1
|
Lau ES, Goodheart JA, Anderson NT, Liu VL, Mukherjee A, Oakley TH. Similar enzymatic functions in distinct bioluminescence systems: Evolutionary recruitment of sulfotransferases in ostracod light organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536614. [PMID: 37090632 PMCID: PMC10120648 DOI: 10.1101/2023.04.12.536614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Genes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracod Vargula tsujii , transfer sulfate in vivo to the luciferin substrate, vargulin. We find luciferin sulfotransferases of ostracods are not orthologous to known luciferin sulfotransferases of fireflies or sea pansies; animals with distinct and convergently evolved bioluminescence systems compared to ostracods. Therefore, distantly related sulfotransferases were independently recruited at least three times, leading to parallel evolution of luciferin metabolism in three highly diverged organisms. Re-use of homologous genes is surprising in these bioluminescence systems because the other components, including luciferins and luciferases, are completely distinct. Whether convergently evolved traits incorporate ancient genes with similar functions or instead use distinct, often newer, genes may be constrained by how many genetic solutions exist for a particular function. When fewer solutions exist, as in genetic sulfation of small molecules, evolution may be more constrained to use the same genes time and again.
Collapse
|
2
|
Toth D, Dudas B, Miteva MA, Balog E. Role of Conformational Dynamics of Sulfotransferases SULT1A1 and SULT1A3 in Substrate Specificity. Int J Mol Sci 2023; 24:16900. [PMID: 38069221 PMCID: PMC10706399 DOI: 10.3390/ijms242316900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Sulfotransferases (SULTs) are phase II metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3'-Phosphoadenosine 5'-Phosphosulfate (PAPS) to a wide variety of endogenous compounds, drugs and natural products. Although SULT1A1 and SULT1A3 share 93% identity, SULT1A1, the most abundant SULT isoform in humans, exhibits a broad substrate range with specificity for small phenolic compounds, while SULT1A3 displays a high affinity toward monoamine neurotransmitters like dopamine. To elucidate the factors determining the substrate specificity of the SULT1 isoenzymes, we studied the dynamic behavior and structural specificities of SULT1A1 and SULT1A3 by using molecular dynamics (MD) simulations and ensemble docking of common and specific substrates of the two isoforms. Our results demonstrated that while SULT1A1 exhibits a relatively rigid structure by showing lower conformational flexibility except for the lip (loop L1), the loop L2 and the cap (L3) of SULT1A3 are extremely flexible. We identified protein residues strongly involved in the recognition of different substrates for the two isoforms. Our analyses indicated that being more specific and highly flexible, the structure of SULT1A3 has particularities in the binding site, which are crucial for its substrate selectivity.
Collapse
Affiliation(s)
- Daniel Toth
- CiTCoM UMR 8038 CNRS, INSERM U1268 MCTR, Université Paris Cité, 75006 Paris, France; (D.T.); (B.D.)
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Balint Dudas
- CiTCoM UMR 8038 CNRS, INSERM U1268 MCTR, Université Paris Cité, 75006 Paris, France; (D.T.); (B.D.)
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Maria A. Miteva
- CiTCoM UMR 8038 CNRS, INSERM U1268 MCTR, Université Paris Cité, 75006 Paris, France; (D.T.); (B.D.)
| | - Erika Balog
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
3
|
Harps LC, Jendretzki AL, Wolf CA, Girreser U, Wolber G, Parr MK. Development of an HPLC-MS/MS Method for Chiral Separation and Quantitation of ( R)- and ( S)-Salbutamol and Their Sulfoconjugated Metabolites in Urine to Investigate Stereoselective Sulfonation. Molecules 2023; 28:7206. [PMID: 37894685 PMCID: PMC10609612 DOI: 10.3390/molecules28207206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to develop and optimize a chiral HPLC-MS/MS method for quantitative analysis of (R)-/(S)-salbutamol and (R)-/(S)-salbutamol-4'-O-sulfate in human urine to allow for bioanalytical quantitation of the targeted analytes and investigations of stereoselectivity in the sulfonation pathway of human phase Ⅱ metabolism. For analytical method development, a systematic screening of columns and mobile phases to develop a separation via enantiomerically selective high performance liquid chromatography was performed. Electrospray ionization settings were optimized via multiple-step screening and a full factorial design-of-experiment. Both approaches were performed matrix-assisted and the predicted values were compared. The full factorial design was superior in terms of prediction power and knowledge generation. Performing a longitudinal excretion study in one healthy volunteer allowed for the calculation of excretion rates for all four targeted analytes. For this proof-of-concept, either racemic salbutamol or enantiopure levosalbutamol was administered perorally or via inhalation, respectively. A strong preference for sulfonation of (R)-salbutamol for inhalation and peroral application was found in in vivo experiments. In previous studies phenol sulfotransferase 1A3 was described to be mainly responsible for salbutamol sulfonation in humans. Thus, in vitro and in silico investigations of the stereoselectivity of sulfotransferase 1A3 complemented the study and confirmed these findings.
Collapse
Affiliation(s)
- Lukas Corbinian Harps
- Pharmaceutical Analysis, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (L.C.H.); (A.L.J.)
| | - Annika Lisa Jendretzki
- Pharmaceutical Analysis, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (L.C.H.); (A.L.J.)
| | - Clemens Alexander Wolf
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (C.A.W.); (G.W.)
| | - Ulrich Girreser
- Institute of Pharmacy, Christian-Albrechts University Kiel, Gutenbergstr. 76, 24118 Kiel, Germany;
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (C.A.W.); (G.W.)
| | - Maria Kristina Parr
- Pharmaceutical Analysis, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (L.C.H.); (A.L.J.)
| |
Collapse
|
4
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
5
|
Chen Y, Jin S, Zhang M, Hu Y, Wu KL, Chung A, Wang S, Tian Z, Wang Y, Wolynes PG, Xiao H. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun 2022; 13:5434. [PMID: 36114189 PMCID: PMC9481576 DOI: 10.1038/s41467-022-33111-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023] Open
Abstract
Despite the great promise of genetic code expansion technology to modulate structures and functions of proteins, external addition of ncAAs is required in most cases and it often limits the utility of genetic code expansion technology, especially to noncanonical amino acids (ncAAs) with poor membrane internalization. Here, we report the creation of autonomous cells, both prokaryotic and eukaryotic, with the ability to biosynthesize and genetically encode sulfotyrosine (sTyr), an important protein post-translational modification with low membrane permeability. These engineered cells can produce site-specifically sulfated proteins at a higher yield than cells fed exogenously with the highest level of sTyr reported in the literature. We use these autonomous cells to prepare highly potent thrombin inhibitors with site-specific sulfation. By enhancing ncAA incorporation efficiency, this added ability of cells to biosynthesize ncAAs and genetically incorporate them into proteins greatly extends the utility of genetic code expansion methods.
