded in V. cholerae, which we name TgvAB, and demonstrate it recognizes and restricts phage that have 5-hydroxymethylcytosine glucosylated DNA. Moreover, the evolution of resistance to TgvAB render phage susceptible to other Type IV restriction systems, demonstrating a significant evolutionary tradeoff. These results enhance our understanding of the evolution of V. cholerae and more broadly how bacteria evade phage predation.
Collapse
Affiliation(s)
- Jasper B Gomez
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M Waters
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs are a diverse subclass of Type IV restriction systems predicted to target RNA. eLife 2024; 13:RP94800. [PMID: 38739430 PMCID: PMC11090510 DOI: 10.7554/elife.94800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
3
|
Gomez JB, Waters CM. A Vibrio cholerae Type IV restriction system targets glucosylated 5-hydroxyl methyl cytosine to protect against phage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588314. [PMID: 38617239 PMCID: PMC11014532 DOI: 10.1101/2024.04.05.588314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A major challenge faced by Vibrio cholerae is constant predation by bacteriophage (phage) in aquatic reservoirs and during infection of human hosts. To overcome phage predation, V. cholerae has evolved a myriad of phage defense systems. Although several novel defense systems have been discovered, we hypothesized more were encoded in V. cholerae given the relative paucity of phage that have been isolated which infect this species. Using a V. cholerae genomic library, we identified a Type IV restriction system consisting of two genes within a 16kB region of the Vibrio pathogenicity island-2 that we name TgvA and TgvB (Type I-embedded gmrSD-like system of VPI-2). We show that both TgvA and TgvB are required for defense against T2, T4, and T6 by targeting glucosylated 5-hydroxymethylcytosine (5hmC). T2 or T4 phages that lose the glucose modification are resistant to TgvAB defense but exhibit a significant evolutionary tradeoff becoming susceptible to other Type IV restriction systems that target unglucosylated 5hmC. We show that additional phage defense genes are encoded in VPI-2 that protect against other phage like T3, secΦ18, secΦ27 and λ. Our study uncovers a novel Type IV restriction system in V. cholerae, increasing our understanding of the evolution and ecology of V. cholerae while highlighting the evolutionary interplay between restriction systems and phage genome modification.
Collapse
Affiliation(s)
- Jasper B Gomez
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M Waters
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs: A diverse subclass of Type IV restriction systems predicted to target RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551357. [PMID: 37790407 PMCID: PMC10542128 DOI: 10.1101/2023.07.31.551357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote CoCoNuTs (coiled-coil nuclease tandems) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with 3 distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T. Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
5
|
Powers RM, Hevner RF, Halpain S. The Neuron Navigators: Structure, function, and evolutionary history. Front Mol Neurosci 2023; 15:1099554. [PMID: 36710926 PMCID: PMC9877351 DOI: 10.3389/fnmol.2022.1099554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Neuron navigators (Navigators) are cytoskeletal-associated proteins important for neuron migration, neurite growth, and axon guidance, but they also function more widely in other tissues. Recent studies have revealed novel cellular functions of Navigators such as macropinocytosis, and have implicated Navigators in human disorders of axon growth. Navigators are present in most or all bilaterian animals: vertebrates have three Navigators (NAV1-3), Drosophila has one (Sickie), and Caenorhabditis elegans has one (Unc-53). Structurally, Navigators have conserved N- and C-terminal regions each containing specific domains. The N-terminal region contains a calponin homology (CH) domain and one or more SxIP motifs, thought to interact with the actin cytoskeleton and mediate localization to microtubule plus-end binding proteins, respectively. The C-terminal region contains two coiled-coil domains, followed by a AAA+ family nucleoside triphosphatase domain of unknown activity. The Navigators appear to have evolved by fusion of N- and C-terminal region homologs present in simpler organisms. Overall, Navigators participate in the cytoskeletal response to extracellular cues via microtubules and actin filaments, in conjunction with membrane trafficking. We propose that uptake of fluid-phase cues and nutrients and/or downregulation of cell surface receptors could represent general mechanisms that explain Navigator functions. Future studies developing new models, such as conditional knockout mice or human cerebral organoids may reveal new insights into Navigator function. Importantly, further biochemical studies are needed to define the activities of the Navigator AAA+ domain, and to study potential interactions among different Navigators and their binding partners.
Collapse
Affiliation(s)
- Regina M. Powers
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States,Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Robert F. Hevner
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States,Department of Pathology, UC San Diego School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States,Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States,*Correspondence: Shelley Halpain, ✉
| |
Collapse
|
6
|
Development and Optimization of a Selective Whole-Genome Amplification To Study Plasmodium ovale Spp. Microbiol Spectr 2022; 10:e0072622. [PMID: 36098524 PMCID: PMC9602584 DOI: 10.1128/spectrum.00726-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Since 2010, the human-infecting malaria parasite Plasmodium ovale spp. has been divided into two genetically distinct species, P. ovale wallikeri and P. ovale curtisi. In recent years, application of whole-genome sequencing (WGS) to P. ovale spp. allowed to get a better understanding of its evolutionary history and discover some specific genetic patterns. Nevertheless, WGS data from P. ovale spp. are still scarce due to several drawbacks, including a high level of human DNA contamination in blood samples, infections with commonly low parasite density, and the lack of robust in vitro culture. Here, we developed two selective whole-genome amplification (sWGA) protocols that were tested on six P. ovale wallikeri and five P. ovale curtisi mono-infection clinical samples. Blood leukodepletion by a cellulose-based filtration was used as the gold standard for intraspecies comparative genomics with sWGA. We also demonstrated the importance of genomic DNA preincubation with the endonuclease McrBC to optimize P. ovale spp. sWGA. We obtained high-quality WGS data with more than 80% of the genome covered by ≥5 reads for each sample and identified more than 5,000 unique single-nucleotide polymorphisms (SNPs) per species. We also identified some amino acid changes in pocdhfr and powdhfr for which similar mutations in P. falciparum and P. vivax are associated with pyrimethamine or cycloguanil resistance. In conclusion, we developed two sWGA protocols for P. ovale spp. WGS that will help to design much-needed large-scale P. ovale spp. population studies. IMPORTANCE Plasmodium ovale spp. has the ability to cause relapse, defined as recurring asexual parasitemia originating from liver-dormant forms. Whole-genome sequencing (WGS) data are of importance to identify putative molecular markers associated with relapse or other virulence mechanisms. Due to low parasitemia encountered in P. ovale spp. infections and no in vitro culture available, WGS of P. ovale spp. is challenging. Blood leukodepletion by filtration has been used, but no technique exists yet to increase the quantity of parasite DNA over human DNA when starting from genomic DNA extracted from whole blood. Here, we demonstrated that selective whole-genome amplification (sWGA) is an easy-to-use protocol to obtain high-quality WGS data for both P. ovale spp. species from unprocessed blood samples. The new method will facilitate P. ovale spp. population genomic studies.
Collapse
|
7
|
Birkholz N, Jackson SA, Fagerlund RD, Fineran P. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3348-3361. [PMID: 35286398 PMCID: PMC8989522 DOI: 10.1093/nar/gkac147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic DNA methylation plays an important role in bacteria by influencing gene expression and allowing discrimination between self-DNA and intruders such as phages and plasmids. Restriction–modification (RM) systems use a methyltransferase (MTase) to modify a specific sequence motif, thus protecting host DNA from cleavage by a cognate restriction endonuclease (REase) while leaving invading DNA vulnerable. Other REases occur solitarily and cleave methylated DNA. REases and RM systems are frequently mobile, influencing horizontal gene transfer by altering the compatibility of the host for foreign DNA uptake. However, whether mobile defence systems affect pre-existing host defences remains obscure. Here, we reveal an epigenetic conflict between an RM system (PcaRCI) and a methylation-dependent REase (PcaRCII) in the plant pathogen Pectobacterium carotovorum RC5297. The PcaRCI RM system provides potent protection against unmethylated plasmids and phages, but its methylation motif is targeted by the methylation-dependent PcaRCII. This potentially lethal co-existence is enabled through epigenetic silencing of the PcaRCII-encoding gene via promoter methylation by the PcaRCI MTase. Comparative genome analyses suggest that the PcaRCII-encoding gene was already present and was silenced upon establishment of the PcaRCI system. These findings provide a striking example for selfishness of RM systems and intracellular competition between different defences.
Collapse
Affiliation(s)
- Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- To whom correspondence should be addressed: Tel: +64 3 479 7735;
| |
Collapse
|
8
|
Teyssier NB, Chen A, Duarte EM, Sit R, Greenhouse B, Tessema SK. Optimization of whole-genome sequencing of Plasmodium falciparum from low-density dried blood spot samples. Malar J 2021; 20:116. [PMID: 33637093 PMCID: PMC7912882 DOI: 10.1186/s12936-021-03630-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
Background Whole-genome sequencing (WGS) is becoming increasingly useful to study the biology, epidemiology, and ecology of malaria parasites. Despite ease of sampling, DNA extracted from dried blood spots (DBS) has a high ratio of human DNA compared to parasite DNA, which poses a challenge for downstream genetic analyses. The effects of multiple methods for DNA extraction, digestion of methylated DNA, and amplification were evaluated on the quality and fidelity of WGS data recovered from DBS. Methods Low parasite density mock DBS samples were created, extracted either with Tween-Chelex or QIAamp, treated with or without McrBC, and amplified with one of three different amplification techniques (two sWGA primer sets and one rWGA). Extraction conditions were evaluated on performance of sequencing depth, percentiles of coverage, and expected SNP concordance. Results At 100 parasites/μL, Chelex-Tween-McrBC samples had higher coverage (5 × depth = 93% genome) than QIAamp extracted samples (5 × depth = 76% genome). The two evaluated sWGA primer sets showed minor differences in overall genome coverage and SNP concordance, with a newly proposed combination of 20 primers showing a modest improvement in coverage over those previously published. Conclusions Overall, Tween-Chelex extracted samples that were treated with McrBC digestion and are amplified using 6A10AD sWGA conditions had minimal dropout rate, higher percentages of coverage at higher depth, and more accurate SNP concordance than QiaAMP extracted samples. These findings extend the results of previously reported methods, making whole genome sequencing accessible to a larger number of low density samples that are commonly encountered in cross-sectional surveys.
