1
|
Wang X, Holthauzen LMF, Paz-Villatoro JM, Bien KG, Yu B, Iwahara J. Phosphorylation by Protein Kinase C Weakens DNA-Binding Affinity and Folding Stability of the HMGB1 Protein. Biochemistry 2024; 63:1718-1722. [PMID: 38916994 PMCID: PMC11282465 DOI: 10.1021/acs.biochem.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The HMGB1 protein typically serves as a DNA chaperone that assists DNA-repair enzymes and transcription factors but can translocate from the nucleus to the cytoplasm or even to extracellular space upon some cellular stimuli. One of the factors that triggers the translocation of HMGB1 is its phosphorylation near a nuclear localization sequence by protein kinase C (PKC), although the exact modification sites on HMGB1 remain ambiguous. In this study, using spectroscopic methods, we investigated the HMGB1 phosphorylation and its impact on the molecular properties of the HMGB1 protein. Our nuclear magnetic resonance (NMR) data on the full-length HMGB1 protein showed that PKC specifically phosphorylates the A-box domain, one of the DNA binding domains of HMGB1. Phosphorylation of S46 and S53 was particularly efficient. Over a longer reaction time, PKC phosphorylated some additional residues within the HMGB1 A-box domain. Our fluorescence-based binding assays showed that the phosphorylation significantly reduces the binding affinity of HMGB1 for DNA. Based on the crystal structures of HMGB1-DNA complexes, this effect can be ascribed to electrostatic repulsion between the negatively charged phosphate groups at the S46 side chain and DNA backbone. Our data also showed that the phosphorylation destabilizes the folding of the A-box domain. Thus, phosphorylation by PKC weakens the DNA-binding affinity and folding stability of HMGB1.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Luis Marcelo F. Holthauzen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Jonathan M Paz-Villatoro
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Karina G. Bien
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| |
Collapse
|
2
|
Hamilton DJ, Hein AE, Wuttke DS, Batey RT. The DNA binding high mobility group box protein family functionally binds RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1778. [PMID: 36646476 PMCID: PMC10349909 DOI: 10.1002/wrna.1778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
Nucleic acid binding proteins regulate transcription, splicing, RNA stability, RNA localization, and translation, together tailoring gene expression in response to stimuli. Upon discovery, these proteins are typically classified as either DNA or RNA binding as defined by their in vivo functions; however, recent evidence suggests dual DNA and RNA binding by many of these proteins. High mobility group box (HMGB) proteins have a DNA binding HMGB domain, act as transcription factors and chromatin remodeling proteins, and are increasingly understood to interact with RNA as means to regulate gene expression. Herein, multiple layers of evidence that the HMGB family are dual DNA and RNA binding proteins is comprehensively reviewed. For example, HMGB proteins directly interact with RNA in vitro and in vivo, are localized to RNP granules involved in RNA processing, and their protein interactors are enriched in RNA binding proteins involved in RNA metabolism. Importantly, in cell-based systems, HMGB-RNA interactions facilitate protein-protein interactions, impact splicing outcomes, and modify HMGB protein genomic or cellular localization. Misregulation of these HMGB-RNA interactions are also likely involved in human disease. This review brings to light that as a family, HMGB proteins are likely to bind RNA which is essential to HMGB protein biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
|
3
|
Wang X, Bigman LS, Greenblatt HM, Yu B, Levy Y, Iwahara J. Negatively charged, intrinsically disordered regions can accelerate target search by DNA-binding proteins. Nucleic Acids Res 2023; 51:4701-4712. [PMID: 36774964 PMCID: PMC10250230 DOI: 10.1093/nar/gkad045] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/14/2023] Open
Abstract
In eukaryotes, many DNA/RNA-binding proteins possess intrinsically disordered regions (IDRs) with large negative charge, some of which involve a consecutive sequence of aspartate (D) or glutamate (E) residues. We refer to them as D/E repeats. The functional role of D/E repeats is not well understood, though some of them are known to cause autoinhibition through intramolecular electrostatic interaction with functional domains. In this work, we investigated the impacts of D/E repeats on the target DNA search kinetics for the high-mobility group box 1 (HMGB1) protein and the artificial protein constructs of the Antp homeodomain fused with D/E repeats of varied lengths. Our experimental data showed that D/E repeats of particular lengths can accelerate the target association in the overwhelming presence of non-functional high-affinity ligands ('decoys'). Our coarse-grained molecular dynamics (CGMD) simulations showed that the autoinhibited proteins can bind to DNA and transition into the uninhibited complex with DNA through an electrostatically driven induced-fit process. In conjunction with the CGMD simulations, our kinetic model can explain how D/E repeats can accelerate the target association process in the presence of decoys. This study illuminates an unprecedented role of the negatively charged IDRs in the target search process.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Lavi S Bigman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harry M Greenblatt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| |
Collapse
|
4
|
Wang X, Mayorga-Flores M, Bien KG, Bailey AO, Iwahara J. DNA-mediated proteolysis by neutrophil elastase enhances binding activities of the HMGB1 protein. J Biol Chem 2022; 298:102577. [DOI: 10.1016/j.jbc.2022.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
|
5
|
Balana AT, Mukherjee A, Nagpal H, Moon SP, Fierz B, Vasquez KM, Pratt MR. O-GlcNAcylation of High Mobility Group Box 1 (HMGB1) Alters Its DNA Binding and DNA Damage Processing Activities. J Am Chem Soc 2021; 143:16030-16040. [PMID: 34546745 DOI: 10.1021/jacs.1c06192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein O-GlcNAcylation is an essential and dynamic regulator of myriad cellular processes, including DNA replication and repair. Proteomic studies have identified the multifunctional nuclear protein HMGB1 as O-GlcNAcylated, providing a potential link between this modification and DNA damage responses. Here, we verify the protein's endogenous modification at S100 and S107 and found that the major modification site is S100, a residue that can potentially influence HMGB1-DNA interactions. Using synthetic protein chemistry, we generated site-specifically O-GlcNAc-modified HMGB1 at S100 and characterized biochemically the effect of the sugar modification on its DNA binding activity. We found that O-GlcNAc alters HMGB1 binding to linear, nucleosomal, supercoiled, cruciform, and interstrand cross-linked damaged DNA, generally resulting in enhanced oligomerization on these DNA structures. Using cell-free extracts, we also found that O-GlcNAc reduces the ability of HMGB1 to facilitate DNA repair, resulting in error-prone processing of damaged DNA. Our results expand our understanding of the molecular consequences of O-GlcNAc and how it affects protein-DNA interfaces. Importantly, our work may also support a link between upregulated O-GlcNAc levels and increased rates of mutations in certain cancer states.
Collapse
Affiliation(s)
| | - Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, Texas 78723, United States
| | - Harsh Nagpal
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, Texas 78723, United States
| | | |
Collapse
|
6
|
Niu L, Yang W, Duan L, Wang X, Li Y, Xu C, Liu C, Zhang Y, Zhou W, Liu J, Zhao Q, Han Y, Hong L, Fan D. Biological functions and theranostic potential of HMGB family members in human cancers. Ther Adv Med Oncol 2020; 12:1758835920970850. [PMID: 33224279 PMCID: PMC7659026 DOI: 10.1177/1758835920970850] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
The high mobility group box (HMGB) protein family consists of four members: HMGB1, 2, 3, and 4. They share similar amino acid sequences and identical functional regions, especially HMGB1, 2, and 3. The homology in structure may lead to similarity in function. In fact, though their targets may be different, they all possess the fundamental function of binding and distorting target DNAs. However, further research confirmed they are distributed differently in tissues and involved in various distinct physiological and pathological cellular processes, including cell proliferation, division, migration, and differentiation. Recently, the roles of HMGB family members in carcinogenesis has been widely investigated; however, systematic discussion on their functions and clinical values in malignant tumors is limited. In this review, we mainly review and summarize recent advances in knowledge of HMGB family members in terms of structure, distribution, biochemical cascades, and specific mechanisms regarding tumor progression. Importantly, the diagnostic, prognostic, and therapeutic value of these proteins in cancers is discussed. Finally, we envisage the orientation and challenges of this field in further studies.