Collapse
Affiliation(s)
- Yuda Chen
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shikai Jin
- grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Mengxi Zhang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yu Hu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Kuan-Lin Wu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Anna Chung
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shichao Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Zeru Tian
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yixian Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Peter G. Wolynes
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Han Xiao
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005 USA
| |
Collapse
|
6
|
Pedersen LC, Yi M, Pedersen LG, Kaminski AM. From Steroid and Drug Metabolism to Glycobiology, Using Sulfotransferase Structures to Understand and Tailor Function. Drug Metab Dispos 2022; 50:1027-1041. [PMID: 35197313 PMCID: PMC10753775 DOI: 10.1124/dmd.121.000478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Sulfotransferases are ubiquitous enzymes that transfer a sulfo group from the universal cofactor donor 3'-phosphoadenosine 5'-phosphosulfate to a broad range of acceptor substrates. In humans, the cytosolic sulfotransferases are involved in the sulfation of endogenous compounds such as steroids, neurotransmitters, hormones, and bile acids as well as xenobiotics including drugs, toxins, and environmental chemicals. The Golgi associated membrane-bound sulfotransferases are involved in post-translational modification of macromolecules from glycosaminoglycans to proteins. The sulfation of small molecules can have profound biologic effects on the functionality of the acceptor, including activation, deactivation, or enhanced metabolism and elimination. Sulfation of macromolecules has been shown to regulate a number of physiologic and pathophysiological pathways by enhancing binding affinity to regulatory proteins or binding partners. Over the last 25 years, crystal structures of these enzymes have provided a wealth of information on the mechanisms of this process and the specificity of these enzymes. This review will focus on the general commonalities of the sulfotransferases, from enzyme structure to catalytic mechanism as well as providing examples into how structural information is being used to either design drugs that inhibit sulfotransferases or to modify the enzymes to improve drug synthesis. SIGNIFICANCE STATEMENT: This manuscript honors Dr. Masahiko Negishi's contribution to the understanding of sulfotransferase mechanism, specificity, and roles in biology by analyzing the crystal structures that have been solved over the last 25 years.
Collapse
Affiliation(s)
- Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - MyeongJin Yi
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Lee G Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Andrea M Kaminski
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| |
Collapse
|
7
|
Poboinev VV, Khrustalev VV, Khrustaleva TA, Kasko TE, Popkov VD. The PentUnFOLD algorithm as a tool to distinguish the dark and the light sides of the structural instability of proteins. Amino Acids 2022; 54:1155-1171. [PMID: 35294674 PMCID: PMC8924573 DOI: 10.1007/s00726-022-03153-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Intrinsically disordered proteins are frequently involved in important regulatory processes in the cell thanks to their ability to bind several different targets performing sometimes even opposite functions. The PentUnFOLD algorithm is a physicochemical method that is based on new propensity scales for disordered, nonstable and stable elements of secondary structure and on the counting of stabilizing and destabilizing intraprotein contacts. Unlike other methods, it works with a PDB file, and it can determine not only those fragments of alpha helices, beta strands, and random coils that can turn into disordered state (the “dark” side of the disorder), but also nonstable regions of alpha helices and beta strands which are able to turn into random coils (the “light” side), and vice versa (H ↔ C, E ↔ C). The scales have been obtained from structural data on disordered regions from the middle parts of amino acid sequences only, and not on their expectedly disordered N- and C-termini. Among other tendencies we have found that regions of both alpha helices and beta strands that can turn into the disordered state are relatively enriched in residues of Ala, Met, Asp, and Lys, while regions of both alpha helices and beta strands that can turn into random coil are relatively enriched in hydrophilic residues, and Cys, Pro, and Gly. Moreover, PentUnFOLD has the option to determine the effect of secondary structure transitions on the stability of a given region of a protein. The PentUnFOLD algorithm is freely available at http://3.17.12.213/pent-un-fold and http://chemres.bsmu.by/PentUnFOLD.htm.
Collapse
Affiliation(s)
| | | | - Tatyana Aleksandrovna Khrustaleva
- Biochemical Group of the Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tihon Evgenyevich Kasko
- Department of General Chemistry, Belarusian State Medical University, Dzerzinskogo 83, Minsk, Belarus
| | - Vadim Dmitrievich Popkov
- Department of General Chemistry, Belarusian State Medical University, Dzerzinskogo 83, Minsk, Belarus
| |
Collapse
|
8
|
Association of CHEK2 I157T and SULT1A1 R213H genetic variants with risk of sporadic colorectal cancer in a sample of Egyptian patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Recent research proposed an association between functional defects involving CHEK2 I157T and SULT1A1 R213H variants and increased incidence of several types of cancer. A total of 86 unrelated colorectal cancer patients attending the Surgical Oncology Department were recruited in the study. The second group of 152 healthy age- and sex-matched volunteers were included as controls. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) was applied for genotyping. Chi-square test was applied to compare genotype and allele frequencies in the studied groups. The purpose of the present study was to evaluate the association between CHEK2 I157T and SULT1A1 R213H polymorphisms and colorectal cancer.
Results
No significant differences in genotypes were detected between cases and controls in the present study for both CHEK2 I157T and SULT1A1 R213H polymorphisms (χ2 = 1.839; P = 0.399/χ2 = 2.831; P = 0.243), respectively. Likewise, discrepancies in allele frequency for the wild-type or mutant alleles were non-statistically significant in CHEK2 I157T and SULT1A1 R213H (χ2 = 1.231; P = 0.267/χ2 = 0.180; P = 0.671), respectively.
Conclusions
Results of the current study propose that CHEK2 I157T and SULT1A1 R213H polymorphisms are not associated with CRC development in Egyptian population. Further future studies on the functional implications of these polymorphisms are strongly recommended.
Collapse
|
9
|
Evaluation of a conserved tryptophanyl residue in donor substrate binding and catalysis by a phenol sulfotransferase (SULT1A1). Arch Biochem Biophys 2020; 695:108621. [PMID: 33049293 DOI: 10.1016/j.abb.2020.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022]
Abstract
Structural determinations of members of the sulfotransferase (SULT) family suggest a direct interaction between a conserved tryptophanyl side chain and bound 3'-phosphoadenosine-5'-phosphate (PAP). We have prepared and purified mutants of the bovine SULT1A1, a very conserved homolog to the human SULT1A1, in which tryptophanyl-53 was sequentially trimmed to tyrosine, leucine, and alanine. Differential scanning fluorimetry indicated structural stabilities of the mutant proteins comparable to the wild type SULT1A1; however, less thermal stabilizations by PAP plus pentachlorophenol were observed with the mutants, suggesting weakened ligand binding. Protein fluorescence of the wild type enzyme decreased 6.5% upon binding PAP, whereas no changes occurred with the mutant enzymes. This reveals that W53, or its positional counterpart, has been the source of emission intensity changes used in previous investigations of other SULTs. Fluorescence resonance energy transfer from excited tryptophans to bound 7-hydroxycoumarin, as induced by PAP, indicated weakened binding of ligands to the mutant SULTs. This was also encountered and quantified in initial rate kinetic analyses. Ablation of the PAPS adenine-to-W53 ring interaction, shown by the W53A mutant enzyme, resulted in a 6.4-fold increase in KPAPS and a 92% decrease in kcat/KPAPS. Measured KPAPS values reveal the W53 indole ring contribution to PAPS binding to be 1.1 kcal/mol (4.6 kJ/mol). These results verify the structurally-inferred role for the π-π stacking interaction between PAP(S) and the conserved tryptophanyl residue in SULT1A1 and other members of the SULT family.