Collapse
Affiliation(s)
- Noam B Teyssier
- Department of Medicine, EPPIcenter, University of California, San Francisco, CA, USA
| | - Anna Chen
- Department of Medicine, EPPIcenter, University of California, San Francisco, CA, USA
| | - Elias M Duarte
- Department of Medicine, EPPIcenter, University of California, San Francisco, CA, USA
| | - Rene Sit
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, EPPIcenter, University of California, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Sofonias K Tessema
- Department of Medicine, EPPIcenter, University of California, San Francisco, CA, USA.
| |
Collapse
|
9
|
Niu Y, Suzuki H, Hosford CJ, Walz T, Chappie JS. Structural asymmetry governs the assembly and GTPase activity of McrBC restriction complexes. Nat Commun 2020; 11:5907. [PMID: 33219217 PMCID: PMC7680126 DOI: 10.1038/s41467-020-19735-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/26/2020] [Indexed: 01/21/2023] Open
Abstract
McrBC complexes are motor-driven nucleases functioning in bacterial self-defense by cleaving foreign DNA. The GTP-specific AAA + protein McrB powers translocation along DNA and its hydrolysis activity is stimulated by its partner nuclease McrC. Here, we report cryo-EM structures of Thermococcus gammatolerans McrB and McrBC, and E. coli McrBC. The McrB hexamers, containing the necessary catalytic machinery for basal GTP hydrolysis, are intrinsically asymmetric. This asymmetry directs McrC binding so that it engages a single active site, where it then uses an arginine/lysine-mediated hydrogen-bonding network to reposition the asparagine in the McrB signature motif for optimal catalytic function. While the two McrBC complexes use different DNA-binding domains, these contribute to the same general GTP-recognition mechanism employed by all G proteins. Asymmetry also induces distinct inter-subunit interactions around the ring, suggesting a coordinated and directional GTP-hydrolysis cycle. Our data provide insights into the conserved molecular mechanisms governing McrB family AAA + motors.
Collapse
Affiliation(s)
- Yiming Niu
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
- Laboratory Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Hiroshi Suzuki
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Christopher J Hosford
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- New England Biolabs, Inc., Ipswich, MA, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA.
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Hosford CJ, Adams MC, Niu Y, Chappie JS. The N-terminal domain of Staphylothermus marinus McrB shares structural homology with PUA-like RNA binding proteins. J Struct Biol 2020; 211:107572. [PMID: 32652237 DOI: 10.1016/j.jsb.2020.107572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022]
Abstract
McrBC is a conserved modification-dependent restriction system that in Escherichia coli specifically targets foreign DNA containing methylated cytosines. Crystallographic data show that the N-terminal domain of Escherichia coli McrB binds substrates via a base flipping mechanism. This region is poorly conserved among the plethora of McrB homologs, suggesting that other species may use alternative binding strategies and/or recognize different targets. Here we present the crystal structure of the N-terminal domain from Stayphlothermus marinus McrB (Sm3-180) at 1.92 Å, which adopts a PUA-like EVE fold that is closely related to the YTH and ASCH RNA binding domains. Unlike most PUA-like domains, Sm3-180 binds DNA and can associate with different modified substrates. We find the canonical 'aromatic cage' binding pocket that confers specificity for methylated bases in other EVE/YTH domains is degenerate and occluded in Sm3-180, which may contribute to its promiscuity in target recognition. Further structural comparison between different PUA-like domains identifies motifs and conformational variations that correlate with the preference for binding either DNA or RNA. Together these data have important implications for PUA-like domain specificity and suggest a broader biological versatility for the McrBC family than previously described.
Collapse
Affiliation(s)
| | - Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Yiming Niu
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Hosford CJ, Bui AQ, Chappie JS. The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Hosford CJ, Bui AQ, Chappie JS. The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 2019; 295:743-756. [PMID: 31822563 DOI: 10.1074/jbc.ra119.010188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/07/2019] [Indexed: 01/12/2023] Open
Abstract
McrBC is a two-component, modification-dependent restriction system that cleaves foreign DNA-containing methylated cytosines. Previous crystallographic studies have shown that Escherichia coli McrB uses a base-flipping mechanism to recognize these modified substrates with high affinity. The side chains stabilizing both the flipped base and the distorted duplex are poorly conserved among McrB homologs, suggesting that other mechanisms may exist for binding modified DNA. Here we present the structures of the Thermococcus gammatolerans McrB DNA-binding domain (TgΔ185) both alone and in complex with a methylated DNA substrate at 1.68 and 2.27 Å resolution, respectively. The structures reveal that TgΔ185 consists of a YT521-B homology (YTH) domain, which is commonly found in eukaryotic proteins that bind methylated RNA and is structurally unrelated to the E. coli McrB DNA-binding domain. Structural superposition and co-crystallization further show that TgΔ185 shares a conserved aromatic cage with other YTH domains, which forms the binding pocket for a flipped-out base. Mutational analysis of this aromatic cage supports its role in conferring specificity for the methylated adenines, whereas an extended basic surface present in TgΔ185 facilitates its preferential binding to duplex DNA rather than RNA. Together, these findings establish a new binding mode and specificity among McrB homologs and expand the biological roles of YTH domains.
Collapse
Affiliation(s)
| | - Anthony Q Bui
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
13
|
Nirwan N, Singh P, Mishra GG, Johnson CM, Szczelkun MD, Inoue K, Vinothkumar KR, Saikrishnan K. Hexameric assembly of the AAA+ protein McrB is necessary for GTPase activity. Nucleic Acids Res 2019; 47:868-882. [PMID: 30521042 PMCID: PMC6344862 DOI: 10.1093/nar/gky1170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/09/2018] [Indexed: 01/23/2023] Open
Abstract
McrBC is one of the three modification-dependent restriction enzymes encoded by the Escherichia coli K12 chromosome. Amongst restriction enzymes, McrBC and its close homologues are unique in employing the AAA+ domain for GTP hydrolysis-dependent activation of DNA cleavage. The GTPase activity of McrB is stimulated by the endonuclease subunit McrC. It had been reported previously that McrB and McrC subunits oligomerise together into a high molecular weight species. Here we conclusively demonstrate using size exclusion chromatography coupled multi-angle light scattering (SEC-MALS) and images obtained by electron cryomicroscopy that McrB exists as a hexamer in solution. Furthermore, based on SEC-MALS and SAXS analyses of McrBC and the structure of McrB, we propose that McrBC is a complex of two McrB hexamers bridged by two subunits of McrC, and that the complete assembly of this complex is integral to its enzymatic activity. We show that the nucleotide-dependent oligomerisation of McrB precedes GTP hydrolysis. Mutational studies show that, unlike other AAA+ proteins, the catalytic Walker B aspartate is required for oligomerisation.
Collapse
Affiliation(s)
- Neha Nirwan
- Division of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Pratima Singh
- Division of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Gyana Gourab Mishra
- Division of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | | | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Katsuaki Inoue
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, UK
| | | | - Kayarat Saikrishnan
- Division of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
14
|
Structure-based mechanism for activation of the AAA+ GTPase McrB by the endonuclease McrC. Nat Commun 2019; 10:3058. [PMID: 31296862 PMCID: PMC6624300 DOI: 10.1038/s41467-019-11084-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/13/2019] [Indexed: 11/09/2022] Open
Abstract
The AAA+ GTPase McrB powers DNA cleavage by the endonuclease McrC. The GTPase itself is activated by McrC. The architecture of the GTPase and nuclease complex, and the mechanism of their activation remained unknown. Here, we report a 3.6 Å structure of a GTPase-active and DNA-binding deficient construct of McrBC. Two hexameric rings of McrB are bridged by McrC dimer. McrC interacts asymmetrically with McrB protomers and inserts a stalk into the pore of the ring, reminiscent of the γ subunit complexed to α3β3 of F1-ATPase. Activation of the GTPase involves conformational changes of residues essential for hydrolysis. Three consecutive nucleotide-binding pockets are occupied by the GTP analogue 5'-guanylyl imidodiphosphate and the next three by GDP, which is suggestive of sequential GTP hydrolysis.
Collapse
|
15
|
Kisiala M, Copelas A, Czapinska H, Xu SY, Bochtler M. Crystal structure of the modification-dependent SRA-HNH endonuclease TagI. Nucleic Acids Res 2019; 46:10489-10503. [PMID: 30202937 PMCID: PMC6212794 DOI: 10.1093/nar/gky781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
TagI belongs to the recently characterized SRA-HNH family of modification-dependent restriction endonucleases (REases) that also includes ScoA3IV (Sco5333) and TbiR51I (Tbis1). Here, we present a crystal structure of dimeric TagI, which exhibits a DNA binding site formed jointly by the nuclease domains, and separate binding sites for modified DNA bases in the two protomers. The nuclease domains have characteristic features of HNH/ββα-Me REases, and catalyze nicks or double strand breaks, with preference for /RY and RYN/RY sites, respectively. The SRA domains have the canonical fold. Their pockets for the flipped bases are spacious enough to accommodate 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC), but not glucosyl-5-hydroxymethylcytosine (g5hmC). Such preference is in agreement with the biochemical determination of the TagI modification dependence and the results of phage restriction assays. The ability of TagI to digest plasmids methylated by Dcm (C5mCWGG), M.Fnu4HI (G5mCNGC) or M.HpyCH4IV (A5mCGT) suggests that the SRA domains of the enzyme are tolerant to different sequence contexts of the modified base.