Collapse
Affiliation(s)
- Liaoran Niu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chengchao Xu
- 94719 Military Hospital, Ji'an, Jiangxi Province, China
| | - Chao Liu
- School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Province, 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Aoki D, Awazu A, Fujii M, Uewaki JI, Hashimoto M, Tochio N, Umehara T, Tate SI. Ultrasensitive Change in Nucleosome Binding by Multiple Phosphorylations to the Intrinsically Disordered Region of the Histone Chaperone FACT. J Mol Biol 2020; 432:4637-4657. [PMID: 32553729 DOI: 10.1016/j.jmb.2020.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Facilitates chromatin transcription (FACT) is a histone chaperone that functions as a nucleosome remodeler and a chaperone. The two subunits of FACT, Spt16 and SSRP1, mediate multiple interactions between the subunits and components of the nucleosome. Among the interactions, the role of the DNA-binding domain in SSRP1 has not been characterized. We reported previously that the DNA-binding domain in Drosophila SSRP1 (dSSRP1) has multiple casein kinase II phosphorylation sites, and the DNA binding affinity of the domain changes sigmoidally in response to the degree of phosphorylation ("ultrasensitive response"). In this report, we explored the molecular mechanisms for the ultrasensitive response of the DNA-binding domain in dSSRP1 using the shortest fragment (AB-HMG, residues 434-624) responsible for nucleosome binding. AB-HMG contains two intrinsically disordered (ID) regions: the N-terminal part rich in acidic residues (AID) and the C-terminal part rich in basic residues (BID) followed by the HMG box. NMR and coarse-grained molecular dynamics simulations revealed a phosphorylation-dependent change in intramolecular contacts between the AID and BID-HMG, which is mediated by a hinge bending motion of AB-HMG to enable the ultrasensitive response. Ultrasensitivity generates two distinct forms of dSSRP1, which are high- and low-affinity nucleosome-binding forms. Drosophila FACT (dFACT) switches function according to the degree of phosphorylation of the AID in dSSRP1. We propose that dFACT in various phosphorylation states functions cooperatively to facilitate gene regulation in the context of the chromatin.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Mathematical and Life Sciences, Graduate School of the Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masashi Fujii
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan
| | - Jun-Ichi Uewaki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Manami Hashimoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan
| | - Naoya Tochio
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Mathematical and Life Sciences, Graduate School of the Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
8
|
Amato J, Cerofolini L, Brancaccio D, Giuntini S, Iaccarino N, Zizza P, Iachettini S, Biroccio A, Novellino E, Rosato A, Fragai M, Luchinat C, Randazzo A, Pagano B. Insights into telomeric G-quadruplex DNA recognition by HMGB1 protein. Nucleic Acids Res 2019; 47:9950-9966. [PMID: 31504744 PMCID: PMC6765150 DOI: 10.1093/nar/gkz727] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/02/2019] [Accepted: 08/15/2019] [Indexed: 01/21/2023] Open
Abstract
HMGB1 is a ubiquitous non-histone protein, which biological effects depend on its expression and subcellular location. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription and telomere maintenance. HMGB1 has been reported to bind preferentially to bent DNA as well as to noncanonical DNA structures like 4-way junctions and, more recently, to G-quadruplexes. These are four-stranded conformations of nucleic acids involved in important cellular processes, including telomere maintenance. In this frame, G-quadruplex recognition by specific proteins represents a key event to modulate physiological or pathological pathways. Herein, to get insights into the telomeric G-quadruplex DNA recognition by HMGB1, we performed detailed biophysical studies complemented with biological analyses. The obtained results provided information about the molecular determinants for the interaction and showed that the structural variability of human telomeric G-quadruplex DNA may have significant implications in HMGB1 recognition. The biological data identified HMGB1 as a telomere-associated protein in both telomerase-positive and -negative tumor cells and showed that HMGB1 gene silencing in such cells induces telomere DNA damage foci. Altogether, these findings provide a deeper understanding of telomeric G-quadruplex recognition by HMGB1 and suggest that this protein could actually represent a new target for cancer therapy.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| | - Sara Iachettini
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
9
|
Vijay N, Chande A. A hypothetical new role for single-stranded DNA binding proteins in the immune system. Immunobiology 2018; 223:671-676. [DOI: 10.1016/j.imbio.2018.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
|
10
|
DNA mismatch repair and its many roles in eukaryotic cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:174-187. [PMID: 28927527 DOI: 10.1016/j.mrrev.2017.07.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1-independent subpathways of MMR is not known. This review summarizes recent literature on eukaryotic MMR, with emphasis on the diverse cellular roles of eukaryotic MMR proteins, the mechanism of strand discrimination and cross-talk/interactions between and co-regulation of MMR and other DNA repair pathways in eukaryotic cells. The main conclusion of the review is that MMR proteins contribute to genome stability through their ability to recognize and promote an appropriate cellular response to aberrant DNA structures, especially when they arise during DNA replication. Although the molecular mechanism of MMR in the eukaryotic cell is still not completely understood, increased used of single-molecule analyses in the future may yield new insight into these unsolved questions.
Collapse
|
11
|
He SJ, Cheng J, Feng X, Yu Y, Tian L, Huang Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 2017; 8:64534-64550. [PMID: 28969092 PMCID: PMC5610024 DOI: 10.18632/oncotarget.17885] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant protein in most eukaryocytes. It can bind to several receptors such as advanced glycation end products (RAGE) and Toll-like receptors (TLRs), in direct or indirect way. The biological effects of HMGB1 depend on its expression and subcellular location. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription, telomere maintenance, and genome stability. While outside the nucleus, it possesses more complicated functions, including regulating cell proliferation, autophagy, inflammation and immunity. During tumor development, HMGB1 has been characterized as both a pro- and anti-tumoral protein by either promoting or suppressing tumor growth, proliferation, angiogenesis, invasion and metastasis. However, the current knowledge concerning the positive and negative effects of HMGB1 on tumor development is not explicit. Here, we evaluate the role of HMGB1 in tumor development and attempt to reconcile the dual effects of HMGB1 in carcinogenesis. Furthermore, we would like to present current strategies targeting against HMGB1, its receptor or release, which have shown potentially therapeutic value in cancer intervention.
Collapse
Affiliation(s)
- Si-Jia He
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Feng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yu
- Oncology Department, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ling Tian
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Shu X, Xiong X, Song J, He C, Yi C. Base-Resolution Analysis of Cisplatin-DNA Adducts at the Genome Scale. Angew Chem Int Ed Engl 2016; 55:14246-14249. [PMID: 27736024 PMCID: PMC5131569 DOI: 10.1002/anie.201607380] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/17/2016] [Indexed: 11/05/2022]
Abstract
Cisplatin, one of the most widely used anticancer drugs, crosslinks DNA and ultimately induces cell death. However, the genomic pattern of cisplatin-DNA adducts has remained unknown owing to the lack of a reliable and sensitive genome-wide method. Herein we present "cisplatin-seq" to identify genome-wide cisplatin crosslinking sites at base resolution. Cisplatin-seq reveals that mitochondrial DNA is a preferred target of cisplatin. For nuclear genomes, cisplatin-DNA adducts are enriched within promoters and regions harboring transcription termination sites. While the density of GG dinucleotides determines the initial crosslinking of cisplatin, binding of proteins to the genome largely contributes to the accumulative pattern of cisplatin-DNA adducts.
Collapse
Affiliation(s)
- Xiaoting Shu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xushen Xiong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Shu X, Xiong X, Song J, He C, Yi C. Base-Resolution Analysis of Cisplatin-DNA Adducts at the Genome Scale. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoting Shu
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 China
| | - Xushen Xiong
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 China
| | - Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Chuan He
- Department of Chemistry; Department of Biochemistry and Molecular Biology; Institute for Biophysical Dynamics; Howard Hughes Medical Institute; The University of Chicago; 929 East 57th Street Chicago IL 60637 USA
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Beijing Advanced Innovation Center for Genomics; Peking University; Beijing 100871 China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| |
Collapse
|
14
|
A quantitative investigation of linker histone interactions with nucleosomes and chromatin. Sci Rep 2016; 6:19122. [PMID: 26750377 PMCID: PMC4707517 DOI: 10.1038/srep19122] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Linker histones such as H1 are abundant basic proteins that bind tightly to nucleosomes, thereby acting as key organizers of chromatin structure. The molecular details of linker histone interactions with the nucleosome, and in particular the contributions of linker DNA and of the basic C-terminal tail of H1, are controversial. Here we combine rigorous solution-state binding assays with native gel electrophoresis and Atomic Force Microscopy, to quantify the interaction of H1 with chromatin. We find that H1 binds nucleosomes and nucleosomal arrays with very tight affinity by recognizing a specific DNA geometry minimally consisting of a solitary nucleosome with a single ~18 base pair DNA linker arm. The association of H1 alters the conformation of trinucleosomes so that only one H1 can bind to the two available linker DNA regions. Neither incorporation of the histone variant H2A.Z, nor the presence of neighboring nucleosomes affects H1 affinity. Our data provide a comprehensive thermodynamic framework for this ubiquitous chromatin architectural protein.