Collapse
|
10
|
Impact of SULT1A3/SULT1A4 genetic polymorphisms on the sulfation of phenylephrine and salbutamol by human SULT1A3 allozymes. Pharmacogenet Genomics 2020; 29:99-105. [PMID: 31145702 DOI: 10.1097/fpc.0000000000000371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Phenylephrine and salbutamol are drugs that are used widely to treat diseases/disorders, such as nasal congestion, hypotension, and asthma, in individuals of different age groups. Human cytosolic sulfotransferase (SULT) SULT1A3 has been shown to be critically involved in the metabolism of these therapeutic agents. This study was carried out to investigate the effects of single nucleotide polymorphisms of human SULT1A3 and SULT1A4 genes on the sulfation of phenylephrine and salbutamol by SULT1A3 allozymes. MATERIALS AND METHODS Wild-type and SULT1A3 allozymes, prepared previously by site-directed mutagenesis in conjunction with bacterial expression and affinity purification, were analyzed for sulfating activity using an established assay procedure. RESULTS Purified SULT1A3 allozymes, in comparison with the wild-type enzyme, showed differential sulfating activities toward phenylephrine and salbutamol. Kinetic studies showed further significant variations in their substrate-binding affinity and catalytic activity toward phenylephrine and salbutamol. CONCLUSION The results obtained showed clearly the differential enzymatic characteristics of SULT1A3 allozymes in mediating the sulfation of phenylephrine and salbutamol. This information may contribute toward a better understanding of the pharmacokinetics of these two drugs in individuals with distinct SULT1A3 and/or SULT1A4 genotypes.
Collapse
|
11
|
Ji Y, Islam S, Cui H, Dhoke GV, Davari MD, Mertens AM, Schwaneberg U. Loop engineering of aryl sulfotransferase B for improving catalytic performance in regioselective sulfation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00063a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Loop engineering of aryl sulfotransferase B improves catalytic performance in regioselective sulfation.
Collapse
Affiliation(s)
- Yu Ji
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Shohana Islam
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz-Institut für Interaktive Materialien e.V
| | - Haiyang Cui
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Gaurao V. Dhoke
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alan M. Mertens
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz-Institut für Interaktive Materialien e.V
| |
Collapse
|
12
|
Dash R, Ali MC, Dash N, Azad MAK, Hosen SMZ, Hannan MA, Moon IS. Structural and Dynamic Characterizations Highlight the Deleterious Role of SULT1A1 R213H Polymorphism in Substrate Binding. Int J Mol Sci 2019; 20:ijms20246256. [PMID: 31835852 PMCID: PMC6969939 DOI: 10.3390/ijms20246256] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Sulfotransferase 1A1 (SULT1A1) is responsible for catalyzing various types of endogenous and exogenous compounds. Accumulating data indicates that the polymorphism rs9282861 (R213H) is responsible for inefficient enzymatic activity and associated with cancer progression. To characterize the detailed functional consequences of this mutation behind the loss-of-function of SULT1A1, the present study deployed molecular dynamics simulation to get insights into changes in the conformation and binding energy. The dynamics scenario of SULT1A1 in both wild and mutated types as well as with and without ligand showed that R213H induced local conformational changes, especially in the substrate-binding loop rather than impairing overall stability of the protein structure. The higher conformational changes were observed in the loop3 (residues, 235-263), turning loop conformation to A-helix and B-bridge, which ultimately disrupted the plasticity of the active site. This alteration reduced the binding site volume and hydrophobicity to decrease the binding affinity of the enzyme to substrates, which was highlighted by the MM-PBSA binding energy analysis. These findings highlight the key insights of structural consequences caused by R213H mutation, which would enrich the understanding regarding the role of SULT1A1 mutation in cancer development and also xenobiotics management to individuals in the different treatment stages.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Nayan Dash
- Department of Computer Science and Engineering, BGC Trust University, Bangladesh, Chittagong 4381, Bangladesh
| | - Md Abul Kalam Azad
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - S M Zahid Hosen
- Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales, and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
13
|
Uno Y, Murayama N, Yamazaki H. Molecular and functional characterization of cytosolic sulfotransferases in cynomolgus macaque. Biochem Pharmacol 2019; 166:153-162. [DOI: 10.1016/j.bcp.2019.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
|
14
|
Narasumani M, Harrison PM. Discerning evolutionary trends in post-translational modification and the effect of intrinsic disorder: Analysis of methylation, acetylation and ubiquitination sites in human proteins. PLoS Comput Biol 2018; 14:e1006349. [PMID: 30096183 PMCID: PMC6105011 DOI: 10.1371/journal.pcbi.1006349] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/22/2018] [Accepted: 07/07/2018] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered regions (IDRs) of proteins play significant biological functional roles despite lacking a well-defined 3D structure. For example, IDRs provide efficient housing for large numbers of post-translational modification (PTM) sites in eukaryotic proteins. Here, we study the distribution of more than 15,000 experimentally determined human methylation, acetylation and ubiquitination sites (collectively termed 'MAU' sites) in ordered and disordered regions, and analyse their conservation across 380 eukaryotic species. Conservation signals for the maintenance and novel emergence of MAU sites are examined at 11 evolutionary levels from the whole eukaryotic domain down to the ape superfamily, in both ordered and disordered regions. We discover that MAU PTM is a major driver of conservation for arginines and lysines in both ordered and disordered regions, across the 11 levels, most significantly across the mammalian clade. Conservation of human methylatable arginines is very strongly favoured for ordered regions rather than for disordered, whereas methylatable lysines are conserved in either set of regions, and conservation of acetylatable and ubiquitinatable lysines is favoured in disordered over ordered. Notably, we find evidence for the emergence of new lysine MAU sites in disordered regions of proteins in deuterostomes and mammals, and in ordered regions after the dawn of eutherians. For histones specifically, MAU sites demonstrate an idiosyncratic significant conservation pattern that is evident since the last common ancestor of mammals. Similarly, folding-on-binding (FB) regions are highly enriched for MAU sites relative to either ordered or disordered regions, with ubiquitination sites in FBs being highly conserved at all evolutionary levels back as far as mammals. This investigation clearly demonstrates the complex patterns of PTM evolution across the human proteome and that it is necessary to consider conservation of sequence features at multiple evolutionary levels in order not to get an incomplete or misleading picture.
Collapse
|
15
|
Bairam AF, Rasool MI, Alherz FA, Abunnaja MS, El Daibani AA, Kurogi K, Liu MC. Effects of human SULT1A3/SULT1A4 genetic polymorphisms on the sulfation of acetaminophen and opioid drugs by the cytosolic sulfotransferase SULT1A3. Arch Biochem Biophys 2018; 648:44-52. [PMID: 29705271 DOI: 10.1016/j.abb.2018.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
Abstract
Sulfoconjugation has been shown to be critically involved in the metabolism of acetaminophen (APAP), morphine, tapentadol and O-desmethyl tramadol (O-DMT). The objective of this study was to investigate the effects of single nucleotide polymorphisms (SNPs) of human SULT1A3 and SULT1A4 genes on the sulfating activity of SULT1A3 allozymes toward these analgesic compounds. Twelve non-synonymous coding SNPs (cSNPs) of SULT1A3/SULT1A4 were investigated, and the corresponding cDNAs were generated by site-directed mutagenesis. SULT1A3 allozymes, bacterially expressed and purified, exhibited differential sulfating activity toward each of the four analgesic compounds tested as substrates. Kinetic analyses of SULT1A3 allozymes further revealed significant differences in binding affinity and catalytic activity toward the four analgesic compounds. Collectively, the results derived from the current study showed clearly the impact of cSNPs of the coding genes, SULT1A3 and SULT1A4, on the sulfating activity of the coded SULT1A3 allozymes toward the tested analgesic compounds. These findings may have implications in the pharmacokinetics as well as the toxicity profiles of these analgesics administered in individuals with distinct SULT1A3 and/or SULT1A4 genotypes.