Collapse
Affiliation(s)
- Marlena Kisiala
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland.,Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Alyssa Copelas
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Shuang-Yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
16
|
Hosford CJ, Chappie JS. The crystal structure of the Helicobacter pylori LlaJI.R1 N-terminal domain provides a model for site-specific DNA binding. J Biol Chem 2018; 293:11758-11771. [PMID: 29895618 PMCID: PMC6066307 DOI: 10.1074/jbc.ra118.001888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Restriction modification systems consist of an endonuclease that cleaves foreign DNA site-specifically and an associated methyltransferase that protects the corresponding target site in the host genome. Modification-dependent restriction systems, in contrast, specifically recognize and cleave methylated and/or glucosylated DNA. The LlaJI restriction system contains two 5-methylcytosine (5mC) methyltransferases (LlaJI.M1 and LlaJI.M2) and two restriction proteins (LlaJI.R1 and LlaJI.R2). LlaJI.R1 and LlaJI.R2 are homologs of McrB and McrC, respectively, which in Escherichia coli function together as a modification-dependent restriction complex specific for 5mC-containing DNA. Lactococcus lactis LlaJI.R1 binds DNA site-specifically, suggesting that the LlaJI system uses a different mode of substrate recognition. Here we present the structure of the N-terminal DNA-binding domain of Helicobacter pylori LlaJI.R1 at 1.97-Å resolution, which adopts a B3 domain fold. Structural comparison to B3 domains in plant transcription factors and other restriction enzymes identifies key recognition motifs responsible for site-specific DNA binding. Moreover, biochemistry and structural modeling provide a rationale for how H. pylori LlaJI.R1 may bind a target site that differs from the 5-bp sequence recognized by other LlaJI homologs and identify residues critical for this recognition activity. These findings underscore the inherent structural plasticity of B3 domains, allowing recognition of a variety of substrates using the same structural core.
Collapse
Affiliation(s)
- Christopher J Hosford
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Joshua S Chappie
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
17
|
Accurate estimation of 5-methylcytosine in mammalian mitochondrial DNA. Sci Rep 2018; 8:5801. [PMID: 29643477 PMCID: PMC5895755 DOI: 10.1038/s41598-018-24251-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Whilst 5-methylcytosine (5mC) is a major epigenetic mark in the nuclear DNA in mammals, whether or not mitochondrial DNA (mtDNA) receives 5mC modification remains controversial. Herein, we exhaustively analysed mouse mtDNA using three methods that are based upon different principles for detecting 5mC. Next-generation bisulfite sequencing did not give any significant signatures of methylation in mtDNAs of liver, brain and embryonic stem cells (ESCs). Also, treatment with methylated cytosine-sensitive endonuclease McrBC resulted in no substantial decrease of mtDNA band intensities in Southern hybridisation. Furthermore, mass spectrometric nucleoside analyses of highly purified liver mtDNA preparations did not detect 5-methyldeoxycytidine at the levels found in the nuclear DNA but at a range of only 0.3-0.5% of deoxycytidine. Taken together, we propose that 5mC is not present at any specific region(s) of mtDNA and that levels of the methylated cytosine are fairly low, provided the modification occurs. It is thus unlikely that 5mC plays a universal role in mtDNA gene expression or mitochondrial metabolism.
Collapse
|
18
|
Tesarova L, Simara P, Stejskal S, Koutna I. The Aberrant DNA Methylation Profile of Human Induced Pluripotent Stem Cells Is Connected to the Reprogramming Process and Is Normalized During In Vitro Culture. PLoS One 2016; 11:e0157974. [PMID: 27336948 PMCID: PMC4919089 DOI: 10.1371/journal.pone.0157974] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/08/2016] [Indexed: 11/17/2022] Open
Abstract
The potential clinical applications of human induced pluripotent stem cells (hiPSCs) are limited by genetic and epigenetic variations among hiPSC lines and the question of their equivalency with human embryonic stem cells (hESCs). We used MethylScreen technology to determine the DNA methylation profile of pluripotency and differentiation markers in hiPSC lines from different source cell types compared to hESCs and hiPSC source cells. After derivation, hiPSC lines compromised a heterogeneous population characterized by variable levels of aberrant DNA methylation. These aberrations were induced during somatic cell reprogramming and their levels were associated with the type of hiPSC source cells. hiPSC population heterogeneity was reduced during prolonged culture and hiPSCs acquired an hESC-like methylation profile. In contrast, the expression of differentiation marker genes in hiPSC lines remained distinguishable from that in hESCs. Taken together, in vitro culture facilitates hiPSC acquisition of hESC epigenetic characteristics. However, differences remain between both pluripotent stem cell types, which must be considered before their use in downstream applications.
Collapse
Affiliation(s)
- Lenka Tesarova
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Pavel Simara
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Stanislav Stejskal
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Irena Koutna
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
19
|
Evasion of short interfering RNA-directed antiviral silencing in Musa acuminata persistently infected with six distinct banana streak pararetroviruses. J Virol 2014; 88:11516-28. [PMID: 25056897 DOI: 10.1128/jvi.01496-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vegetatively propagated crop plants often suffer from infections with persistent RNA and DNA viruses. Such viruses appear to evade the plant defenses that normally restrict viral replication and spread. The major antiviral defense mechanism is based on RNA silencing generating viral short interfering RNAs (siRNAs) that can potentially repress viral genes posttranscriptionally through RNA cleavage and transcriptionally through DNA cytosine methylation. Here we examined the RNA silencing machinery of banana plants persistently infected with six pararetroviruses after many years of vegetative propagation. Using deep sequencing, we reconstructed consensus master genomes of the viruses and characterized virus-derived and endogenous small RNAs. Consistent with the presence of endogenous siRNAs that can potentially establish and maintain DNA methylation, the banana genomic DNA was extensively methylated in both healthy and virus-infected plants. A novel class of abundant 20-nucleotide (nt) endogenous small RNAs with 5'-terminal guanosine was identified. In all virus-infected plants, 21- to 24-nt viral siRNAs accumulated at relatively high levels (up to 22% of the total small RNA population) and covered the entire circular viral DNA genomes in both orientations. The hotspots of 21-nt and 22-nt siRNAs occurred within open reading frame (ORF) I and II and the 5' portion of ORF III, while 24-nt siRNAs were more evenly distributed along the viral genome. Despite the presence of abundant viral siRNAs of different size classes, the viral DNA was largely free of cytosine methylation. Thus, the virus is able to evade siRNA-directed DNA methylation and thereby avoid transcriptional silencing. This evasion of silencing likely contributes to the persistence of pararetroviruses in banana plants. IMPORTANCE We report that DNA pararetroviruses in Musa acuminata banana plants are able to evade DNA cytosine methylation and transcriptional gene silencing, despite being targeted by the host silencing machinery generating abundant 21- to 24-nucleotide short interfering RNAs. At the same time, the banana genomic DNA is extensively methylated in both healthy and virus-infected plants. Our findings shed light on the siRNA-generating gene silencing machinery of banana and provide a possible explanation why episomal pararetroviruses can persist in plants whereas true retroviruses with an obligatory genome-integration step in their replication cycle do not exist in plants.
Collapse
|
20
|
Restriction-Modification Systems as a Barrier for Genetic Manipulation of Staphylococcus aureus. Methods Mol Biol 2014; 1373:9-23. [PMID: 25646604 DOI: 10.1007/7651_2014_180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic manipulation is a powerful approach to study fundamental aspects of bacterial physiology, metabolism, and pathogenesis. Most Staphylococcus aureus strains are remarkably difficult to genetically manipulate as they possess strong host defense mechanisms that protect bacteria from cellular invasion by foreign DNA. In S. aureus these bacterial "immunity" mechanisms against invading genomes are mainly associated with restriction-modification systems. To date, prokaryotic restriction-modification systems are classified into four different types (Type I-IV), all of which have been found in the sequenced S. aureus genomes. This chapter describes the roles, classification, mechanisms of action of different types of restriction-modification systems and the recent advances in the biology of restriction and modification in S. aureus.
Collapse
|
21
|
Zemlyanskaya EV, Degtyarev SK. Substrate specificity and properties of methyl-directed site-specific DNA endonucleases. Mol Biol 2013. [DOI: 10.1134/s0026893313060186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Jaber-Hijazi F, Lo PJKP, Mihaylova Y, Foster JM, Benner JS, Tejada Romero B, Chen C, Malla S, Solana J, Ruzov A, Aziz Aboobaker A. Planarian MBD2/3 is required for adult stem cell pluripotency independently of DNA methylation. Dev Biol 2013; 384:141-53. [PMID: 24063805 PMCID: PMC3824064 DOI: 10.1016/j.ydbio.2013.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 12/12/2022]
Abstract
Planarian adult stem cells (pASCs) or neoblasts represent an ideal system to study the evolution of stem cells and pluripotency as they underpin an unrivaled capacity for regeneration. We wish to understand the control of differentiation and pluripotency in pASCs and to understand how conserved, convergent or divergent these mechanisms are across the Bilateria. Here we show the planarian methyl-CpG Binding Domain 2/3 (mbd2/3) gene is required for pASC differentiation during regeneration and tissue homeostasis. The genome does not have detectable levels of 5-methylcytosine (5mC) and we find no role for a potential DNA methylase. We conclude that MBD proteins may have had an ancient role in broadly controlling animal stem cell pluripotency, but that DNA methylation is not involved in planarian stem cell differentiation. A single ancestral MBD2/3 protein is present in the planarian Schmidtea mediterranea. The genome of S. mediterranea does not have pervasive cytosine methylation. MBD2/3 is required for pluripotent stem cell differentiation down multiple but not all cell lineages. MBD2/3 may have had an ancestral role in regulating stem cell pluripotency.