Collapse
|
15
|
Sánchez-Giraldo R, Acosta-Reyes FJ, Malarkey CS, Saperas N, Churchill MEA, Campos JL. Two high-mobility group box domains act together to underwind and kink DNA. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1423-32. [PMID: 26143914 PMCID: PMC4498601 DOI: 10.1107/s1399004715007452] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/15/2015] [Indexed: 01/22/2023]
Abstract
High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A is thought to be responsible for the majority of HMGB1-DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA.
Collapse
Affiliation(s)
- R. Sánchez-Giraldo
- Departament d’Enginyeria Quimica, Universitat Politecnica de Catalunya, 08028 Barcelona, Spain
| | - F. J. Acosta-Reyes
- Departament d’Enginyeria Quimica, Universitat Politecnica de Catalunya, 08028 Barcelona, Spain
| | - C. S. Malarkey
- Department of Pharmacology and the Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - N. Saperas
- Departament d’Enginyeria Quimica, Universitat Politecnica de Catalunya, 08028 Barcelona, Spain
| | - M. E. A. Churchill
- Department of Pharmacology and the Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - J. L. Campos
- Departament d’Enginyeria Quimica, Universitat Politecnica de Catalunya, 08028 Barcelona, Spain
| |
Collapse
|
16
|
A unique HMG-box domain of mouse Maelstrom binds structured RNA but not double stranded DNA. PLoS One 2015; 10:e0120268. [PMID: 25807393 PMCID: PMC4373776 DOI: 10.1371/journal.pone.0120268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/05/2015] [Indexed: 01/11/2023] Open
Abstract
Piwi-interacting piRNAs are a major and essential class of small RNAs in the animal germ cells with a prominent role in transposon control. Efficient piRNA biogenesis and function require a cohort of proteins conserved throughout the animal kingdom. Here we studied Maelstrom (MAEL), which is essential for piRNA biogenesis and germ cell differentiation in flies and mice. MAEL contains a high mobility group (HMG)-box domain and a Maelstrom-specific domain with a presumptive RNase H-fold. We employed a combination of sequence analyses, structural and biochemical approaches to evaluate and compare nucleic acid binding of mouse MAEL HMG-box to that of canonical HMG-box domain proteins (SRY and HMGB1a). MAEL HMG-box failed to bind double-stranded (ds)DNA but bound to structured RNA. We also identified important roles of a novel cluster of arginine residues in MAEL HMG-box in these interactions. Cumulatively, our results suggest that the MAEL HMG-box domain may contribute to MAEL function in selective processing of retrotransposon RNA into piRNAs. In this regard, a cellular role of MAEL HMG-box domain is reminiscent of that of HMGB1 as a sentinel of immunogenic nucleic acids in the innate immune response.
Collapse
|
17
|
Thapar R. Structure-specific nucleic acid recognition by L-motifs and their diverse roles in expression and regulation of the genome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:677-87. [PMID: 25748361 DOI: 10.1016/j.bbagrm.2015.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 01/08/2023]
Abstract
The high-mobility group (HMG) domain containing proteins regulate transcription, DNA replication and recombination. They adopt L-shaped folds and are structure-specific DNA binding motifs. Here, I define the L-motif super-family that consists of DNA-binding HMG-box proteins and the L-motif of the histone mRNA binding domain of stem-loop binding protein (SLBP). The SLBP L-motif and HMG-box domains adopt similar L-shaped folds with three α-helices and two or three small hydrophobic cores that stabilize the overall fold, but have very different and distinct modes of nucleic acid recognition. A comparison of the structure, dynamics, protein-protein and nucleic acid interactions, and regulation by PTMs of the SLBP and the HMG-box L-motifs reveals the versatile and diverse modes by which L-motifs utilize their surfaces for structure-specific recognition of nucleic acids to regulate gene expression.
Collapse
Affiliation(s)
- Roopa Thapar
- BioSciences at Rice-Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA.
| |
Collapse
|
18
|
Wu F, Zhao ZH, Ding ST, Wu HH, Lu JJ. High mobility group box 1 protein is methylated and transported to cytoplasm in clear cell renal cell carcinoma. Asian Pac J Cancer Prev 2015; 14:5789-95. [PMID: 24289579 DOI: 10.7314/apjcp.2013.14.10.5789] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The high mobility group box 1 (HMGB1) protein is a widespread nuclear protein present in most cell types. It typically locates in the nucleus and functions as a nuclear cofactor in transcription regulation. However, HMGB1 can also localize in the cytoplasm and be released into extracellular matrix, where it plays critical roles in carcinogenesis and inflammation. However, it remains elusive whether HMGB1 is relocated to cytoplasm in clear cell renal cell carcinoma (ccRCC). METHODS Nuclear and cytoplasmic proteins were extracted by different protocols from 20 ccRCC samples and corresponding adjacent renal tissues. Western blotting and immunohistochemistry were used to identify the expression of HMGB1 in ccRCC. To elucidate the potential mechanism of HMGB1 cytoplasmic translocation, HMGB1 proteins were enriched by immunoprecipitation and analyzed by mass spectrometry (MS). RESULTS The HMGB1 protein was overexpressed and partially localized in cytoplasm in ccRCC samples (12/20, 60%, p<0.05). Immunohistochemistry results indicated that ccRCC of high nuclear grade possess more HMGB1 relocation than those with low grade (p<0.05). Methylation of HMGB1 at lysine 112 in ccRCC was detected by MS. Bioinformatics analysis showed that post-translational modification might affect the binding ability to DNA and mediate its translocation. CONCLUSION Relocation of HMGB1 to cytoplasm was confirmed in ccRCC. Methylation of HMGB1 at lysine 112 might the redistribution of this cofactor protein.
Collapse
Affiliation(s)
- Fei Wu
- Department of Urology, Provincial Hospital Affiliated to Shandong University, Jinan, China E-mail :
| | | | | | | | | |
Collapse
|
19
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
20
|
Preferential domain orientation of HMGB2 determined by the weak intramolecular interactions mediated by the interdomain linker. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Rowell JP, Simpson KL, Stott K, Watson M, Thomas JO. HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail. Structure 2012; 20:2014-24. [PMID: 23063560 DOI: 10.1016/j.str.2012.09.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 09/07/2012] [Indexed: 01/13/2023]
Abstract
Facilitated binding of p53 to DNA by high mobility group B1 (HMGB1) may involve interaction between the N-terminal region of p53 and the high mobility group (HMG) boxes, as well as HMG-induced bending of the DNA. Intramolecular shielding of the boxes by the HMGB1 acidic tail results in an unstable complex with p53 until the tail is truncated to half its length, at which point the A box, proposed to be the preferred binding site for p53(1-93), is exposed, leaving the B box to bind and bend DNA. The A box interacts with residues 38-61 (TAD2) of the p53 transactivation domain. Residues 19-26 (TAD1) bind weakly, but only in the context of p53(1-93) and not as a free TAD1 peptide. We have solved the structure of the A-box/p53(1-93) complex by nuclear magnetic resonance spectroscopy. The incipient amphipathic helix in TAD2 recognizes the concave DNA-binding face of the A box and may be acting as a single-stranded DNA mimic.
Collapse
Affiliation(s)
- John P Rowell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
22
|
Ranzato E, Martinotti S, Pedrazzi M, Patrone M. High mobility group box protein-1 in wound repair. Cells 2012; 1:699-710. [PMID: 24710526 PMCID: PMC3901153 DOI: 10.3390/cells1040699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/10/2012] [Accepted: 09/19/2012] [Indexed: 12/21/2022] Open
Abstract
High-mobility group box 1 protein (HMGB1), a member of highly conserved non-histone DNA binding protein family, has been studied as transcription factor and growth factor. Secreted extracellularly by activated monocytes and macrophages or passively released by necrotic or damaged cells, extracellular HMGB1 is a potent mediator of inflammation. Extracellular HMGB1 has apparently contrasting biological actions: it sustains inflammation (with the possible establishment of autoimmunity or of self-maintaining tissue damage), but it also activates and recruits stem cells, boosting tissue repair. Here, we focus on the role of HMGB1 in physiological and pathological responses, the mechanisms by which it contributes to tissue repair and therapeutic strategies base on targeting HMGB1.