Collapse
Affiliation(s)
- Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA; Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Mohammed I Rasool
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA; Department of Pharmacology, College of Pharmacy, University of Karbala, Karbala, Iraq
| | - Fatemah A Alherz
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| | - Maryam S Abunnaja
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| | - Amal A El Daibani
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| | - Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA; Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA.
| |
Collapse
|
16
|
Bairam AF, Rasool MI, Alherz FA, Abunnaja MS, El Daibani AA, Gohal SA, Kurogi K, Sakakibara Y, Suiko M, Liu MC. Sulfation of catecholamines and serotonin by SULT1A3 allozymes. Biochem Pharmacol 2018. [PMID: 29524394 DOI: 10.1016/j.bcp.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have demonstrated the involvement of sulfoconjugation in the metabolism of catecholamines and serotonin. The current study aimed to clarify the effects of single nucleotide polymorphisms (SNPs) of human SULT1A3 and SULT1A4 genes on the enzymatic characteristics of the sulfation of dopamine, epinephrine, norepinephrine and serotonin by SULT1A3 allozymes. Following a comprehensive search of different SULT1A3 and SULT1A4 genotypes, twelve non-synonymous (missense) coding SNPs (cSNPs) of SULT1A3/SULT1A4 were identified. cDNAs encoding the corresponding SULT1A3 allozymes, packaged in pGEX-2T vector were generated by site-directed mutagenesis. SULT1A3 allozymes were expressed, and purified. Purified SULT1A3 allozymes exhibited differential sulfating activity toward catecholamines and serotonin. Kinetic analyses demonstrated differences in both substrate affinity and catalytic efficiency of the SULT1A3 allozymes. Collectively, these findings provide useful information relevant to the differential metabolism of dopamine, epinephrine, norepinephrine and serotonin through sulfoconjugation in individuals having different SULT1A3/SULT1A4 genotypes.
Collapse
Affiliation(s)
- Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Mohammed I Rasool
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Department of Pharmacology, College of Pharmacy, University of Karbala, Karbala, Iraq
| | - Fatemah A Alherz
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Maryam S Abunnaja
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Amal A El Daibani
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Saud A Gohal
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Masahito Suiko
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
17
|
Liyou NE, Buller KM, Tresillian MJ, Elvin CM, Scott HL, Dodd PR, Tannenberg AEG, McManus ME. Localization of a Brain Sulfotransferase, SULT4A1, in the Human and Rat Brain: An Immunohistochemical Study. J Histochem Cytochem 2016; 51:1655-64. [PMID: 14623933 DOI: 10.1177/002215540305101209] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cytosolic sulfotransferases are believed to play a role in the neuromodulation of certain neurotransmitters and drugs. To date, four cytosolic sulfotransferases have been shown to be expressed in human brain. Recently, a novel human brain sulfotransferase has been identified and characterized, although its role and localization in the brain are unknown. Here we present the first immunohistochemical (IHC) localization of SULT4A1 in human brain using an affinity-purified polyclonal antibody raised against recombinant human SULT4A1. These results are supported and supplemented by the IHC localization of SULT4A1 in rat brain. In both human and rat brains, strong reactivity was found in several brain regions, including cerebral cortex, cerebellum, pituitary, and brainstem. Specific signal was entirely absent on sections for which preimmune serum from the corresponding animal, processed in the same way as the postimmune serum, was used in the primary screen. The findings from this study may assist in determining the physiological role of this SULT isoform.
Collapse
Affiliation(s)
- Nancy E Liyou
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tibbs ZE, Falany CN. Dimeric human sulfotransferase 1B1 displays cofactor-dependent subunit communication. Pharmacol Res Perspect 2015; 3:e00147. [PMID: 26236487 PMCID: PMC4492763 DOI: 10.1002/prp2.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/05/2015] [Accepted: 03/22/2015] [Indexed: 01/27/2023] Open
Abstract
The cytosolic sulfotransferases (SULTs) are dimeric enzymes that catalyze the transformation of hydrophobic drugs and hormones into hydrophilic sulfate esters thereby providing the body with an important pathway for regulating small molecule activity and excretion. While SULT dimerization is highly conserved, the necessity for the interaction has not been established. To perform its function, a SULT must efficiently bind the universal sulfate donor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), and release the byproduct, 3', 5'-diphosphoadenosine (PAP), following catalysis. We hypothesize this efficient binding and release of PAPS/PAP may be connected to SULT dimerization. To allow for the visualization of dynamic protein interactions critical for addressing this hypothesis and to generate kinetically testable hypotheses, molecular dynamic simulations (MDS) of hSULT1B1 were performed with PAPS and PAP bound to each dimer subunit in various combinations. The results suggest the dimer subunits may possess the capability of communicating with one another in a manner dependent on the presence of the cofactor. PAP or PAPS binding to a single side of the dimer results in decreased backbone flexibility of both the bound and unbound subunits, implying the dimer subunits may not act independently. Further, binding of PAP to one subunit of the dimer and PAPS to the other caused increased flexibility in the subunit bound to the inactive cofactor (PAP). These results suggest SULT dimerization may be important in maintaining cofactor binding/release properties of SULTs and provide hypothetical explanations for SULT half-site reactivity and substrate inhibition, which can be analyzed in vitro.
Collapse
Affiliation(s)
- Zachary E Tibbs
- The Department of Pharmacology and Toxicology, The University of Alabama at Birmingham Birmingham, Alabama, 35294-0019
| | - Charles N Falany
- The Department of Pharmacology and Toxicology, The University of Alabama at Birmingham Birmingham, Alabama, 35294-0019
| |
Collapse
|
19
|
Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL, Falany CN. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab Pharmacokinet 2015; 30:3-20. [DOI: 10.1016/j.dmpk.2014.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
20
|
Hirschmann F, Krause F, Papenbrock J. The multi-protein family of sulfotransferases in plants: composition, occurrence, substrate specificity, and functions. FRONTIERS IN PLANT SCIENCE 2014; 5:556. [PMID: 25360143 PMCID: PMC4199319 DOI: 10.3389/fpls.2014.00556] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/28/2014] [Indexed: 05/20/2023]
Abstract
All members of the sulfotransferase (SOT, EC 2.8.2.-) protein family transfer a sulfuryl group from the donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to an appropriate hydroxyl group of several classes of substrates. The primary structure of these enzymes is characterized by a histidine residue in the active site, defined PAPS binding sites and a longer SOT domain. Proteins with this SOT domain occur in all organisms from all three domains, usually as a multi-protein family. Arabidopsis thaliana SOTs, the best characterized SOT multi-protein family, contains 21 members. The substrates for several plant enzymes have already been identified, such as glucosinolates, brassinosteroids, jasmonates, flavonoids, and salicylic acid. Much information has been gathered on desulfo-glucosinolate (dsGl) SOTs in A. thaliana. The three cytosolic dsGl SOTs show slightly different expression patterns. The recombinant proteins reveal differences in their affinity to indolic and aliphatic dsGls. Also the respective recombinant dsGl SOTs from different A. thaliana ecotypes differ in their kinetic properties. However, determinants of substrate specificity and the exact reaction mechanism still need to be clarified. Probably, the three-dimensional structures of more plant proteins need to be solved to analyze the mode of action and the responsible amino acids for substrate binding. In addition to A. thaliana, more plant species from several families need to be investigated to fully elucidate the diversity of sulfated molecules and the way of biosynthesis catalyzed by SOT enzymes.