Collapse
Affiliation(s)
- Farah Jaber-Hijazi
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The 1952 observation of host-induced non-hereditary variation in bacteriophages by Salvador Luria and Mary Human led to the discovery in the 1960s of modifying enzymes that glucosylate hydroxymethylcytosine in T-even phages and of genes encoding corresponding host activities that restrict non-glucosylated phage DNA: rglA and rglB (restricts glucoseless phage). In the 1980’s, appreciation of the biological scope of these activities was dramatically expanded with the demonstration that plant and animal DNA was also sensitive to restriction in cloning experiments. The rgl genes were renamed mcrA and mcrBC (modified cytosine restriction). The new class of modification-dependent restriction enzymes was named Type IV, as distinct from the familiar modification-blocked Types I–III. A third Escherichia coli enzyme, mrr (modified DNA rejection and restriction) recognizes both methylcytosine and methyladenine. In recent years, the universe of modification-dependent enzymes has expanded greatly. Technical advances allow use of Type IV enzymes to study epigenetic mechanisms in mammals and plants. Type IV enzymes recognize modified DNA with low sequence selectivity and have emerged many times independently during evolution. Here, we review biochemical and structural data on these proteins, the resurgent interest in Type IV enzymes as tools for epigenetic research and the evolutionary pressures on these systems.
Collapse
Affiliation(s)
- Wil A M Loenen
- Leiden University Medical Center, P.O. Box 9600 2300RC Leiden, The Netherlands and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | | |
Collapse
|
24
|
Anantharaman V, Iyer LM, Aravind L. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. MOLECULAR BIOSYSTEMS 2013; 8:3142-65. [PMID: 23044854 DOI: 10.1039/c2mb25239b] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mode of action of the bacterial ter cluster and TelA genes, implicated in natural resistance to tellurite and other xenobiotic toxic compounds, pore-forming colicins and several bacteriophages, has remained enigmatic for almost two decades. Using comparative genomics, sequence-profile searches and structural analysis we present evidence that the ter gene products and their functional partners constitute previously underappreciated, chemical stress response and anti-viral defense systems of bacteria. Based on contextual information from conserved gene neighborhoods and domain architectures, we show that the ter gene products and TelA lie at the center of membrane-linked metal recognition complexes with regulatory ramifications encompassing phosphorylation-dependent signal transduction, RNA-dependent regulation, biosynthesis of nucleoside-like metabolites and DNA processing. Our analysis suggests that the multiple metal-binding and non-binding TerD paralogs and TerC are likely to constitute a membrane-associated complex, which might also include TerB and TerY, and feature several, distinct metal-binding sites. Versions of the TerB domain might also bind small molecule ligands and link the TerD paralog-TerC complex to biosynthetic modules comprising phosphoribosyltransferases (PRTases), ATP grasp amidoligases, TIM-barrel carbon-carbon lyases, and HAD phosphoesterases, which are predicted to synthesize novel nucleoside-like molecules. One of the PRTases is also likely to interact with RNA by means of its Pelota/Ribosomal protein L7AE-like domain. The von Willebrand factor A domain protein, TerY, is predicted to be part of a distinct phosphorylation switch, coupling a protein kinase and a PP2C phosphatase. We show, based on the evidence from numerous conserved gene neighborhoods and domain architectures, that both the TerB and TelA domains have been linked to diverse lipid-interaction domains, such as two novel PH-like and the Coq4 domains, in different bacteria, and are likely to comprise membrane-associated sensory complexes that might additionally contain periplasmic binding-protein-II and OmpA domains. We also show that the TerD and TerB domains and the TerY-associated phosphorylation system are functionally linked to many distinct DNA-processing complexes, which feature proteins with SWI2/SNF2 and RecQ-like helicases, multiple AAA+ ATPases, McrC-N-terminal domain proteins, several restriction endonuclease fold DNases, DNA-binding domains and a type-VII/Esx-like system, which is at the center of a predicted DNA transfer apparatus. These DNA-processing modules and associated genes are predicted to be involved in restriction or suicidal action in response to phages and possibly repairing xenobiotic-induced DNA damage. In some eukaryotes, certain components of the ter system appear to be recruited to function in conjunction with the ubiquitin system and calcium-signaling pathways.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | |
Collapse
|
25
|
Sukackaite R, Grazulis S, Tamulaitis G, Siksnys V. The recognition domain of the methyl-specific endonuclease McrBC flips out 5-methylcytosine. Nucleic Acids Res 2012; 40:7552-62. [PMID: 22570415 PMCID: PMC3424535 DOI: 10.1093/nar/gks332] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DNA cytosine methylation is a widespread epigenetic mark. Biological effects of DNA methylation are mediated by the proteins that preferentially bind to 5-methylcytosine (5mC) in different sequence contexts. Until now two different structural mechanisms have been established for 5mC recognition in eukaryotes; however, it is still unknown how discrimination of the 5mC modification is achieved in prokaryotes. Here we report the crystal structure of the N-terminal DNA-binding domain (McrB-N) of the methyl-specific endonuclease McrBC from Escherichia coli. The McrB-N protein shows a novel DNA-binding fold adapted for 5mC-recognition. In the McrB-N structure in complex with methylated DNA, the 5mC base is flipped out from the DNA duplex and positioned within a binding pocket. Base flipping elegantly explains why McrBC system restricts only T4-even phages impaired in glycosylation [Luria, S.E. and Human, M.L. (1952) A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol., 64, 557–569]: flipped out 5-hydroxymethylcytosine is accommodated in the binding pocket but there is no room for the glycosylated base. The mechanism for 5mC recognition employed by McrB-N is highly reminiscent of that for eukaryotic SRA domains, despite the differences in their protein folds.
Collapse
Affiliation(s)
- Rasa Sukackaite
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, 02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|
26
|
The MspJI family of modification-dependent restriction endonucleases for epigenetic studies. Proc Natl Acad Sci U S A 2011; 108:11040-5. [PMID: 21690366 DOI: 10.1073/pnas.1018448108] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MspJI is a novel modification-dependent restriction endonuclease that cleaves at a fixed distance away from the modification site. Here, we present the biochemical characterization of several MspJI homologs, including FspEI, LpnPI, AspBHI, RlaI, and SgrTI. All of the enzymes specifically recognize cytosine C5 modification (methylation or hydroxymethylation) in DNA and cleave at a constant distance (N(12)/N(16)) away from the modified cytosine. Each displays its own sequence context preference, favoring different nucleotides flanking the modified cytosine. By cleaving on both sides of fully modified CpG sites, they allow the extraction of 32-base long fragments around the modified sites from the genomic DNA. These enzymes provide powerful tools for direct interrogation of the epigenome. For example, we show that RlaI, an enzyme that prefers (m)CWG but not (m)CpG sites, generates digestion patterns that differ between plant and mammalian genomic DNA, highlighting the difference between their epigenomic patterns. In addition, we demonstrate that deep sequencing of the digested DNA fragments generated from these enzymes provides a feasible method to map the modified sites in the genome. Altogether, the MspJI family of enzymes represent appealing tools of choice for method development in DNA epigenetic studies.
Collapse
|
27
|
Tesfazgi Mebrhatu M, Wywial E, Ghosh A, Michiels CW, Lindner AB, Taddei F, Bujnicki JM, Van Melderen L, Aertsen A. Evidence for an evolutionary antagonism between Mrr and Type III modification systems. Nucleic Acids Res 2011; 39:5991-6001. [PMID: 21504983 PMCID: PMC3152355 DOI: 10.1093/nar/gkr219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Mrr protein of Escherichia coli is a laterally acquired Type IV restriction endonuclease with specificity for methylated DNA. While Mrr nuclease activity can be elicited by high-pressure stress in E. coli MG1655, its (over)expression per se does not confer any obvious toxicity. In this study, however, we discovered that Mrr of E. coli MG1655 causes distinct genotoxicity when expressed in Salmonella typhimurium LT2. Genetic screening enabled us to contribute this toxicity entirely to the presence of the endogenous Type III restriction modification system (StyLTI) of S. typhimurium LT2. The StyLTI system consists of the Mod DNA methyltransferase and the Res restriction endonuclease, and we revealed that expression of the LT2 mod gene was sufficient to trigger Mrr activity in E. coli MG1655. Moreover, we could demonstrate that horizontal acquisition of the MG1655 mrr locus can drive the loss of endogenous Mod functionality present in S. typhimurium LT2 and E. coli ED1a, and observed a strong anti-correlation between close homologues of MG1655 mrr and LT2 mod in the genome database. This apparent evolutionary antagonism is further discussed in the light of a possible role for Mrr as defense mechanism against the establishment of epigenetic regulation by foreign DNA methyltransferases.