Collapse
Affiliation(s)
- Elia Ranzato
- Department of Sciences and Innovative Technology, (DiSIT), University of Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy.
| | - Simona Martinotti
- Department of Sciences and Innovative Technology, (DiSIT), University of Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy.
| | - Marco Pedrazzi
- Department of Experimental Medicine (DIMES)-Biochemistry Section, Center of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV, Genoa 1-16132, Italy.
| | - Mauro Patrone
- Department of Sciences and Innovative Technology, (DiSIT), University of Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy.
| |
Collapse
|
23
|
Abstract
Histone H1 and HMGB1 (high-mobility group protein B1) are the most abundant chromosomal proteins apart from the core histones (on average, one copy per nucleosome and per ten nucleosomes respectively). They are both highly mobile in the cell nucleus, with high on/off rates for binding. In vivo and in vitro evidence shows that both are able to organize chromatin structure, with H1 binding resulting in a more stable structure and HMGB1 binding in a less stable structure. The binding sites for H1 and HMGB1 in chromatin are partially overlapping, and replacement of H1 by HMGB1 through the highly dynamic nature of their binding, possibly facilitated by interaction between them, could result in switching of chromatin states. Binding of HMGB1 to DNA or chromatin is regulated by its long and highly acidic tail, which is also involved in H1 binding. The present article focuses mainly on HMGB1 and its interaction with chromatin and H1, as well as its chaperone role in the binding of certain transcription factors (e.g. p53) to their cognate DNA.
Collapse
|
24
|
Ray S, Grove A. Interaction of Saccharomyces cerevisiae HMO2 Domains with Distorted DNA. Biochemistry 2012; 51:1825-35. [DOI: 10.1021/bi201700h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sreerupa Ray
- Department of Biological
Sciences, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Anne Grove
- Department of Biological
Sciences, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
25
|
Elenkov I, Pelovsky P, Ugrinova I, Takahashi M, Pasheva E. The DNA binding and bending activities of truncated tail-less HMGB1 protein are differentially affected by Lys-2 and Lys-81 residues and their acetylation. Int J Biol Sci 2011; 7:691-9. [PMID: 21647302 PMCID: PMC3107488 DOI: 10.7150/ijbs.7.691] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/24/2011] [Indexed: 11/24/2022] Open
Abstract
The role of lysines 2 and 81 as target sites for acetylation in full-length HMGB1 and truncated tail-less protein, respectively, has been studied by mutation analysis for the abilities of these proteins to bind and bend DNA. The DNA bending ability of truncated tail-less HMGB1 containing Lys-2 mutated to alanine does not differ from that of the wild-type protein, while the same mutation of Lys-81 reduced the bending capacity of the mutant protein. These data demonstrate that Lys-81 is critical for the DNA bending ability of truncated HMGB1. Such a conclusion is further confirmed by the experiments carried out with CBP-acetylated proteins: acetylation of Lys-2 in mutant protein K81/A81 alleviated DNA bending and induced DNA end-joining. On the contrary, the acetylation of Lys-81 in the mutant K2/A2 enhanced the bending potential of HMGB1∆C. Regarding the ability of HMGB1 to specifically bind bent DNA, the individual mutations of either K2 or K81 as well as the double mutation of both residues to alanine were found to completely abolish binding of truncated tail-less HMGB1 to cisplatin-modified DNA. We conclude that unlike the case with the bending ability of truncated HMGB1, where Lys-81 has a primary function, Lys-2 and Lys-81 are both critical for the protein's binding to cisplatin-modified DNA. The mutation K2/A2 in full-length HMGB1 and acidic tail removal induce the same conformational changes. Any further substitutions at the acetylable lysines in the truncated form of HMGB1 do not have an additional effect.
Collapse
Affiliation(s)
- Ivan Elenkov
- Institute of Moleculat Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
26
|
Churchill MEA, Klass J, Zoetewey DL. Structural analysis of HMGD-DNA complexes reveals influence of intercalation on sequence selectivity and DNA bending. J Mol Biol 2010; 403:88-102. [PMID: 20800069 DOI: 10.1016/j.jmb.2010.08.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/03/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
The ubiquitous, eukaryotic, high-mobility group box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor-groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity, and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and 50 bp of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1 box A-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending.
Collapse
Affiliation(s)
- Mair E A Churchill
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Molecular Biology Program, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| | - Janet Klass
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - David L Zoetewey
- Molecular Biology Program, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
27
|
Stott K, Watson M, Howe FS, Grossmann JG, Thomas JO. Tail-mediated collapse of HMGB1 is dynamic and occurs via differential binding of the acidic tail to the A and B domains. J Mol Biol 2010; 403:706-22. [PMID: 20691192 DOI: 10.1016/j.jmb.2010.07.045] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/13/2010] [Accepted: 07/23/2010] [Indexed: 11/17/2022]
Abstract
The architectural DNA-binding protein HMGB1 consists of two tandem HMG-box domains joined by a basic linker to a C-terminal acidic tail, which negatively regulates HMGB1-DNA interactions by binding intramolecularly to the DNA-binding faces of both basic HMG boxes. Here we demonstrate, using NMR chemical-shift mapping at different salt concentrations, that the tail has a higher affinity for the B box and that A box-tail interactions are preferentially disrupted. Previously, we proposed a model in which the boxes are brought together in a collapsed, tail-mediated assembly, which is in dynamic equilibrium with a more extended form. Small-angle X-ray scattering data are consistent with such a dynamic equilibrium between collapsed and extended structures and are best represented by an ensemble. The ensembles contain a significantly higher proportion of collapsed structures when the tail is present. (15)N NMR relaxation measurements show that full-length HMGB1 has a significantly lower rate of rotational diffusion than the tail-less protein, consistent with the loss of independent domain motions in an assembled complex. Mapping studies using the paramagnetic spin label MTSL [(1-oxyl-2,2,5,5-tetramethyl-3-pyrrolidin-3-yl)methyl methanethiosulfonate] placed at three locations in the tail confirm our previous findings that the tail binds to both boxes with some degree of specificity. The end of the tail lies further from the body of the protein and is therefore potentially free to interact with other proteins. MTSL labelling at a single site in the A domain (C44) causes detectable relaxation enhancements of B domain residues, suggesting the existence of a "sandwich"-like collapsed structure in which the tail enables the close approach of the basic domains. These intramolecular interactions are presumably important for the dynamic association of HMGB1 with chromatin and provide a mechanism by which protein-protein interactions or posttranslational modifications might regulate the function of the protein at particular sites, or at particular stages in the cell cycle.
Collapse
Affiliation(s)
- Katherine Stott
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
28
|
Ray S, Grove A. The yeast high mobility group protein HMO2, a subunit of the chromatin-remodeling complex INO80, binds DNA ends. Nucleic Acids Res 2009; 37:6389-99. [PMID: 19726587 PMCID: PMC2770664 DOI: 10.1093/nar/gkp695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA damage is a common hazard that all cells have to combat. Saccharomyces cerevisiae HMO2 is a high mobility group protein (HMGB) that is a component of the chromatin-remodeling complex INO80, which is involved in double strand break (DSB) repair. We show here using DNA end-joining and exonuclease protection assays that HMO2 binds preferentially to DNA ends. While HMO2 binds DNA with both blunt and cohesive ends, the sequence of a single stranded overhang significantly affects binding, supporting the conclusion that HMO2 recognizes features at DNA ends. Analysis of the effect of duplex length on the ability of HMO2 to protect DNA from exonucleolytic cleavage suggests that more than one HMO2 must assemble at each DNA end. HMO2 binds supercoiled DNA with higher affinity than linear DNA and has a preference for DNA with lesions such as pairs of tandem mismatches; however, comparison of DNA constructs of increasing length suggests that HMO2 may not bind stably as a monomer to distorted DNA. The remarkable ability of HMO2 to protect DNA from exonucleolytic cleavage, combined with reports that HMO2 arrives early at DNA DSBs, suggests that HMO2 may play a role in DSB repair beyond INO80 recruitment.