Collapse
Affiliation(s)
| | | | - Jutta Papenbrock
- Institute of Botany, Leibniz University HannoverHannover, Germany
| |
Collapse
|
21
|
In silico mechanistic profiling to probe small molecule binding to sulfotransferases. PLoS One 2013; 8:e73587. [PMID: 24039991 PMCID: PMC3765257 DOI: 10.1371/journal.pone.0073587] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/28/2013] [Indexed: 01/01/2023] Open
Abstract
Drug metabolizing enzymes play a key role in the metabolism, elimination and detoxification of xenobiotics, drugs and endogenous molecules. While their principal role is to detoxify organisms by modifying compounds, such as pollutants or drugs, for a rapid excretion, in some cases they render their substrates more toxic thereby inducing severe side effects and adverse drug reactions, or their inhibition can lead to drug–drug interactions. We focus on sulfotransferases (SULTs), a family of phase II metabolizing enzymes, acting on a large number of drugs and hormones and showing important structural flexibility. Here we report a novel in silico structure-based approach to probe ligand binding to SULTs. We explored the flexibility of SULTs by molecular dynamics (MD) simulations in order to identify the most suitable multiple receptor conformations for ligand binding prediction. Then, we employed structure-based docking-scoring approach to predict ligand binding and finally we combined the predicted interaction energies by using a QSAR methodology. The results showed that our protocol successfully prioritizes potent binders for the studied here SULT1 isoforms, and give new insights on specific molecular mechanisms for diverse ligands’ binding related to their binding sites plasticity. Our best QSAR models, introducing predicted protein-ligand interaction energy by using docking, showed accuracy of 67.28%, 78.00% and 75.46%, for the isoforms SULT1A1, SULT1A3 and SULT1E1, respectively. To the best of our knowledge our protocol is the first in silico structure-based approach consisting of a protein-ligand interaction analysis at atomic level that considers both ligand and enzyme flexibility, along with a QSAR approach, to identify small molecules that can interact with II phase dug metabolizing enzymes.
Collapse
|
22
|
Thomas MP, Potter BVL. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol 2013; 137:27-49. [PMID: 23291110 PMCID: PMC3866684 DOI: 10.1016/j.jsbmb.2012.12.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023]
Abstract
Many enzymes catalyse reactions that have an oestrogen as a substrate and/or a product. The reactions catalysed include aromatisation, oxidation, reduction, sulfonation, desulfonation, hydroxylation and methoxylation. The enzymes that catalyse these reactions must all recognise and bind oestrogen but, despite this, they have diverse structures. This review looks at each of these enzymes in turn, describing the structure and discussing the mechanism of the catalysed reaction. Since oestrogen has a role in many disease states inhibition of the enzymes of oestrogen metabolism may have an impact on the state or progression of the disease and inhibitors of these enzymes are briefly discussed. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Key Words
- 17β-HSD
- 17β-Hydroxysteroid dehydrogenase
- 17β-hydroxysteroid dehydrogenase
- 3,5-dinitrocatechol
- 3-(((8R,9S,13S,14S,16R,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-16-yl)methyl)benzamide
- 3′-phosphoadenosine-5′-phosphate
- 3′-phosphoadenosine-5′-phosphosulfate
- Aromatase
- COMT
- DHEA(S)
- DHETNA
- DNC
- E1(S)
- E2(S)
- E2B
- E3
- E4
- ER
- FAD/FMN
- FG
- HFG(S)
- NADP(+)
- NADPH
- O5′-[9-(3,17β-dihydroxy-1,3,5(10)-estratrien-16β-yl)-nonanoyl]adenosine
- Oestrogen
- PAP
- PAPS
- Protein structure
- Reaction mechanism
- S-adenosyl methionine
- SAM
- SDR
- Sulfatase
- Sulfotransferase
- catechol-O-methyl transferase
- dehydroepiandrosterone (sulfate)
- estetrol
- estradiol (sulfate)
- estriol
- estrogen receptor
- estrone (sulfate)
- flavin adenine dinucleotide/flavin mononucleotide
- formylglycine
- hydroxyformylglycine (sulfate)
- mb-COMT
- membrane-bound COMT
- nicotinamide adenine dinucleotide phosphate (oxidised)
- nicotinamide adenine dinucleotide phosphate (reduced)
- s-COMT
- short-chain dehydrogenase/reductase
- soluble COMT
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | |
Collapse
|
23
|
Paritala H, Carroll KS. New targets and inhibitors of mycobacterial sulfur metabolism. Infect Disord Drug Targets 2013; 13:85-115. [PMID: 23808874 PMCID: PMC4332622 DOI: 10.2174/18715265113139990022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/08/2013] [Indexed: 11/22/2022]
Abstract
The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the enzymes associated with the production of sulfated and reduced sulfur-containing metabolites in Mycobacteria. Small molecule inhibitors of these catalysts represent valuable chemical tools that can be used to investigate the role of sulfur metabolism throughout the Mycobacterial lifecycle and may also represent new leads for drug development. In this light, we also summarize recent progress made in the development of inhibitors of sulfur metabolism enzymes.
Collapse
Affiliation(s)
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| |
Collapse
|
24
|
MP2//DFT calculations of interaction energies between acetaminophen and acetaminophen analogues and the aryl sulfotransferase active site. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2012.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Grouzmann E, Gualtierotti JB, Gerber-Lemaire S, Abid K, Brakch N, Pedretti A, Testa B, Vistoli G. Lack of Enantioselectivity in the SULT1A3-catalyzed Sulfoconjugation of Normetanephrine Enantiomers: An In Vitro
and Computational Study. Chirality 2012; 25:28-34. [DOI: 10.1002/chir.22108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/24/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Eric Grouzmann
- Service de Biomédecine; Lausanne University Hospital (CHUV); Lausanne Switzerland
| | | | | | - Karim Abid
- Service de Biomédecine; Lausanne University Hospital (CHUV); Lausanne Switzerland
| | - Noureddine Brakch
- Department of Internal Medicine, Service of Nephrology; Lausanne University Hospital (CHUV); Lausanne Switzerland
| | - Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Facoltà di Farmacia; Università degli Studi di Milano; Milano Italy
| | - Bernard Testa
- Department of Pharmacy; Lausanne University Hospital (CHUV); Lausanne Switzerland
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Facoltà di Farmacia; Università degli Studi di Milano; Milano Italy
| |
Collapse
|
26
|
Dong D, Ako R, Wu B. Crystal structures of human sulfotransferases: insights into the mechanisms of action and substrate selectivity. Expert Opin Drug Metab Toxicol 2012; 8:635-46. [PMID: 22512672 DOI: 10.1517/17425255.2012.677027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Cytosolic sulfotransferases (SULTs) are the enzymes that catalyze the sulfonation reaction, an important metabolic pathway for numerous endogenous and exogenous compounds. Human SULTs exhibit complex patterns of broad, differential and overlapping substrate selectivity. Moreover, these enzymes often display substrate inhibition kinetics (i.e., inhibition of the enzyme activity at high substrate concentrations). AREAS COVERED At present, the crystal structures for 12 human SULTs (i.e., SULT1A1, 1A2, 1A3, 1B1, 1C1, 1C2, 1C3, 1E1, 2A1, 2B1a, 2B1b and 4A1) are available, many of which are in complex with a substrate. This review describes the similarities and differences in these structures (particularly the active-site structures) of SULT enzymes. The authors also discuss the structural basis for understanding the catalytic mechanism, the substrate inhibition mechanisms, the cofactor (3'-phosphoadenosine 5'-phosphosulfate or PAPS) binding and the substrate recognition. EXPERT OPINION Correlations of the structural features (including conformational flexibility) in the active sites with the substrate profiles of several SULTs have been well established. One is encouraged to closely integrate in silico approaches with the structural knowledge of the active sites for development of a rationalized and accurate tool that is able to predict metabolism of SULTs toward chemicals and drug candidates.