Collapse
Affiliation(s)
- Mehari Tesfazgi Mebrhatu
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ishikawa K, Handa N, Sears L, Raleigh EA, Kobayashi I. Cleavage of a model DNA replication fork by a methyl-specific endonuclease. Nucleic Acids Res 2011; 39:5489-98. [PMID: 21441537 PMCID: PMC3141261 DOI: 10.1093/nar/gkr153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic DNA methylation is involved in many biological processes. An epigenetic status can be altered by gain or loss of a DNA methyltransferase gene or its activity. Repair of DNA damage can also remove DNA methylation. In response to such alterations, DNA endonucleases that sense DNA methylation can act and may cause cell death. Here, we explored the possibility that McrBC, a methylation-dependent DNase of Escherichia coli, cleaves DNA at a replication fork. First, we found that in vivo restriction by McrBC of bacteriophage carrying a foreign DNA methyltransferase gene is increased in the absence of homologous recombination. This suggests that some cleavage events are repaired by recombination and must take place during or after replication. Next, we demonstrated that the enzyme can cleave a model DNA replication fork in vitro. Cleavage of a fork required methylation on both arms and removed one, the other or both of the arms. Most cleavage events removed the methylated sites from the fork. This result suggests that acquisition of even rarely occurring modification patterns will be recognized and rejected efficiently by modification-dependent restriction systems that recognize two sites. This process might serve to maintain an epigenetic status along the genome through programmed cell death.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
29
|
Ishikawa K, Fukuda E, Kobayashi I. Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems. DNA Res 2010; 17:325-42. [PMID: 21059708 PMCID: PMC2993543 DOI: 10.1093/dnares/dsq027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modification of genomic DNA by methylation is important for defining the epigenome and the transcriptome in eukaryotes as well as in prokaryotes. In prokaryotes, the DNA methyltransferase genes often vary, are mobile, and are paired with the gene for a restriction enzyme. Decrease in a certain epigenetic methylation may lead to chromosome cleavage by the partner restriction enzyme, leading to eventual cell death. Thus, the pairing of a DNA methyltransferase and a restriction enzyme forces an epigenetic state to be maintained within the genome. Although restriction enzymes were originally discovered for their ability to attack invading DNAs, it may be understood because such DNAs show deviation from this epigenetic status. DNAs with epigenetic methylation, by a methyltransferase linked or unlinked with a restriction enzyme, can also be the target of DNases, such as McrBC of Escherichia coli, which was discovered because of its methyl-specific restriction. McrBC responds to specific genome methylation systems by killing the host bacterial cell through chromosome cleavage. Evolutionary and genomic analysis of McrBC homologues revealed their mobility and wide distribution in prokaryotes similar to restriction–modification systems. These findings support the hypothesis that this family of methyl-specific DNases evolved as mobile elements competing with specific genome methylation systems through host killing. These restriction systems clearly demonstrate the presence of conflicts between epigenetic systems.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
30
|
Hori N, Nagai M, Hirayama M, Hirai T, Matsuda K, Hayashi M, Tanaka T, Ozawa T, Horike SI. Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome. Anim Reprod Sci 2010; 122:303-12. [PMID: 21035970 DOI: 10.1016/j.anireprosci.2010.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/18/2010] [Accepted: 09/24/2010] [Indexed: 12/30/2022]
Abstract
Although somatic cell nuclear transfer (NT) and in vitro fertilization (IVF) have the potential to produce genetically superior livestock, considerable numbers of abnormally large animals, including sheep and cattle affected by "large offspring syndrome" (LOS), have been produced by these assisted reproductive technologies (ART). Interestingly, these phenotypes are reminiscent of Beckwith-Wiedemann syndrome (BWS) in humans, which is an imprinting disorder characterized by pre- and/or postnatal overgrowth. The imprinting control region KvDMR1, which regulates the coordinated expression of growth control genes such as Cdkn1c, is known to be aberrantly hypomethylated in BWS. Therefore, we hypothesized that aberrant imprinting in this region could contribute to LOS. In this study, we analyzed the DNA methylation status of the Kcnq1ot1/Cdkn1c and Igf2/H19 domains on bovine chromosome 29 and examined the coordinated expression of imprinted genes surrounding them in seven calves derived by NT (which showed signs of developmental abnormality), two calves conceived by IVF (both developmentally abnormal), and three conventional calves that died of unrelated causes. Abnormal hypomethylation status at an imprinting control region of Kcnq1ot1/Cdkn1c domain was observed in two of seven NT-derived calves and one of two IVF-derived calves in almost all organs. Moreover, increased expression of Kcnq1ot1 and diminished expression of Cdkn1c were observed by RT-PCR analysis. This study is the first to describe the abnormal hypomethylation of the KvDMR1 domain and subsequent changes in the gene expression of Kcnq1ot1 and Cdkn1c in a subset of calves produced by ART. Our findings provide strong evidence for a role of altered imprinting control in the development of LOS in bovines.
Collapse
Affiliation(s)
- Noboru Hori
- Ishikawa Prefectural Livestock Research Center, Hodatsushimizu, Ishikawa 929-1325, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mulligan EA, Hatchwell E, McCorkle SR, Dunn JJ. Differential binding of Escherichia coli McrA protein to DNA sequences that contain the dinucleotide m5CpG. Nucleic Acids Res 2009; 38:1997-2005. [PMID: 20015968 PMCID: PMC2847215 DOI: 10.1093/nar/gkp1120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Escherichia coli McrA protein, a putative C5-methylcytosine/C5-hydroxyl methylcytosine-specific nuclease, binds DNA with symmetrically methylated HpaII sequences (Cm5CGG), but its precise recognition sequence remains undefined. To determine McrA’s binding specificity, we cloned and expressed recombinant McrA with a C-terminal StrepII tag (rMcrA-S) to facilitate protein purification and affinity capture of human DNA fragments with m5C residues. Sequence analysis of a subset of these fragments and electrophoretic mobility shift assays with model methylated and unmethylated oligonucleotides suggest that N(Y > R) m5CGR is the canonical binding site for rMcrA-S. In addition to binding HpaII-methylated double-stranded DNA, rMcrA-S binds DNA containing a single, hemimethylated HpaII site; however, it does not bind if A, C, T or U is placed across from the m5C residue, but does if I is opposite the m5C. These results provide the first systematic analysis of McrA’s in vitro binding specificity.
Collapse
Affiliation(s)
- Elizabeth A Mulligan
- Department of Molecular Genetics and Microbiology, Genomics Core Facility, Stony Brook University, Stony Brook, NY, USA
| | | | | | | |
Collapse
|
32
|
Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyribonucleases. Genome Biol 2008; 9:R163. [PMID: 19025584 PMCID: PMC2614495 DOI: 10.1186/gb-2008-9-11-r163] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/16/2008] [Accepted: 11/21/2008] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Alteration in epigenetic methylation can affect gene expression and other processes. In Prokaryota, DNA methyltransferase genes frequently move between genomes and present a potential threat. A methyl-specific deoxyribonuclease, McrBC, of Escherichia coli cuts invading methylated DNAs. Here we examined whether McrBC competes with genome methylation systems through host killing by chromosome cleavage. RESULTS McrBC inhibited the establishment of a plasmid carrying a PvuII methyltransferase gene but lacking its recognition sites, likely through the lethal cleavage of chromosomes that became methylated. Indeed, its phage-mediated transfer caused McrBC-dependent chromosome cleavage. Its induction led to cell death accompanied by chromosome methylation, cleavage and degradation. RecA/RecBCD functions affect chromosome processing and, together with the SOS response, reduce lethality. Our evolutionary/genomic analyses of McrBC homologs revealed: a wide distribution in Prokaryota; frequent distant horizontal transfer and linkage with mobility-related genes; and diversification in the DNA binding domain. In these features, McrBCs resemble type II restriction-modification systems, which behave as selfish mobile elements, maintaining their frequency by host killing. McrBCs are frequently found linked with a methyltransferase homolog, which suggests a functional association. CONCLUSIONS Our experiments indicate McrBC can respond to genome methylation systems by host killing. Combined with our evolutionary/genomic analyses, they support our hypothesis that McrBCs have evolved as mobile elements competing with specific genome methylation systems through host killing. To our knowledge, this represents the first report of a defense system against epigenetic systems through cell death.
Collapse
|
33
|
Abstract
Aberrant gene silencing of genes through cytosine methylation has been demonstrated during the development of many types of cancers including prostate cancer Several genes including GSTP1 have been shown to be methylated in prostate cancer leading to the suggestion and demonstration that methylation status of such genes could be used as cancer diagnosis markers alone or in support of histology. We developed a bisulfite-free alternative, MethylScreen technology, an assay for DNA methylation detection utilizing combined restriction from both methylation-sensitive restriction enzymes (MSRE) and methylation-dependent restriction enzymes (MDRE). MethylScreen was used to analyze the 5' region of GSTP1 in cell lines, in vitro methylated DNA populations, and flash-frozen tissue samples in an effort to characterize the output and analytical performance characteristics of the assay. The output from the quantitative PCR assay suggested that it could not only detect fully methylated molecules in a mixed population below the 1% level, but it could also quantify the abundance of intermediately methylated molecules. Interestingly, the interpreted output from the four quantitative PCRs closely resembled the molecular population as described by clone-based bisulfite genomic sequencing.
Collapse
|
34
|
Rifat D, Wright NT, Varney KM, Weber DJ, Black LW. Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target. J Mol Biol 2007; 375:720-34. [PMID: 18037438 DOI: 10.1016/j.jmb.2007.10.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/04/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
Phage T4 protects its DNA from the two-gene-encoded gmrS/gmrD (glucose-modified hydroxymethylcytosine restriction endonuclease) CT of pathogenic Escherichia coli, CT596, by injecting several hundred copies of the 76-amino-acid-residue nuclease inhibitor, IPI*, into the infected host. Here, the three-dimensional solution structure of mature IPI* is reported as determined by nuclear magnetic resonance techniques using 1290 experimental nuclear Overhauser effect and dipolar coupling constraints ( approximately 17 constraints per residue). Close examination of this oblate-shaped protein structure reveals a novel fold consisting of two small beta-sheets (beta1: B1 and B2; beta2: B3-B5) flanked at the N- and C-termini by alpha-helices (H1 and H2). Such a fold is very compact in shape and allows ejection of IPI* through the narrow 30-A portal and tail tube apertures of the virion without unfolding. Structural and dynamic measurements identify an exposed hydrophobic knob that is a putative gmrS/gmrD-binding site. A single gene from the uropathogenic E. coli UT189, which codes for a gmrS/gmrD-like UT fusion enzyme (with approximately 90% identity to the heterodimeric CT enzyme), has evolved IPI* inhibitor immunity. Analysis of the gmrS/gmrD restriction endonuclease enzyme family and its IPI* family phage antagonists reveals an evolutionary pathway that has elaborated a surprisingly diverse and specifically fitted set of coevolving attack and defense structures.