Collapse
Affiliation(s)
- Sreerupa Ray
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
29
|
Lange SS, Vasquez KM. HMGB1: the jack-of-all-trades protein is a master DNA repair mechanic. Mol Carcinog 2009; 48:571-80. [PMID: 19360789 DOI: 10.1002/mc.20544] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The high mobility group protein B1 (HMGB1) is a highly abundant protein with roles in several cellular processes, including chromatin structure and transcriptional regulation, as well as an extracellular role in inflammation. HMGB1's most thoroughly defined function is as a protein capable of binding specifically to distorted and damaged DNA, and its ability to induce further bending in the DNA once it is bound. This characteristic in part mediates its function in chromatin structure (binding to the linker region of nucleosomal DNA and increasing the instability of the nucleosome structure) as well as transcription (bending promoter DNA to enhance the interaction of transcription factors), but the functional consequences of HMGB1's binding to damaged DNA is still an area of active investigation. In this review we describe HMGB1's actions in the nucleotide excision repair (NER) pathway, and we discuss aspects of both the "repair shielding" and "repair enhancing" hypotheses that have been suggested. We also report information regarding HMGB1's roles in the mismatch repair (MMR), nonhomologous end-joining (NHEJ), and V(D)J recombination pathways, as well as its newly-discovered involvement in the base excision repair (BER) pathway. We further explore the potential of HMGB1 in DNA repair in the context of chromatin. The elucidation of HMGB1's role in DNA repair is critical for the complete understanding of HMGB1's intracellular functions, which is particularly relevant in the context of anti-HMGB1 therapies that are being developed to treat inflammatory diseases.
Collapse
Affiliation(s)
- Sabine S Lange
- Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | |
Collapse
|
30
|
Zhang M, Swanson PC. HMGB1/2 can target DNA for illegitimate cleavage by the RAG1/2 complex. BMC Mol Biol 2009; 10:24. [PMID: 19317908 PMCID: PMC2666730 DOI: 10.1186/1471-2199-10-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 03/24/2009] [Indexed: 01/09/2023] Open
Abstract
Background V(D)J recombination is initiated in antigen receptor loci by the pairwise cleavage of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins via a nick-hairpin mechanism. The RSS contains highly conserved heptamer (consensus: 5'-CACAGTG) and nonamer (consensus: 5'-ACAAAAACC) motifs separated by either 12- or 23-base pairs of poorly conserved sequence. The high mobility group proteins HMGB1 and HMGB2 (HMGB1/2) are highly abundant architectural DNA binding proteins known to promote RAG-mediated synapsis and cleavage of consensus recombination signals in vitro by facilitating RSS binding and bending by the RAG1/2 complex. HMGB1/2 are known to recognize distorted DNA structures such as four-way junctions, and damaged or modified DNA. Whether HMGB1/2 can promote RAG-mediated DNA cleavage at sites lacking a canonical RSS by targeting or stabilizing structural distortions is unclear, but is important for understanding the etiology of chromosomal translocations involving antigen receptor genes and proto-oncogene sequences that do not contain an obvious RSS-like element. Results Here we identify a novel DNA breakpoint site in the plasmid V(D)J recombination substrate pGG49 (bps6197) that is cleaved by the RAG proteins via a nick-hairpin mechanism. The bps6197 sequence lacks a recognizable heptamer at the breakpoint (5'-CCTGACG-3') but contains a nonamer-like element (5'-ACATTAACC-3') 30 base pairs from the cleavage site. We find that RAG-mediated bps6197 cleavage is promoted by HMGB1/2, requiring both HMG-box domains to be intact to facilitate RAG-mediated cleavage, and is stimulated by synapsis with a 12-RSS. A dyad-symmetric inverted repeat sequence lying 5' to the breakpoint is implicated as a target for HMGB1/2 activity. Conclusion We have identified a novel DNA sequence, called bps6197, that supports standard V(D)J-type cleavage despite the absence of an apparent heptamer motif. Efficient RAG-mediated bps6197 cleavage requires the presence of HMGB1/2, is stimulated by synapsis with a 12-RSS partner, and is directed in part by an inverted repeat sequence adjacent to the DNA cleavage site. These results have important implications for understanding how the RAG proteins can introduce a DNA double-strand break at DNA sequences that do not contain an obvious heptamer-like motif.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE, USA.
| | | |
Collapse
|
31
|
Noothi SK, Kombrabail M, Kundu TK, Krishnamoorthy G, Rao BJ. Enhanced DNA dynamics due to cationic reagents, topological states of dsDNA and high mobility group box 1 as probed by PicoGreen. FEBS J 2008; 276:541-51. [DOI: 10.1111/j.1742-4658.2008.06802.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Bell AJ, Chauhan S, Woodson SA, Kallenbach NR. Interactions of recombinant HMGB proteins with branched RNA substrates. Biochem Biophys Res Commun 2008; 377:262-7. [PMID: 18845125 PMCID: PMC10587908 DOI: 10.1016/j.bbrc.2008.09.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 09/24/2008] [Indexed: 11/23/2022]
Abstract
The high mobility group protein HMGB1 is a highly abundant chromosomal protein known to interact preferentially with DNA that is branched, bent or otherwise structurally altered. Biologically the protein is thought to facilitate promoter attachment by transcription factors. Recently, however, HMGB1 has been shown to have biological roles beyond that of an architectural DNA-binding protein. Here we investigate the binding interactions of recombinant HMGB1 proteins with two branched RNA's E. coli 5S rRNA and the group I intron ribozyme from Azoarcus pre-tRNA(Ile). Using competitive electrophoretic mobility and circular dichroism binding assays, we show that HMGB proteins bind both substrates with high affinity. We also report that a recombinant rat HMGB protein, rHMGB1b, inhibits RNA cleavage by the ribozyme. These results raise the possibility that HMGB proteins possess structure dependent RNA binding activity and can modulate RNA processing as well as transcription.
Collapse
Affiliation(s)
- Anthony J Bell
- Department of Molecular Biology, Center for Computational and Integrative Biology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
33
|
Zhang Q, Wang Y. High mobility group proteins and their post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1159-66. [PMID: 18513496 DOI: 10.1016/j.bbapap.2008.04.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/14/2008] [Accepted: 04/30/2008] [Indexed: 01/10/2023]
Abstract
The high mobility group (HMG) proteins, including HMGA, HMGB and HMGN, are abundant and ubiquitous nuclear proteins that bind to DNA, nucleosome and other multi-protein complexes in a dynamic and reversible fashion to regulate DNA processing in the context of chromatin. All HMG proteins, like histone proteins, are subjected to extensive post-translational modifications (PTMs), such as lysine acetylation, arginine/lysine methylation and serine/threonine phosphorylation, to modulate their interactions with DNA and other proteins. There is a growing appreciation for the complex relationship between the PTMs of HMG proteins and their diverse biological activities. Here, we reviewed the identified covalent modifications of HMG proteins, and highlighted how these PTMs affect the functions of HMG proteins in a variety of cellular processes.
Collapse
Affiliation(s)
- Qingchun Zhang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | |
Collapse
|
34
|
A critical role in structure-specific DNA binding for the acetylatable lysine residues in HMGB1. Biochem J 2008; 411:553-61. [PMID: 18241198 DOI: 10.1042/bj20071613] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The structure-specific DNA-binding protein HMGB1 (high-mobility group protein B1) which comprises two tandem HMG boxes (A and B) and an acidic C-terminal tail, is acetylated in vivo at Lys(2) and Lys(11) in the A box. Mutation to alanine of both residues in the isolated A domain, which has a strong preference for pre-bent DNA, abolishes binding to four-way junctions and 88 bp DNA minicircles. The same mutations in full-length HMGB1 also abolish its binding to four-way junctions, and binding to minicircles is substantially impaired. In contrast, when the acidic tail is absent (AB di-domain) there is little effect of the double mutation on four-way junction binding, although binding to minicircles is reduced approximately 15-fold. Therefore it appears that in AB the B domain is able to substitute for the non-functional A domain, whereas in full-length HMGB1 the B domain is masked by the acidic tail. In no case does single substitution of Lys(2) or Lys(11) abolish DNA binding. The double mutation does not significantly perturb the structure of the A domain. We conclude that Lys(2) and Lys(11) are critical for binding of the isolated A domain and HMGB1 to distorted DNA substrates.