Collapse
Affiliation(s)
- Dong Dong
- University of Houston, College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
|
28
|
Berger I, Guttman C, Amar D, Zarivach R, Aharoni A. The molecular basis for the broad substrate specificity of human sulfotransferase 1A1. PLoS One 2011; 6:e26794. [PMID: 22069470 PMCID: PMC3206062 DOI: 10.1371/journal.pone.0026794] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/04/2011] [Indexed: 12/03/2022] Open
Abstract
Cytosolic sulfotransferases (SULTs) are mammalian enzymes that detoxify a wide variety of chemicals through the addition of a sulfate group. Despite extensive research, the molecular basis for the broad specificity of SULTs is still not understood. Here, structural, protein engineering and kinetic approaches were employed to obtain deep understanding of the molecular basis for the broad specificity, catalytic activity and substrate inhibition of SULT1A1. We have determined five new structures of SULT1A1 in complex with different acceptors, and utilized a directed evolution approach to generate SULT1A1 mutants with enhanced thermostability and increased catalytic activity. We found that active site plasticity enables binding of different acceptors and identified dramatic structural changes in the SULT1A1 active site leading to the binding of a second acceptor molecule in a conserved yet non-productive manner. Our combined approach highlights the dominant role of SULT1A1 structural flexibility in controlling the specificity and activity of this enzyme.
Collapse
Affiliation(s)
- Ilana Berger
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Chen Guttman
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Dotan Amar
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- * E-mail: (RZ); (AA)
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- * E-mail: (RZ); (AA)
| |
Collapse
|
29
|
Crystal structure of sulfotransferase STF9 from Mycobacterium avium. Mol Cell Biochem 2011; 361:97-104. [PMID: 21959978 DOI: 10.1007/s11010-011-1093-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Sulfotransferases catalyze the sulfate conjugation of a wide variety of endogenous and exogenous molecules. Human pathogenic mycobacteria produce numerous sulfated molecules including sulfolipids which are well related to the virulence of several strains. The genome of Mycobacterium avium encodes eight putative sulfotransferases (stf1, stf4-stf10). Among them, STF9 shows higher similarity to human heparan sulfate 3-O-sulfotransferase isoforms than to the bacterial STs. Here, we determined the crystal structure of sulfotransferase STF9 in complex with a sulfate ion and palmitic acid at a resolution of 2.6 Å. STF9 has a spherical structure utilizing the classical sulfotransferase fold. STF9 exclusively possesses three N-terminal α-helices (α1, α2, α3) parallel to the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) binding motif. The sulfate ion binds to the PAPS binding structural motif and the palmitic acid molecule binds in the deep cleft of the predicted substrate binding site suggesting the nature of endogenous acceptor substrate of STF9 resembles palmitic acid. The substrate binding site is covered by a flexible loop which may have involvement in endogenous substrate recognition. Based on the mutational study (Hossain et al., Mol Cell Biochem 350:155-162; 2011) and structural resemblance of STF9-sulfate ion-palmitic acid complex to the hHS3OST3 complex with PAP (3'-phosphoadenosine-5'-phosphate) and an acceptor sugar chain, Glu170 and Arg96 are appeared to be catalytic residues in STF9 sulfuryl transfer mechanism.
Collapse
|
30
|
Zhang C, Li JP, Lv GQ, Yu XM, Gu YL, Zhou P. Lack of association of SULT1A1 R213H polymorphism with colorectal cancer: a meta-analysis. PLoS One 2011; 6:e19127. [PMID: 21695180 PMCID: PMC3113796 DOI: 10.1371/journal.pone.0019127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/16/2011] [Indexed: 11/18/2022] Open
Abstract
Background A number of case-control studies were conducted to investigate the association of SULT1A1 R213H polymorphisms with colorectal cancer (CRC) in humans. But the results were not always consistent. We performed a meta-analysis to examine the association between the SULT1A1 R213H polymorphism and CRC. Methods and Findings Data were collected from the following electronic databases: PubMed, Elsevier Science Direct, Excerpta Medica Database, and Chinese Biomedical Literature Database, with the last report up to September 2010. A total of 12 studies including 3,549 cases and 5,610 controls based on the search criteria were involved in this meta-analysis. Overall, no significant association of this polymorphism with CRC was found (H versus R: OR = 1.04, 95%CI = 0.94–1.16, P = 0.46; HR+HH versus RR: OR = 1.01, 95%CI = 0.92–1.11, P = 0.81; HH versus RR+HR: OR = 1.01, 95%CI = 0.74–1.38, P = 0.95; HH versus RR: OR = 1.00, 95%CI = 0.77–1.31, P = 0.98; HR versus RR: OR = 1.01, 95%CI = 0.92–1.11, P = 0.86). In subgroup analysis, we also did not find any significant association in Cauasians (H versus R: OR = 1.02, 95%CI = 0.92–1.15, P = 0.68; HR+HH versus RR: OR = 0.99, 95%CI = 0.91–1.09, P = 0.90; HH versus RR+HR: OR = 1.01, 95%CI = 0.73–1.39, P = 0.97; HH versus RR: OR = 0.99, 95%CI = 0.75–1.31, P = 0.94; HR versus RR: OR = 0.99, 95%CI = 0.90–1.09, P = 0.85). The results were not materially altered after the studies which did not fulfill Hardy-Weinberg equilibrium were excluded (H versus R: OR = 1.06, 95%CI = 0.95–1.19, P = 0.31; HR+HH versus RR: OR = 1.03, 95%CI = 0.93–1.13, P = 0.56; HH versus RR+HR: OR = 1.10, 95%CI = 0.78–1.56, P = 0.57; HH versus RR: OR = 1.09, 95%CI = 0.83–1.44, P = 0.53; HR versus RR: OR = 1.02, 95%CI = 0.92–1.13, P = 0.75). Conclusion This meta-analysis demonstrates that there is no association between the SULT1A1 R213H polymorphism and CRC.
Collapse
Affiliation(s)
- Chun Zhang
- Department of General Surgery, The Third Affiliated Hospital to Nantong University, Wuxi, China
- Intensive Care Unit, The Third Affiliated Hospital to Nantong University, Wuxi, China
| | - Jian-Ping Li
- Department of General Surgery, The Third Affiliated Hospital to Nantong University, Wuxi, China
| | - Guo-Qiang Lv
- Department of General Surgery, The Third Affiliated Hospital to Nantong University, Wuxi, China
| | - Xian-Min Yu
- Department of General Surgery, The Third Affiliated Hospital to Nantong University, Wuxi, China
| | - Yuan-Long Gu
- Department of General Surgery, The Third Affiliated Hospital to Nantong University, Wuxi, China
| | - Ping Zhou
- Intensive Care Unit, The Third Affiliated Hospital to Nantong University, Wuxi, China
- * E-mail:
| |
Collapse
|
31
|
Lu J, Li H, Zhang J, Li M, Liu MY, An X, Liu MC, Chang W. Crystal structures of SULT1A2 and SULT1A1 *3: insights into the substrate inhibition and the role of Tyr149 in SULT1A2. Biochem Biophys Res Commun 2010; 396:429-34. [PMID: 20417180 DOI: 10.1016/j.bbrc.2010.04.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 11/29/2022]
Abstract
The cytosolic sulfotransferases (SULTs) in vertebrates catalyze the sulfonation of endogenous thyroid/steroid hormones and catecholamine neurotransmitters, as well as a variety of xenobiotics, using 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as the sulfonate donor. In this study, we determined the structures of SULT1A2 and an allozyme of SULT1A1, SULT1A1 *3, bound with 3'-phosphoadenosine 5'-phosphate (PAP), at 2.4 and 2.3A resolution, respectively. The conformational differences between the two structures revealed a plastic substrate-binding pocket with two channels and a switch-like substrate selectivity residue Phe247, providing clearly a structural basis for the substrate inhibition. In SULT1A2, Tyr149 extends approximately 2.1A further to the inside of the substrate-binding pocket, compared with the corresponding His149 residue in SULT1A1 *3. Site-directed mutagenesis study showed that, compared with the wild-type SULT1A2, mutant Tyr149Phe SULT1A2 exhibited a 40 times higher K(m) and two times lower V(max) with p-nitrophenol as substrate. These latter data imply a significant role of Tyr149 in the catalytic mechanism of SULT1A2.