Collapse
Affiliation(s)
- Dalin Rifat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201-1503, USA
| | | | | | | | | |
Collapse
|
35
|
Ordway JM, Bedell JA, Citek RW, Nunberg A, Garrido A, Kendall R, Stevens JR, Cao D, Doerge RW, Korshunova Y, Holemon H, McPherson JD, Lakey N, Leon J, Martienssen RA, Jeddeloh JA. Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis 2006; 27:2409-23. [PMID: 16952911 DOI: 10.1093/carcin/bgl161] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using a unique microarray platform for cytosine methylation profiling, the DNA methylation landscape of the human genome was monitored at more than 21,000 sites, including 79% of the annotated transcriptional start sites (TSS). Analysis of an oligodendroglioma derived cell line LN-18 revealed more than 4000 methylated TSS. The gene-centric analysis indicated a complex pattern of DNA methylation exists along each autosome, with a trend of increasing density approaching the telomeres. Remarkably, 2% of CpG islands (CGI) were densely methylated, and 17% had significant levels of 5 mC, whether or not they corresponded to a TSS. Substantial independent verification, obtained from 95 loci, suggested that this approach is capable of large scale detection of cytosine methylation with an accuracy approaching 90%. In addition, we detected large genomic domains that are also susceptible to DNA methylation reinforced inactivation, such as the HOX cluster on chromosome 7 (CH7). Extrapolation from the data suggests that more than 2000 genomic loci may be susceptible to methylation and associated inactivation, and most have yet to be identified. Finally, we report six new targets of epigenetic inactivation (IRX3, WNT10A, WNT6, RARalpha, BMP7 and ZGPAT). These targets displayed cell line and tumor specific differential methylation when compared with normal brain samples, suggesting they may have utility as biomarkers. Uniquely, hypermethylation of the CGI within an IRX3 exon was correlated with over-expression of IRX3 in tumor tissues and cell lines relative to normal brain samples.
Collapse
|
36
|
A genetic dissection of the LlaJI restriction cassette reveals insights on a novel bacteriophage resistance system. BMC Microbiol 2006. [PMID: 16646963 DOI: 10.1186/1471-2108-6-40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Restriction/modification systems provide the dual function of protecting host DNA against restriction by methylation of appropriate bases within their recognition sequences, and restriction of foreign invading un-methylated DNA, such as promiscuous plasmids or infecting bacteriphage. The plasmid-encoded LlaJI restriction/modification system from Lactococcus lactis recognizes an asymmetric, complementary DNA sequence, consisting of 5'GACGC'3 in one strand and 5'GCGTC'3 in the other and provides a prodigious barrier to bacteriophage infection. LlaJI is comprised of four similarly oriented genes, encoding two 5mC-MTases (M1.LlaJI and M2.LlaJI) and two subunits responsible for restriction activity (R1.LlaJI and R2.LlaJI). Here we employ a detailed genetic analysis of the LlaJI restriction determinants in an attempt to characterize mechanistic features of this unusual hetero-oligomeric endonuclease. RESULTS Detailed bioinformatics analysis confirmed the presence of a conserved GTP binding and hydrolysis domain within the C-terminal half of the R1.LlaJI amino acid sequence whilst the N-terminal half appeared to be entirely unique. This domain architecture was homologous with that of the "B" subunit of the GTP-dependent, methyl-specific McrBC endonuclease from E.coli K-12. R1.LlaJI did not appear to contain a catalytic centre, whereas this conserved motif; PD....D/EXK, was clearly identified within the amino acid sequence for R2.LlaJI. Both R1.LlaJI and R2.LlaJI were found to be absolutely required for detectable LlaJI activity in vivo. The LlaJI restriction subunits were purified and examined in vitro, which allowed the assignment of R1.LlaJI as the sole specificity determining subunit, whilst R2.LlaJI is believed to mediate DNA cleavage. CONCLUSION The hetero-subunit structure of LlaJI, wherein one subunit mediates DNA binding whilst the other subunit is predicted to catalyze strand hydrolysis distinguishes LlaJI from previously characterized restriction-modification systems. Furthermore, this distinction is accentuated by the fact that whilst LlaJI behaves as a conventional Type IIA system in vivo, in that it restricts un-methylated DNA, it resembles the Type IV McrBC endonuclease, an enzyme specific for methylated DNA. A number of similar restriction determinants were identified in the database and it is likely LlaJI together with these homologous systems, comprise a new subtype of the Type II class incorporating features of Type II and Type IV systems.
Collapse
|
37
|
O'Driscoll J, Heiter DF, Wilson GG, Fitzgerald GF, Roberts R, Sinderen DV. A genetic dissection of the LlaJI restriction cassette reveals insights on a novel bacteriophage resistance system. BMC Microbiol 2006; 6:40. [PMID: 16646963 PMCID: PMC1459862 DOI: 10.1186/1471-2180-6-40] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 04/28/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Restriction/modification systems provide the dual function of protecting host DNA against restriction by methylation of appropriate bases within their recognition sequences, and restriction of foreign invading un-methylated DNA, such as promiscuous plasmids or infecting bacteriphage. The plasmid-encoded LlaJI restriction/modification system from Lactococcus lactis recognizes an asymmetric, complementary DNA sequence, consisting of 5'GACGC'3 in one strand and 5'GCGTC'3 in the other and provides a prodigious barrier to bacteriophage infection. LlaJI is comprised of four similarly oriented genes, encoding two 5mC-MTases (M1.LlaJI and M2.LlaJI) and two subunits responsible for restriction activity (R1.LlaJI and R2.LlaJI). Here we employ a detailed genetic analysis of the LlaJI restriction determinants in an attempt to characterize mechanistic features of this unusual hetero-oligomeric endonuclease. RESULTS Detailed bioinformatics analysis confirmed the presence of a conserved GTP binding and hydrolysis domain within the C-terminal half of the R1.LlaJI amino acid sequence whilst the N-terminal half appeared to be entirely unique. This domain architecture was homologous with that of the "B" subunit of the GTP-dependent, methyl-specific McrBC endonuclease from E.coli K-12. R1.LlaJI did not appear to contain a catalytic centre, whereas this conserved motif; PD....D/EXK, was clearly identified within the amino acid sequence for R2.LlaJI. Both R1.LlaJI and R2.LlaJI were found to be absolutely required for detectable LlaJI activity in vivo. The LlaJI restriction subunits were purified and examined in vitro, which allowed the assignment of R1.LlaJI as the sole specificity determining subunit, whilst R2.LlaJI is believed to mediate DNA cleavage. CONCLUSION The hetero-subunit structure of LlaJI, wherein one subunit mediates DNA binding whilst the other subunit is predicted to catalyze strand hydrolysis distinguishes LlaJI from previously characterized restriction-modification systems. Furthermore, this distinction is accentuated by the fact that whilst LlaJI behaves as a conventional Type IIA system in vivo, in that it restricts un-methylated DNA, it resembles the Type IV McrBC endonuclease, an enzyme specific for methylated DNA. A number of similar restriction determinants were identified in the database and it is likely LlaJI together with these homologous systems, comprise a new subtype of the Type II class incorporating features of Type II and Type IV systems.
Collapse
Affiliation(s)
- Jonathan O'Driscoll
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Daniel F Heiter
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | | | - Gerald F Fitzgerald
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
- Biotransfer Unit, University College Cork, Western Road, Cork, Ireland
| | - Richard Roberts
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | - Douwe van Sinderen
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
38
|
Lin B, Wang Z, Vora GJ, Thornton JA, Schnur JM, Thach DC, Blaney KM, Ligler AG, Malanoski AP, Santiago J, Walter EA, Agan BK, Metzgar D, Seto D, Daum LT, Kruzelock R, Rowley RK, Hanson EH, Tibbetts C, Stenger DA. Broad-spectrum respiratory tract pathogen identification using resequencing DNA microarrays. Genes Dev 2006; 16:527-35. [PMID: 16481660 PMCID: PMC1457032 DOI: 10.1101/gr.4337206] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 12/22/2005] [Indexed: 11/24/2022]
Abstract
The exponential growth of pathogen nucleic acid sequences available in public domain databases has invited their direct use in pathogen detection, identification, and surveillance strategies. DNA microarray technology has offered the potential for the direct DNA sequence analysis of a broad spectrum of pathogens of interest. However, to achieve the practical attainment of this potential, numerous technical issues, especially nucleic acid amplification, probe specificity, and interpretation strategies of sequence detection, need to be addressed. In this report, we demonstrate an approach that combines the use of a custom-designed Affymetrix resequencing Respiratory Pathogen Microarray (RPM v.1) with methods for microbial nucleic acid enrichment, random nucleic acid amplification, and automated sequence similarity searching for broad-spectrum respiratory pathogen surveillance. Successful proof-of-concept experiments, utilizing clinical samples obtained from patients presenting adenovirus or influenza virus-induced febrile respiratory illness (FRI), demonstrate the ability of this approach for correct species- and strain-level identification with unambiguous statistical interpretation at clinically relevant sensitivity levels. Our results underscore the feasibility of using this approach to expedite the early surveillance of diseases, and provide new information on the incidence of multiple pathogens.