Collapse
|
35
|
HMG-box domain stimulation of RAG1/2 cleavage activity is metal ion dependent. BMC Mol Biol 2008; 9:32. [PMID: 18380906 PMCID: PMC2324110 DOI: 10.1186/1471-2199-9-32] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/01/2008] [Indexed: 01/15/2023] Open
Abstract
Background RAG1 and RAG2 initiate V(D)J recombination by assembling a synaptic complex with a pair of antigen receptor gene segments through interactions with their flanking recombination signal sequence (RSS), and then introducing a DNA double-strand break at each RSS, separating it from the adjacent coding segment. While the RAG proteins are sufficient to mediate RSS binding and cleavage in vitro, these activities are stimulated by the architectural DNA binding and bending factors HMGB1 and HMGB2. Two previous studies (Bergeron et al., 2005, and Dai et al., 2005) came to different conclusions regarding whether only one of the two DNA binding domains of HMGB1 is sufficient to stimulate RAG-mediated binding and cleavage of naked DNA in vitro. Here we test whether this apparent discrepancy is attributed to the choice of divalent metal ion and the concentration of HMGB1 used in the cleavage reaction. Results We show here that single HMG-box domains of HMGB1 stimulate RAG-mediated RSS cleavage in a concentration-dependent manner in the presence of Mn2+, but not Mg2+. Interestingly, the inability of a single HMG-box domain to stimulate RAG-mediated RSS cleavage in Mg2+ is overcome by the addition of partner RSS to promote synapsis. Furthermore, we show that mutant forms of HMGB1 which otherwise fail to stimulate RAG-mediated RSS cleavage in Mg2+ can be substantially rescued when Mg2+ is replaced with Mn2+. Conclusion The conflicting data published previously in two different laboratories can be substantially explained by the choice of divalent metal ion and abundance of HMGB1 in the cleavage reaction. The observation that single HMG-box domains can promote RAG-mediated 23-RSS cleavage in Mg2+ in the presence, but not absence, of partner RSS suggests that synaptic complex assembly in vitro is associated with conformational changes that alter how the RAG and/or HMGB1 proteins bind and bend DNA in a manner that functionally replaces the role of one of the HMG-box domains in RAG-HMGB1 complexes assembled on a single RSS.
Collapse
|
36
|
Watson M, Stott K, Thomas JO. Mapping intramolecular interactions between domains in HMGB1 using a tail-truncation approach. J Mol Biol 2007; 374:1286-97. [PMID: 17988686 DOI: 10.1016/j.jmb.2007.09.075] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 09/26/2007] [Accepted: 09/26/2007] [Indexed: 11/17/2022]
Abstract
The mechanism underlying negative regulation of HMGB1-DNA interaction by the acidic C-terminal tail is ill defined. To address this issue, we have devised a novel NMR chemical-shift perturbation mapping strategy to elucidate interactions between the tail, which consists solely of aspartic acid and glutamic acid residues, and the two well characterized HMG-box DNA-binding domains. A series of HMGB1 tail-truncation mutants differing from each other by five residues was generated. Chemical-shift perturbation mapping using these mutants shows that tails of different lengths bind with different affinities. Nevertheless, the truncated tails bind along the same path on the HMG boxes as the full-length tail, differences in length being manifested in differences in the "reach". The tail makes extensive contacts with the DNA-binding surfaces of both HMG boxes, thus explaining the basis of negative regulation of HMGB1-DNA interaction by the tail.
Collapse
Affiliation(s)
- Matthew Watson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | |
Collapse
|
37
|
Briquet S, Boschet C, Gissot M, Tissandié E, Sevilla E, Franetich JF, Thiery I, Hamid Z, Bourgouin C, Vaquero C. High-mobility-group box nuclear factors of Plasmodium falciparum. EUKARYOTIC CELL 2006; 5:672-82. [PMID: 16607015 PMCID: PMC1459676 DOI: 10.1128/ec.5.4.672-682.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotes, the high-mobility-group (HMG) nuclear factors are highly conserved throughout evolution and are divided into three families, including HGMB, characterized by an HMG box domain. Some HMGB factors are DNA structure specific and preferentially interact with distorted DNA sequences, trigger DNA bending, and hence facilitate the binding of nucleoprotein complexes that in turn activate or repress transcription. In Plasmodium falciparum, two HMGB factors were predicted: PfHMGB1 and PfHMGB2. They are small proteins, under 100 amino acids long, encompassing a characteristic HMG box domain closely related to box B of metazoan factors, which comprises two HMG box domains, A and B, in tandem. Computational analyses supported the conclusion that the Plasmodium proteins were genuine architectural HMGB factors, and in vitro analyses performed with both recombinant proteins established that they were able to interact with distorted DNA structures and bend linear DNA with different affinities. These proteins were detected in both asexual- and gametocyte-stage cells in Western blotting experiments and mainly in the parasite nuclei. PfHMGB1 is preferentially expressed in asexual erythrocytic stages and PfHMGB2 in gametocytes, in good correlation with transcript levels of expression. Finally, immunofluorescence studies revealed differential subcellular localizations: both factors were observed in the nucleus of asexual- and sexual-stage cells, and PfHMGB2 was also detected in the cytoplasm of gametocytes. In conclusion, in light of differences in their levels of expression, subcellular localizations, and capacities for binding and bending DNA, these factors are likely to play nonredundant roles in transcriptional regulation of Plasmodium development in erythrocytes.
Collapse
Affiliation(s)
- Sylvie Briquet
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
- Corresponding author. Mailing address: INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013 Paris, France. Phone: 33 (0) 1 40 77 81 14. Fax: 33 (0) 1 45 83 88 58. E-mail for Sylvie Briquet: . E-mail for Catherine Vaquero:
| | - Charlotte Boschet
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Mathieu Gissot
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Emilie Tissandié
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Elisa Sevilla
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Jean-François Franetich
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Isabelle Thiery
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Zuhal Hamid
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Catherine Bourgouin
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Catherine Vaquero
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
- Corresponding author. Mailing address: INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013 Paris, France. Phone: 33 (0) 1 40 77 81 14. Fax: 33 (0) 1 45 83 88 58. E-mail for Sylvie Briquet: . E-mail for Catherine Vaquero:
| |
Collapse
|
38
|
Schäfer G, Smith EM, Patterton HG. The Saccharomyces cerevisiae linker histone Hho1p, with two globular domains, can simultaneously bind to two four-way junction DNA molecules. Biochemistry 2006; 44:16766-75. [PMID: 16342967 DOI: 10.1021/bi0511787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saccharomyces cerevisiae encodes a single linker histone, Hho1p, with two globular domains. This raised the possibility that Hho1p could bind to two nucleosome cores simultaneously. To evaluate this idea, we studied the ability of a four-way junction, immobilized on the surface of a magnetic bead, to pull down a radiolabeled four-way junction in the presence of different Hho1 proteins. Four-way junctions are known to bind to H1, presumably due to structure similarities to the DNA at the nucleosomal entry/exit point. We found a significant increase in the ability of full-length Hho1p to pull down radiolabeled four-way junction DNA under ionic conditions where both globular domains could bind. The binding was structure specific, since the use of double-stranded DNA, or a mutant Hho1p in which the second DNA binding site of globular domain 1 was abolished, resulted in a significant decrease in bridged binding. Additionally, bridged binding required a covalent attachment between the two globular domains, since factor Xa protease treatment of the complex formed by a modified Hho1p that contained a factor Xa cleavage site between the two globular domains resulted in a significant release of radiolabeled four-way junction. These findings demonstrated that the two globular domains independently associated with two different four-way junction molecules in a manner that required amino acid residues implicated in structure-specific binding in the nucleosome. We discuss the implication of these findings on the chromatin structure of yeast and propose a model where a single Hho1 protein binds to two serially adjacent nucleosomes.
Collapse
Affiliation(s)
- Georgia Schäfer
- Department of Biotechnology, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | | | | |
Collapse
|
39
|
Culard F, Bouffard S, Charlier M. High-LET irradiation of a DNA-binding protein: protein-protein and DNA-protein crosslinks. Radiat Res 2006; 164:774-80. [PMID: 16296883 DOI: 10.1667/rr3456.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chromosomal protein MC1 is a monomeric protein of 93 amino acids that is able to bind any DNA but has a slight preferential affinity for some sequences and structures, like cruciform and minicircles. The protein has been irradiated with 36Ar18+ ions of 95 MeV/nucleon. The LET of these particles in water is close to 270 keV/microm. We tested the activity of the protein by measuring its ability to form complexes with DNA. We tested the integrity of the protein by measuring the molecular weight of the species formed. Compared with gamma radiation, we observed for the same dose a less efficient inactivation of the protein, a greater protection of the protein by the bound DNA, a lower induction of chain breakage, and a greater production of protein-protein and DNA-protein crosslinks. The results are discussed in terms of the quantitative and the qualitative differences between the two types of radiation: The global radical yield is slightly higher with gamma rays, whereas the density of radicals produced along the particle track is considerably higher with argon ions.