Collapse
Affiliation(s)
- Jinghua Lu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Weitzner B, Meehan T, Xu Q, Dunbrack RL. An unusually small dimer interface is observed in all available crystal structures of cytosolic sulfotransferases. Proteins 2009; 75:289-95. [PMID: 19173308 DOI: 10.1002/prot.22347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cytosolic sulfotransferases catalyze the sulfonation of hormones, metabolites, and xenobiotics. Many of these proteins have been shown to form homodimers and heterodimers. An unusually small dimer interface was previously identified by Petrotchenko et al. (FEBS Lett 2001;490:39-43) by cross-linking, protease digestion, and mass spectrometry and verified by site-directed mutagenesis. Analysis of the crystal packing interfaces in all 28 available crystal structures consisting of 17 crystal forms shows that this interface occurs in all of them. With a small number of exceptions, the publicly available databases of biological assemblies contain either monomers or incorrect dimers. Even crystal structures of mouse SULT1E1, which is a monomer in solution, contain the common dimeric interface, although distorted and missing two important salt bridges.
Collapse
Affiliation(s)
- Brian Weitzner
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
33
|
Ring-opening polymerization of ɛ-caprolactone catalyzed by a novel thermophilic esterase from the archaeon Archaeoglobus fulgidus. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Itäaho K, Alakurtti S, Yli-Kauhaluoma J, Taskinen J, Coughtrie MWH, Kostiainen R. Regioselective sulfonation of dopamine by SULT1A3 in vitro provides a molecular explanation for the preponderance of dopamine-3-O-sulfate in human blood circulation. Biochem Pharmacol 2007; 74:504-10. [PMID: 17548063 DOI: 10.1016/j.bcp.2007.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/28/2007] [Accepted: 05/03/2007] [Indexed: 11/29/2022]
Abstract
SULT1A3 is an enzyme that catalyzes the sulfonation of many endogenous and exogenous phenols and catechols. The most important endogenous substrate is dopamine (DA), which is often used as a probe substrate for SULT1A3. We developed a new method for analyzing the SULT1A3 reaction products by high-performance liquid chromatography (HPLC) with electrochemical detection. The sulfonate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS), DA and the two dopamine sulfates, DA-3-O-sulfate and DA-4-O-sulfate, can be separated within 3 min. This enables quantitation of the sulfates without radioactive PAPS or the precipitation of unreacted PAPS. Both sulfates were synthesized as reference substances and characterized by (1)H and (13)C nuclear magnetic resonance (NMR), mass spectrometry (MS) and tandem mass spectrometry (MS/MS). The purity of the dopamine sulfates was estimated by HPLC using a diode array detector. We determined the enzyme kinetic parameters for formation of DA-3-O-sulfate and DA-4-O-sulfate using purified recombinant human SULT1A3. The reactions followed Michaelis-Menten kinetics up to 50 microM DA concentration, and strong substrate inhibition was observed at higher concentrations. The apparent K(m) values for sulfonation at both hydroxy groups were similar (2.21+/-0.764 and 2.59+/-1.06 microM for DA-4-O-sulfate and DA-3-O-sulfate, respectively), but the V(max) was approximately six times higher for the formation of the 3-O-sulfate (344+/-139 nmol/min/mg protein) than the 4-O-sulfate (45.4+/-16.5 nmol/min/mg protein). These results are in accordance with the observation that DA-3-O-sulfate is more abundant in human blood than DA-4-O-sulfate and that in the crystal structure of SULT1A3 with dopamine bound to the active site, the 3-hydroxy group is aligned to form hydrogen bonds with catalytic residues of the enzyme.
Collapse
Affiliation(s)
- Katriina Itäaho
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, PO Box 56 (Viikinkaari 5 E), FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
35
|
Allali-Hassani A, Pan PW, Dombrovski L, Najmanovich R, Tempel W, Dong A, Loppnau P, Martin F, Thonton J, Edwards AM, Bochkarev A, Plotnikov AN, Vedadi M, Arrowsmith CH. Structural and chemical profiling of the human cytosolic sulfotransferases. PLoS Biol 2007; 5:e97. [PMID: 17425406 PMCID: PMC1847840 DOI: 10.1371/journal.pbio.0050097] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 02/09/2007] [Indexed: 11/05/2022] Open
Abstract
The human cytosolic sulfotransfases (hSULTs) comprise a family of 12 phase II enzymes involved in the metabolism of drugs and hormones, the bioactivation of carcinogens, and the detoxification of xenobiotics. Knowledge of the structural and mechanistic basis of substrate specificity and activity is crucial for understanding steroid and hormone metabolism, drug sensitivity, pharmacogenomics, and response to environmental toxins. We have determined the crystal structures of five hSULTs for which structural information was lacking, and screened nine of the 12 hSULTs for binding and activity toward a panel of potential substrates and inhibitors, revealing unique "chemical fingerprints" for each protein. The family-wide analysis of the screening and structural data provides a comprehensive, high-level view of the determinants of substrate binding, the mechanisms of inhibition by substrates and environmental toxins, and the functions of the orphan family members SULT1C3 and SULT4A1. Evidence is provided for structural "priming" of the enzyme active site by cofactor binding, which influences the spectrum of small molecules that can bind to each enzyme. The data help explain substrate promiscuity in this family and, at the same time, reveal new similarities between hSULT family members that were previously unrecognized by sequence or structure comparison alone.