Collapse
Affiliation(s)
- Baochuan Lin
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Zheng Wang
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Gary J. Vora
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | | | - Joel M. Schnur
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Dzung C. Thach
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Kate M. Blaney
- NOVA Research Incorporated, Alexandria, Virginia 22308, USA
| | - Adam G. Ligler
- NOVA Research Incorporated, Alexandria, Virginia 22308, USA
| | - Anthony P. Malanoski
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Jose Santiago
- Epidemic Outbreak Surveillance Advanced Diagnostics Laboratory, Lackland Air Force Base, San Antonio, Texas 78236, USA
| | - Elizabeth A. Walter
- Epidemic Outbreak Surveillance Advanced Diagnostics Laboratory, Lackland Air Force Base, San Antonio, Texas 78236, USA
- Texas A&M University System, San Antonio, Texas 78223, USA
| | - Brian K. Agan
- Department of Infectious Disease, Wilford Hall USAF Medical Center, Lackland Air Force Base, San Antonio, Texas 78236, USA
| | - David Metzgar
- Department of Defense Center for Deployment Health Research, Naval Health Research Center, San Diego, California 92186, USA
| | - Donald Seto
- School of Computational Sciences, George Mason University, Manassas, Virginia 20110, USA
| | - Luke T. Daum
- Air Force Institute for Operational Health, Brooks Air Force Base, San Antonio, Texas 78235, USA
| | - Russell Kruzelock
- Epidemic Outbreak Surveillance Advanced Diagnostics Laboratory, Lackland Air Force Base, San Antonio, Texas 78236, USA
| | | | | | | | - David A. Stenger
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, District of Columbia 20375, USA
| |
Collapse
|
39
|
Smith MJ, Jeddeloh JA. DNA methylation in lysogens of pathogenic Burkholderia spp. requires prophage induction and is restricted to excised phage DNA. J Bacteriol 2005; 187:1196-200. [PMID: 15659696 PMCID: PMC545696 DOI: 10.1128/jb.187.3.1196-1200.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia mallei-specific phage PhiE125 encodes DNA methyltransferases in both the lysogenic and replication modules within its genome. Characterization of DNA methylation in recombinant systems, specifically in PhiE125 lysogenic strains of B. mallei and Burkholderia thailandensis, revealed that, upon induction, cytosine methylation was targeted specifically to the phage episome but not the phage provirus or the host chromosome.
Collapse
Affiliation(s)
- M J Smith
- Orion Genomics, 4041 Forest Park, St. Louis, MO 63108, USA
| | | |
Collapse
|
40
|
Abstract
Most reactions on DNA are carried out by multimeric protein complexes that interact with two or more sites in the DNA and thus loop out the DNA between the sites. The enzymes that catalyze these reactions usually have no activity until they interact with both sites. This review examines the mechanisms for the assembly of protein complexes spanning two DNA sites and the resultant triggering of enzyme activity. There are two main routes for bringing together distant DNA sites in an enzyme complex: either the proteins bind concurrently to both sites and capture the intervening DNA in a loop, or they translocate the DNA between one site and another into an expanding loop, by an energy-dependent translocation mechanism. Both capture and translocation mechanisms are discussed here, with reference to the various types of restriction endonuclease that interact with two recognition sites before cleaving DNA.
Collapse
Affiliation(s)
- Stephen E Halford
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University walk, Bristol BS8 1TD, United Kingdom.
| | | | | |
Collapse
|
41
|
Abstract
Survival is assuredly the prime directive for all living organisms either as individuals or as a species. One of the main challenges encountered by bacterial populations is the danger of bacteriophage attacks, since infection of a single bacterium may rapidly propagate, decimating the entire population. In order to protect themselves against this acute threat, bacteria have developed an array of defence mechanisms, which range from preventing the infection itself via interference with bacteriophage adsorption to the cell surface and prevention of phage DNA injection, to degradation of the injected phage DNA. This last defence mechanism is catalysed by the bacterial restriction-modification (R-M) systems, and in particular, by nucleoside 5'-triphosphate (NTP)-dependent restriction enzymes, e.g. type I and type III R-M systems or the modification-dependent endonucleases. Type I and type III restriction systems have dual properties. They may either act as methylases and protect the host's own DNA against restriction by methylating specific residues, or they catalyse ATP-dependent endonuclease activity so that invading foreign DNA lacking the host-specific methylation is degraded. These defence mechanism systems are further complemented by the presence of methylation-dependent, GTP-dependent endonucleases, that restricts specifically methylated DNA. Although all three types of endonucleases are structurally very different, they share a common functional mechanism. They recognise and bind to specific DNA sequences but do not cleave DNA within those target sites. They belong to the general class of DNA motor proteins, which use the free energy associated with nucleoside 5'-triphosphate hydrolysis to translocate DNA so that the subsequent DNA cleavage event occurs at a distance from the endonuclease recognition site. Moreover, DNA cleavage appears to be a random process triggered upon stalling of the DNA translocation process and requiring dimerisation of the bound endonucleases for a concerted break of both DNA strands. In this review, we present a detailed description and analysis of the functional mechanism of the three known NTP-dependent restriction systems: type I and type III restriction-modification enzymes, as well as the methylation-dependent McrBC endonuclease.
Collapse
Affiliation(s)
- Aude A Bourniquel
- Department of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, Switzerland.
| | | |
Collapse
|
42
|
Williams SA, Halford SE. Communications between catalytic sites in the protein-DNA synapse by the SfiI endonuclease. J Mol Biol 2002; 318:387-94. [PMID: 12051845 DOI: 10.1016/s0022-2836(02)00019-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The SfiI endonuclease is a tetrameric protein with two DNA-binding clefts. It has to bind two copies of its recognition sequence, one at each cleft, before it cleaves DNA. While SfiI binds cooperatively to two cognate sites, it binds only one non-cognate DNA molecule at a time and the resultant complex is precluded from binding cognate DNA at the vacant cleft. To examine the communications between separate binding sites in a protein that synapses two segments of DNA, SfiI was tested with oligonucleotide duplexes containing its recognition sequence but with either R(p) or S(p) phosphorothioate linkages at the scissile bonds. Though SfiI has low activity on the R(p) and none against the S(p) diastereoisomer, it bound these duplexes in the same cooperative manner as oxyester duplexes, though with a reduced affinity for the S(p) derivative. It also formed complexes with one phosphorothioate-duplex and one oxyester-duplex but, when Mg(2+) was added to the hybrid complexes, the phosphorothioate moiety at one DNA-binding cleft prevented the enzyme from cleaving the oxyester duplex at the other cleft. SfiI is thus restrained from catalytic action until it recognises the correct nucleotide sequence at two DNA loci and the correct phosphodiester functions at both loci.
Collapse
Affiliation(s)
- Shelley A Williams
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
43
|
Pieper U, Groll DH, Wünsch S, Gast FU, Speck C, Mücke N, Pingoud A. The GTP-dependent restriction enzyme McrBC from Escherichia coli forms high-molecular mass complexes with DNA and produces a cleavage pattern with a characteristic 10-base pair repeat. Biochemistry 2002; 41:5245-54. [PMID: 11955074 DOI: 10.1021/bi015687u] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The GTP-dependent restriction enzyme McrBC consists of two polypeptides: one (McrB) that is responsible for GTP binding and hydrolysis as well as DNA binding and another (McrC) that is responsible for DNA cleavage. It recognizes two methylated or hemimethylated RC sites (R(m)C) at a distance of approximately 30 to more than 2000 base pairs and cleaves the DNA close to one of the two R(m)C sites. This process is strictly coupled to GTP hydrolysis and involves the formation of high-molecular mass complexes. We show here using footprinting techniques, surface plasmon resonance, and scanning force microscopy experiments that in the absence of McrC, McrB binds to a single R(m)C site. If a second R(m)C site is present on the DNA, it is occupied independently by McrB. Whereas the DNA-binding domain of McrB forms 1:1 complexes with each R(m)C site and shows a clear footprint on both R(m)C sites, full-length McrB forms complexes with a stoichiometry of at least 4:1 at each R(m)C site, resulting in a slightly more extended footprint. In the presence of McrC, McrB forms high-molecular mass complexes of unknown stoichiometry, which are considerably larger than the complexes formed with McrB alone. In these complexes and when GTP is present, the DNA is cleaved next to one of the R(m)C sites at distances differing by one to five helical turns, suggesting that in the McrBC-DNA complex only a few topologically well-defined phosphodiester bonds of the DNA are accessible for the nucleolytic center of McrC.
Collapse
Affiliation(s)
- Uwe Pieper
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Pieper U, Pingoud A. A mutational analysis of the PD...D/EXK motif suggests that McrC harbors the catalytic center for DNA cleavage by the GTP-dependent restriction enzyme McrBC from Escherichia coli. Biochemistry 2002; 41:5236-44. [PMID: 11955073 DOI: 10.1021/bi0156862] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
McrBC is a unique restriction enzyme which binds specifically to the bipartite recognition sequence R(m)CN( approximately )(30)(-)( approximately )(2000)R(m)C and in the presence of GTP translocates the DNA and cleaves both strands at multiple positions within the two R(m)C "half-sites". It is known that McrBC is composed of two subunits: McrB which binds and hydrolyzes GTP and specifically interacts with DNA and McrC whose function is not clear but which has been suspected to harbor the catalytic center for DNA cleavage. A multiple-sequence alignment of the amino acid sequence of Escherichia coli McrC and of six presumably homologous open reading frames from various bacterial species shows that a sequence motif found in many restriction enzymes, but also in other nucleases, the PD.D/EXK motif, is conserved among these sequences. A mutational analysis, in which the carboxylates (aspartic acid in McrC) of this motif were substituted with alanine or asparagine and lysine was substituted with alanine or arginine, strongly suggests that Asp244, Asp257, and Lys259 represent the catalytic center of E. coli McrC. Whereas the variants D244A (or -N), D257A (or -N), and K259A are inactive in DNA cleavage (K259R has residual DNA cleavage activity), they interact with McrB like wild-type McrC, as can be deduced from the finding that they stimulate the McrB-catalyzed GTP hydrolysis to the same extent as wild-type McrC. Thus, whereas McrC variants defective in DNA cleavage can stimulate the GTPase activity of McrB, the DNase activity of McrC is not supported by McrB variants defective in GTP hydrolysis.