Collapse
Affiliation(s)
- Françoise Culard
- Centre de biophysique moléculaire, CNRS, F-45071 Orléans Cedex 2, France.
| | | | | |
Collapse
|
40
|
Polyanichko AM, Chikhirzhina EV, Andrushchenko VV, Vorob'ev VI, Wieser H. The effect of manganese(II) on the structure of DNA/HMGB1/H1 complexes: Electronic and vibrational circular dichroism studies. Biopolymers 2006; 83:182-92. [PMID: 16732569 DOI: 10.1002/bip.20544] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The interactions were studied of DNA with the nonhistone chromatin protein HMGB1 and histone H1 in the presence of manganese(II) ions at different protein to DNA and manganese to DNA phosphate ratios by using absorption and optical activity spectroscopy in the electronic [ultraviolet (UV) and electronic circular dichroism ECD)] and vibrational [infrared (IR) and vibrational circular dichroism (VCD)] regions. In the presence of Mn2+, the protein-DNA interactions differ from those without the ions and cause prominent DNA compaction and formation of large intermolecular complexes. At the same time, the presence of HMGB1 and H1 also changed the mode of interaction of Mn2+ with DNA, which now takes place mostly in the major groove of DNA involving N7(G), whereas interactions between Mn2+ and DNA phosphate groups are weakened by histone molecules. Considerable interactions were also detected of Mn2+ ions with aspartic and glutamic amino acid residues of the proteins.
Collapse
Affiliation(s)
- A M Polyanichko
- Department of Chemistry, University of Calgary, Calgary, Canada.
| | | | | | | | | |
Collapse
|
41
|
Galvão TC, Thomas JO. Structure-specific binding of MeCP2 to four-way junction DNA through its methyl CpG-binding domain. Nucleic Acids Res 2005; 33:6603-9. [PMID: 16314321 PMCID: PMC1298929 DOI: 10.1093/nar/gki971] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MeCP2, whose methylated DNA-binding domain (MBD) binds preferentially to DNA containing 5Me-CpG relative to linear unmethylated DNA, also binds preferentially, and with similar affinity, to unmethylated four-way DNA junctions through the MBD. The Arg133Cys (R133C) mutation in the MBD, a Rett syndrome mutation that abolishes binding to methylated DNA, leads to only a slight reduction in the affinity of the MBD for four-way junctions, suggesting distinct but partially overlapping modes of binding to junction and methylated DNA. Binding to unmethylated DNA junctions is likely to involve a subset of the interactions that occur with methylated DNA. High-affinity, methylation-independent binding to four-way junctions is consistent with additional roles for MeCP2 in chromatin, beyond recognition of 5Me-CpG.
Collapse
Affiliation(s)
| | - Jean O. Thomas
- To whom correspondence should be addressed. Tel: +44 1223 333670; Fax +44 1223 766002;
| |
Collapse
|
42
|
Jaouen S, de Koning L, Gaillard C, Muselíková-Polanská E, Stros M, Strauss F. Determinants of specific binding of HMGB1 protein to hemicatenated DNA loops. J Mol Biol 2005; 353:822-37. [PMID: 16199053 DOI: 10.1016/j.jmb.2005.08.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 08/29/2005] [Accepted: 08/29/2005] [Indexed: 01/23/2023]
Abstract
Protein HMGB1 has long been known as one of the most abundant non-histone proteins in the nucleus of mammalian cells, and has regained interest recently for its function as an extracellular cytokine. As a DNA-binding protein, HMGB1 facilitates DNA-protein interactions by increasing the flexibility of the double helix, and binds specifically to distorted DNA structures. We have previously observed that HMGB1 binds with extremely high affinity to a novel DNA structure, hemicatenated DNA loops (hcDNA), in which double-stranded DNA fragments containing a tract of poly(CA).poly(TG) form a loop maintained at its base by a hemicatenane. Here, we show that the single HMGB1 domains A and B, the HMG-box domain of sex determination factor SRY, as well as the prokaryotic HMGB1-like protein HU, specifically interact with hcDNA (Kd approximately 0.5 nM). However, the affinity of full-length HMGB1 for hcDNA is three orders of magnitude higher (Kd<0.5 pM) and requires the simultaneous presence of both HMG-box domains A and B plus the acidic C-terminal tail on the molecule. Interestingly, the high affinity of the full-length protein for hcDNA does not decrease in the presence of magnesium. Experiments including a comparison of HMGB1 binding to hcDNA and to minicircles containing the CA/TG sequence, binding studies with HMGB1 mutated at intercalating amino acid residues (involved in recognition of distorted DNA structures), and exonuclease III footprinting, strongly suggest that the hemicatenane, not the DNA loop, is the main determinant of the affinity of HMGB1 for hcDNA. Experiments with supercoiled CA/TG-minicircles did not reveal any involvement of left-handed Z-DNA in HMGB1 binding. Our results point to a tight structural fit between HMGB1 and DNA hemicatenanes under physiological conditions, and suggest that one of the nuclear functions of HMGB1 could be linked to the possible presence of hemicatenanes in the cell.
Collapse
Affiliation(s)
- Sandrine Jaouen
- Institut Jacques Monod, 2 place Jussieu, F-75251 Paris 05, France
| | | | | | | | | | | |
Collapse
|
43
|
Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination. Mol Cell Biol 2005. [PMID: 15899848 DOI: 10.1128/mcb25.11.4413-4425.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Efficient assembly of RAG1/2-recombination signal sequence (RSS) DNA complexes that are competent for V(D)J cleavage requires the presence of the nonspecific DNA binding and bending protein HMGB1 or HMGB2. We find that either of the two minimal DNA binding domains of HMGB1 is effective in assembling RAG1/2-RSS complexes on naked DNA and stimulating V(D)J cleavage but that both domains are required for efficient activity when the RSS is incorporated into a nucleosome. The single-domain HMGB protein from Saccharomyces cerevisiae, Nhp6A, efficiently assembles RAG1/2 complexes on naked DNA; however, these complexes are minimally competent for V(D)J cleavage. Nhp6A forms much more stable DNA complexes than HMGB1, and a variety of mutations that destabilize Nhp6A binding to bent microcircular DNA promote increased V(D)J cleavage. One of the two DNA bending wedges on Nhp6A and the analogous phenylalanine wedge at the DNA exit site of HMGB1 domain A were found to be essential for promoting RAG1/2-RSS complex formation. Because the phenylalanine wedge is required for specific recognition of DNA kinks, we propose that HMGB proteins facilitate RAG1/2-RSS interactions by recognizing a distorted DNA structure induced by RAG1/2 binding. The resulting complex must be sufficiently dynamic to enable the series of RAG1/2-mediated chemical reactions on the DNA.
Collapse
|
44
|
Dai Y, Wong B, Yen YM, Oettinger MA, Kwon J, Johnson RC. Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination. Mol Cell Biol 2005; 25:4413-25. [PMID: 15899848 PMCID: PMC1140611 DOI: 10.1128/mcb.25.11.4413-4425.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient assembly of RAG1/2-recombination signal sequence (RSS) DNA complexes that are competent for V(D)J cleavage requires the presence of the nonspecific DNA binding and bending protein HMGB1 or HMGB2. We find that either of the two minimal DNA binding domains of HMGB1 is effective in assembling RAG1/2-RSS complexes on naked DNA and stimulating V(D)J cleavage but that both domains are required for efficient activity when the RSS is incorporated into a nucleosome. The single-domain HMGB protein from Saccharomyces cerevisiae, Nhp6A, efficiently assembles RAG1/2 complexes on naked DNA; however, these complexes are minimally competent for V(D)J cleavage. Nhp6A forms much more stable DNA complexes than HMGB1, and a variety of mutations that destabilize Nhp6A binding to bent microcircular DNA promote increased V(D)J cleavage. One of the two DNA bending wedges on Nhp6A and the analogous phenylalanine wedge at the DNA exit site of HMGB1 domain A were found to be essential for promoting RAG1/2-RSS complex formation. Because the phenylalanine wedge is required for specific recognition of DNA kinks, we propose that HMGB proteins facilitate RAG1/2-RSS interactions by recognizing a distorted DNA structure induced by RAG1/2 binding. The resulting complex must be sufficiently dynamic to enable the series of RAG1/2-mediated chemical reactions on the DNA.