Collapse
Affiliation(s)
- Uwe Pieper
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | |
Collapse
|
45
|
Mücke M, Reich S, Möncke-Buchner E, Reuter M, Krüger DH. DNA cleavage by type III restriction-modification enzyme EcoP15I is independent of spacer distance between two head to head oriented recognition sites. J Mol Biol 2001; 312:687-98. [PMID: 11575924 DOI: 10.1006/jmbi.2001.4998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type III restriction-modification enzyme EcoP15I requires the interaction of two unmethylated, inversely oriented recognition sites 5'-CAGCAG in head to head configuration to allow an efficient DNA cleavage. It has been hypothesized that two convergent DNA-translocating enzyme-substrate complexes interact to form the active cleavage complex and that translocation is driven by ATP hydrolysis. Using a half-automated, fluorescence-based detection method, we investigated how the distance between two inversely oriented recognition sites affects DNA cleavage efficiency. We determined that EcoP15I cleaves DNA efficiently even for two adjacent head to head or tail to tail oriented target sites. Hence, DNA translocation appears not to be required for initiating DNA cleavage in these cases. Furthermore, we report here that EcoP15I is able to cleave single-site substrates. When we analyzed the interaction of EcoP15I with DNA substrates containing adjacent target sites in the presence of non-hydrolyzable ATP analogues, we found that cleavage depended on the hydrolysis of ATP. Moreover, we show that cleavage occurs at only one of the two possible cleavage positions of an interacting pair of target sequences. When EcoP15I bound to a DNA substrate containing one recognition site in the absence of ATP, we observed a 36 nucleotide DNaseI-footprint that is asymmetric on both strands. All of our footprinting experiments showed that the enzyme did not cover the region around the cleavage site. Analyzing a DNA fragment with two head to head oriented recognition sites, EcoP15I protected 27-33 nucleotides around the recognition sequence, including an additional region of 26 bp between both cleavage sites. For all DNA substrates examined, the presence of ATP caused altered footprinting patterns. We assume that the altered patterns are most likely due to a conformational change of the enzyme. Overall, our data further refine the tracking-collision model for type III restriction enzymes.
Collapse
Affiliation(s)
- M Mücke
- Institut für Virologie, Medizinische Fakultät (Charité), der Humboldt-Universität zu Berlin, D-10098, Germany
| | | | | | | | | |
Collapse
|
46
|
Abstract
The known nucleoside triphosphate-dependent restriction enzymes are hetero-oligomeric proteins that behave as molecular machines in response to their target sequences. They translocate DNA in a process dependent on the hydrolysis of a nucleoside triphosphate. For the ATP-dependent type I and type III restriction and modification systems, the collision of translocating complexes triggers hydrolysis of phosphodiester bonds in unmodified DNA to generate double-strand breaks. Type I endonucleases break the DNA at unspecified sequences remote from the target sequence, type III endonucleases at a fixed position close to the target sequence. Type I and type III restriction and modification (R-M) systems are notable for effective post-translational control of their endonuclease activity. For some type I enzymes, this control is mediated by proteolytic degradation of that subunit of the complex which is essential for DNA translocation and breakage. This control, lacking in the well-studied type II R-M systems, provides extraordinarily effective protection of resident DNA should it acquire unmodified target sequences. The only well-documented GTP-dependent restriction enzyme, McrBC, requires methylated target sequences for the initiation of phosphodiester bond cleavage.
Collapse
Affiliation(s)
- D T Dryden
- Department of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JJ, UK.
| | | | | |
Collapse
|
47
|
Pingoud A, Jeltsch A. Structure and function of type II restriction endonucleases. Nucleic Acids Res 2001; 29:3705-27. [PMID: 11557805 PMCID: PMC55916 DOI: 10.1093/nar/29.18.3705] [Citation(s) in RCA: 440] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Revised: 03/23/2001] [Accepted: 06/07/2001] [Indexed: 11/13/2022] Open
Abstract
More than 3000 type II restriction endonucleases have been discovered. They recognize short, usually palindromic, sequences of 4-8 bp and, in the presence of Mg(2+), cleave the DNA within or in close proximity to the recognition sequence. The orthodox type II enzymes are homodimers which recognize palindromic sites. Depending on particular features subtypes are classified. All structures of restriction enzymes show a common structural core comprising four beta-strands and one alpha-helix. Furthermore, two families of enzymes can be distinguished which are structurally very similar (EcoRI-like enzymes and EcoRV-like enzymes). Like other DNA binding proteins, restriction enzymes are capable of non-specific DNA binding, which is the prerequisite for efficient target site location by facilitated diffusion. Non-specific binding usually does not involve interactions with the bases but only with the DNA backbone. In contrast, specific binding is characterized by an intimate interplay between direct (interaction with the bases) and indirect (interaction with the backbone) readout. Typically approximately 15-20 hydrogen bonds are formed between a dimeric restriction enzyme and the bases of the recognition sequence, in addition to numerous van der Waals contacts to the bases and hydrogen bonds to the backbone, which may also be water mediated. The recognition process triggers large conformational changes of the enzyme and the DNA, which lead to the activation of the catalytic centers. In many restriction enzymes the catalytic centers, one in each subunit, are represented by the PD. D/EXK motif, in which the two carboxylates are responsible for Mg(2+) binding, the essential cofactor for the great majority of enzymes. The precise mechanism of cleavage has not yet been established for any enzyme, the main uncertainty concerns the number of Mg(2+) ions directly involved in cleavage. Cleavage in the two strands usually occurs in a concerted fashion and leads to inversion of configuration at the phosphorus. The products of the reaction are DNA fragments with a 3'-OH and a 5'-phosphate.
Collapse
Affiliation(s)
- A Pingoud
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | |
Collapse
|
48
|
Panne D, Müller SA, Wirtz S, Engel A, Bickle TA. The McrBC restriction endonuclease assembles into a ring structure in the presence of G nucleotides. EMBO J 2001; 20:3210-7. [PMID: 11406597 PMCID: PMC150197 DOI: 10.1093/emboj/20.12.3210] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
McrBC from Escherichia coli K-12 is a restriction enzyme that belongs to the family of AAA(+) proteins and cuts DNA containing modified cytosines. Two proteins are expressed from the mcrB gene: a full-length version, McrB(L), and a short version, McrB(S). McrB(L) binds specifically to the methylated recognition site and is, therefore, the DNA-binding moiety of the McrBC endonuclease. McrB(S) is devoid of DNA-binding activity. We observed that the quaternary structure of the endonuclease depends on binding of the cofactors. In gel filtration experiments, McrB(L) and McrB(S) form high molecular weight oligomers in the presence of Mg(2+) and GTP, GDP or GTP-gamma-S. Oligomerization did not require the presence of DNA and was independent of GTP hydrolysis. Electron micrographs of negatively stained McrB(L) and McrB(S) revealed ring-shaped particles with a central channel. Mass analysis by scanning transmission electron microscopy indicates that McrB(L) and McrB(S) form single heptameric rings as well as tetradecamers. In the presence of McrC, a subunit that is essential for DNA cleavage, the tetradecameric species was the major form of the endonuclease.
Collapse
Affiliation(s)
| | - Shirley A. Müller
- Department of Microbiology and
Maurice E.Müller Institute for Structural Biology, Biozentrum, Basel University, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Corresponding author e-mail:
| | - Sabine Wirtz
- Department of Microbiology and
Maurice E.Müller Institute for Structural Biology, Biozentrum, Basel University, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Corresponding author e-mail:
| | - Andreas Engel
- Department of Microbiology and
Maurice E.Müller Institute for Structural Biology, Biozentrum, Basel University, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Corresponding author e-mail:
| | - Thomas A. Bickle
- Department of Microbiology and
Maurice E.Müller Institute for Structural Biology, Biozentrum, Basel University, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Corresponding author e-mail:
| |
Collapse
|
49
|
Singer PA, Pellegrino ED, Siegler M. Clinical ethics revisited. BMC Med Ethics 2001; 2:E1. [PMID: 11346456 PMCID: PMC32193 DOI: 10.1186/1472-6939-2-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Accepted: 01/15/2001] [Indexed: 11/15/2022] Open
Abstract
A decade ago, we reviewed the field of clinical ethics; assessed its progress in research, education, and ethics committees and consultation; and made predictions about the future of the field. In this article, we revisit clinical ethics to examine our earlier observations, highlight key developments, and discuss remaining challenges for clinical ethics, including the need to develop a global perspective on clinical ethics problems.
Collapse
Affiliation(s)
- Peter A Singer
- Sun Life Chair and Director, University of Toronto Joint Centre for Bioethics Professor of Medicine, University of Toronto
| | - Edmund D Pellegrino
- John Carroll Professor of Medicine and Medical Ethics, Center for Clinical Bioethics, Georgetown University Medical Center
| | - Mark Siegler
- Lindy Bergman Professor of Medicine Director, MacLean Center for Clinical Ethics, University of Chicago
| |
Collapse
|
50
|
Abstract
The endonuclease activity of EcoKI is regulated by the ClpXP-dependent degradation of the subunit that is essential for restriction, but not modification. We monitored proteolysis in mutants blocked at different steps in the restriction pathway. Mutations that prevent DNA translocation render EcoKI refractory to proteolysis, whereas those that permit DNA translocation, but block endonuclease activity, do not. Although proteolysis alleviates restriction in a mutant that lacks modification activity, some restriction activity remains; our evidence indicates residual EcoKI associated with the membrane fraction. ClpXP protects the bacterial chromosome, but little effect was detected on unmodified foreign DNA within the cytoplasm of a restriction-proficient cell. The molecular basis for the distinction between unmodified resident and foreign DNA remains to be determined.
Collapse
Affiliation(s)
- V A Doronina
- Institute of Cell and Molecular Biology, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | |
Collapse
|