Collapse
Affiliation(s)
- Yan Dai
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
45
|
Bergeron S, Madathiparambil T, Swanson PC. Both high mobility group (HMG)-boxes and the acidic tail of HMGB1 regulate recombination-activating gene (RAG)-mediated recombination signal synapsis and cleavage in vitro. J Biol Chem 2005; 280:31314-24. [PMID: 15994314 PMCID: PMC5992625 DOI: 10.1074/jbc.m503063200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RAG-1 and RAG-2 initiate V(D)J recombination through synapsis and cleavage of a 12/23 pair of V(D)J recombination signal sequences (RSS). RAG-RSS complex assembly and activity in vitro is promoted by high mobility group proteins of the "HMG-box" family, exemplified by HMGB1. How HMGB1 stimulates the DNA binding and cleavage activity of the RAG complex remains unclear. HMGB1 contains two homologous HMG-box DNA binding domains, termed A and B, linked by a stretch of basic residues to a highly acidic C-terminal tail. To identify determinants of HMGB1 required for stimulation of RAG-mediated RSS binding and cleavage, we prepared an extensive panel of mutant HMGB1 proteins and tested their ability to augment RAG-mediated RSS binding and cleavage activity. Using a combination of mobility shift and in-gel cleavage assays, we find that HMGB1 promotes RAG-mediated cleavage largely through the activity of box B, but optimal stimulation requires a functional A box tethered in the correct orientation. Box A or B mutants fail to promote RAG synaptic complex formation, but this defect is alleviated when the acidic tail is removed from these mutants.
Collapse
Affiliation(s)
| | | | - Patrick C. Swanson
- An American Cancer Society Research Scholar. To whom correspondence should be addressed: Dept. of Medical Microbiology and Immunology, Creighton University Medical Center, 2500 California Plaza, Omaha, NE, 68178. Tel.: 402-280-2716; Fax: 402-280-1875;
| |
Collapse
|
46
|
Potaman VN, Shlyakhtenko LS, Oussatcheva EA, Lyubchenko YL, Soldatenkov VA. Specific Binding of Poly(ADP-ribose) Polymerase-1 to Cruciform Hairpins. J Mol Biol 2005; 348:609-15. [PMID: 15826658 DOI: 10.1016/j.jmb.2005.03.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 02/27/2005] [Accepted: 03/02/2005] [Indexed: 10/25/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) participates in DNA cleavage and rejoining-dependent reactions, such as DNA replication, recombination and repair. PARP-1 is also important in transcriptional regulation, although the determinants for its binding to undamaged genomic DNA have not been defined. Previously, we have shown by low-resolution mapping that PARP-1 may bind to the cruciform-forming regions of its own promoter. Here, using DNase I and nuclease P(1) footprinting and atomic force microscopy, we show that PARP-1 binds to stem/loop boundaries of cruciform hairpins. Cleavage of the cruciform by the junction resolvase T4 endonuclease VII is independent of PARP-1, which indicates that PARP-1 does not bind to the four-arm junctions of the cruciform. Thus, PARP-1 differs from other cruciform-binding proteins by binding to hairpin tips rather than to junctions. Furthermore, our data indicate that PARP-1 can interact with the gene regulatory sequences by binding to the promoter-localized cruciforms.
Collapse
Affiliation(s)
- Vladimir N Potaman
- Institute of Biosciences and Technology, Texas A & M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
47
|
Polyanichko A, Wieser H. Fourier transform infrared/vibrational circular dichroism spectroscopy as an informative tool for the investigation of large supramolecular complexes of biological macromolecules. Biopolymers 2005; 78:329-39. [PMID: 15912505 DOI: 10.1002/bip.20299] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A combination of ultraviolet (UV) and infrared (IR) absorption and circular dichroism (CD) spectroscopy was applied to investigate the structure and formation of large supramolecular DNA-protein complexes. This combination of techniques was used to overcome limitations of UV-CD (electronic, or ECD) spectroscopy due to considerable light scattering in such solutions. Based on the analysis of FTIR and UV-CD spectra, the interaction of DNA with nonhistone chromatin protein HMGB1 and linker histone H1 was studied. The data obtained showed that under the conditions of the experiment (15 mM NaCl, protein/DNA ratio r < 1 w/w) the proteins did not reveal any AT or GC specificity in binding to DNA. In the presence of both proteins, mainly interactions in the DNA minor groove were observed, which were attributed to HMGB1 binding. Histone H1 facilitated binding of HMGB1 to DNA by interacting with the negatively charged groups of the sugar-phosphate backbone and binding of aspartic and glutamic amino acid residues of HMGB1. Acting together, HMGB1 and H1 stimulated the assemblage of supramolecular DNA-protein structures. The structural organization of the ternary complexes depended not only on the properties of the protein-DNA interactions but also on the interactions between HMGB1 and H1 molecules.
Collapse
|
48
|
Kamau E, Bauerle KT, Grove A. The Saccharomyces cerevisiae high mobility group box protein HMO1 contains two functional DNA binding domains. J Biol Chem 2004; 279:55234-40. [PMID: 15507436 DOI: 10.1074/jbc.m409459200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
High mobility group box (HMGB) proteins are architectural proteins whose HMG DNA binding domains confer significant preference for distorted DNA, such as 4-way junctions. HMO1 is one of 10 Saccharomyces cerevisiae HMGB proteins, and it is required for normal growth and plasmid maintenance and for regulating the susceptibility of yeast chromatin to nuclease. Using electrophoretic mobility shift assays, we have shown here that HMO1 binds 26-bp duplex DNA with K(d) = 39.6 +/- 5.0 nm and that its divergent box A domain participates in DNA interactions, albeit with low affinity. HMO1 has only modest preference for DNA with altered conformations, including DNA with nicks, gaps, overhangs, or loops, as well as for 4-way junction structures and supercoiled DNA. HMO1 binds 4-way junctions with half-maximal saturation of 19.6 +/- 2.2 nm, with only a modest increase in affinity in the absence of magnesium ions (half-maximal saturation 6.1 +/- 1.1 nm). Whereas the box A domain contributes modest structure-specific binding, the box B domain is required for high affinity binding. HMO1 bends DNA, as measured by DNA cyclization assays, facilitating cyclization of 136-, 105-, and 87-bp DNA, but not 75-bp DNA, and it has a significantly longer residence time on DNA minicircles compared with linear duplex DNA. The unique DNA binding properties of HMO1 are consistent with global roles in the maintenance of chromatin structure.
Collapse
Affiliation(s)
- Edwin Kamau
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
49
|
Ali T, Thomas JO. Distinct Properties of the Two Putative “Globular Domains” of the Yeast Linker Histone, Hho1p. J Mol Biol 2004; 337:1123-35. [PMID: 15046982 DOI: 10.1016/j.jmb.2004.02.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 02/07/2004] [Accepted: 02/11/2004] [Indexed: 11/21/2022]
Abstract
The putative linker histone in Saccharomyces cerevisiae, Hho1p, has two regions of sequence (GI and GII) that are homologous to the single globular domains of linker histones H1 and H5 in higher eukaryotes. However, the two Hho1p "domains" differ with respect to the conservation of basic residues corresponding to the two putative DNA-binding sites (sites I and II) on opposite faces of the H5 globular domain. We find that GI can protect chromatosome-length DNA, like the globular domains of H1 and H5 (GH1 and GH5), but GII does not protect. However, GII, like GH1 and GH5, binds preferentially (and with higher affinity than GI) to four-way DNA junctions in the presence of excess linear DNA competitor, and binds more tightly than GI to linker-histone-depleted chromatin. Surprisingly, in 10 mM sodium phosphate (pH 7.0), GII is largely unfolded, whereas GI, like GH1 and GH5, is structured, with a high alpha-helical content. However, in the presence of high concentrations of large tetrahedral anions (phosphate, sulphate, perchlorate) GII is also folded; the anions presumably mimic DNA in screening the positive charge. This raises the possibility that chromatin-bound Hho1p may be bifunctional, with two folded nucleosome-binding domains.
Collapse
Affiliation(s)
- Tariq Ali
- Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | |
Collapse
|
50
|
Chromosomal HMG-box proteins. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|