Collapse
Affiliation(s)
| | - Patricia W Pan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ludmila Dombrovski
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Rafael Najmanovich
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- European Bioinformatics Institute, Cambridge, United Kingdom
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Martin
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Janet Thonton
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- European Bioinformatics Institute, Cambridge, United Kingdom
| | - Aled M Edwards
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexey Bochkarev
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexander N Plotnikov
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Shi R, Lamb SS, Bhat S, Sulea T, Wright GD, Matte A, Cygler M. Crystal structure of StaL, a glycopeptide antibiotic sulfotransferase from Streptomyces toyocaensis. J Biol Chem 2007; 282:13073-86. [PMID: 17329243 DOI: 10.1074/jbc.m611912200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over the past decade, antimicrobial resistance has emerged as a major public health crisis. Glycopeptide antibiotics such as vancomycin and teicoplanin are clinically important for the treatment of Gram-positive bacterial infections. StaL is a 3'-phosphoadenosine 5'-phosphosulfate-dependent sulfotransferase capable of sulfating the cross-linked heptapeptide substrate both in vivo and in vitro, yielding the product A47934, a unique teicoplanin-class glycopeptide antibiotic. The sulfonation reaction catalyzed by StaL constitutes the final step in A47934 biosynthesis. Here we report the crystal structure of StaL and its complex with the cofactor product 3'-phosphoadenosine 5'-phosphate. This is only the second prokaryotic sulfotransferase to be structurally characterized. StaL belongs to the large sulfotransferase family and shows higher similarity to cytosolic sulfotransferases (ST) than to the bacterial ST (Stf0). StaL has a novel dimerization motif, different from any other STs that have been structurally characterized. We have also applied molecular modeling to investigate the binding mode of the unique substrate, desulfo-A47934. Based on the structural analysis and modeling results, a series of residues was mutated and kinetically characterized. In addition to the conserved residues (Lys(12), His(67), and Ser(98)), molecular modeling, fluorescence quenching experiments, and mutagenesis studies identified several other residues essential for substrate binding and/or activity, including Trp(34), His(43), Phe(77), Trp(132), and Glu(205).
Collapse
Affiliation(s)
- Rong Shi
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Drug metabolism information is a necessary component of drug discovery and development. The key issues in drug metabolism include identifying: the enzyme(s) involved, the site(s) of metabolism, the resulting metabolite(s), and the rate of metabolism. Methods for predicting human drug metabolism from in vitro and computational methodologies and determining relationships between the structure and metabolic activity of molecules are also critically important for understanding potential drug interactions and toxicity. There are numerous experimental and computational approaches that have been developed in order to predict human metabolism which have their own limitations. It is apparent that few of the computational tools for metabolism prediction alone provide the major integrated functions needed to assist in drug discovery. Similarly the different in vitro methods for human drug metabolism themselves have implicit limitations. The utilization of these methods for pharmaceutical and other applications as well as their integration is discussed as it is likely that hybrid methods will provide the most success.
Collapse
Affiliation(s)
- Larry J Jolivette
- Preclinical Drug Discovery, Cardiovascular and Urogenital Centre of Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | | |
Collapse
|
38
|
Dombrovski L, Dong A, Bochkarev A, Plotnikov AN. Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3'- 5'-diphosphate (PAP). Proteins 2006; 64:1091-4. [PMID: 16804942 DOI: 10.1002/prot.21048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luidmila Dombrovski
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
39
|
Hoff RH, Czyryca PG, Sun M, Leyh TS, Hengge AC. Transition state of the sulfuryl transfer reaction of estrogen sulfotransferase. J Biol Chem 2006; 281:30645-9. [PMID: 16899461 DOI: 10.1074/jbc.m604205200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetic isotope effects have been measured for the estrogen sulfotransferase-catalyzed sulfuryl (SO3) transfer from p-nitrophenyl sulfate to the 5'-phosphoryl group of 3'-phosphoadenosine 5'-phosphate. 18(V/K)nonbridge = 1.0016 +/- 0.0005, 18(V/K)bridge = 1.0280 +/- 0.0006, and 15(V/K) = 1.0014 +/- 0.0004. (15(V/K) refers to the nitro group in p-nitrophenyl sulfate). The kinetic isotope effects indicate substantial S O bond fission in the transition state, with partial charge neutralization of the leaving group. The small kinetic isotope effect in the nonbridging sulfuryl oxygen atoms suggests no significant change in bond orders of these atoms occurs, consistent with modest nucleophilic involvement. A comparison of the data for enzymatic and uncatalyzed sulfuryl transfer reactions suggests that both proceed through very similar transition states.
Collapse
Affiliation(s)
- Richard H Hoff
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
| | | | | | | | | |
Collapse
|
40
|
Pi N, Hoang MB, Gao H, Mougous JD, Bertozzi CR, Leary JA. Kinetic measurements and mechanism determination of Stf0 sulfotransferase using mass spectrometry. Anal Biochem 2006; 341:94-104. [PMID: 15866533 DOI: 10.1016/j.ab.2005.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Indexed: 11/26/2022]
Abstract
Mycobacterial carbohydrate sulfotransferase Stf0 catalyzes the sulfuryl group transfer from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) to trehalose. The sulfation of trehalose is required for the biosynthesis of sulfolipid-1, the most abundant sulfated metabolite found in Mycobacterium tuberculosis. In this paper, an efficient enzyme kinetics assay for Stf0 using electrospray ionization (ESI) mass spectrometry is presented. The kinetic constants of Stf0 were measured, and the catalytic mechanism of the sulfuryl group transfer reaction was investigated in initial rate kinetics and product inhibition experiments. In addition, Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry was employed to detect the noncovalent complexes, the Stf0-PAPS and Stf0-trehalose binary complexes, and a Stf0-3'-phosphoadenosine 5'-phosphate-trehalose ternary complex. The results from our study strongly suggest a rapid equilibrium random sequential Bi-Bi mechanism for Stf0 with formation of a ternary complex intermediate. In this mechanism, PAPS and trehalose bind and their products are released in random fashion. To our knowledge, this is the first detailed mechanistic data reported for Stf0, which further demonstrates the power of mass spectrometry in elucidating the reaction pathway and catalytic mechanism of promising enzymatic systems.
Collapse
Affiliation(s)
- Na Pi
- Department of Chemistry and Division of Molecular and Cellular Biology, Genome Center, University of California, Davis, CA 95606, USA
| | | | | | | | | | | |
Collapse
|
41
|
Hildebrandt MAT, Carrington DP, Thomae BA, Eckloff BW, Schaid DJ, Yee VC, Weinshilboum RM, Wieben ED. Genetic diversity and function in the human cytosolic sulfotransferases. THE PHARMACOGENOMICS JOURNAL 2006; 7:133-43. [PMID: 16801938 DOI: 10.1038/sj.tpj.6500404] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amino-acid substitutions, which result from common nonsynonymous (NS) polymorphisms, may dramatically alter the function of the encoded protein. Gaining insight into how these substitutions alter function is a step toward acquiring predictability. In this study, we incorporated gene resequencing, functional genomics, amino-acid characterization and crystal structure analysis for the cytosolic sulfotransferases (SULTs) to attempt to gain predictability regarding the function of variant allozymes. Previously, four SULT genes were resequenced in 118 DNA samples. With additional resequencing of the remaining eight SULT family members in the same DNA samples, a total of 217 polymorphisms were revealed. Of 64 polymorphisms identified within 8785 bp of coding regions from SULT genes examined, 25 were synonymous and 39 were NS. Overall, the proportion of synonymous changes was greater than expected from a random distribution of mutations, suggesting the presence of a selective pressure against amino-acid substitutions. Functional data for common variants of five SULT genes have been previously published. These data, together with the SULT1A1 variant allozyme data presented in this paper, showed that the major mechanism by which amino acid changes altered function in a transient expression system was through decreases in immunoreactive protein rather than changes in enzyme kinetics. Additional insight with regard to mechanisms by which NS single nucleotide polymorphisms alter function was sought by analysis of evolutionary conservation, physicochemical properties of the amino-acid substitutions and crystal structure analysis. Neither individual amino-acid characteristics nor structural models were able to accurately and reliably predict the function of variant allozymes. These results suggest that common amino-acid substitutions may not dramatically alter the protein structure, but affect interactions with the cellular environment that are currently not well understood.
Collapse
Affiliation(s)
- M A T Hildebrandt
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, MN 55985, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- W Wallace Cleland
- Institute for Enzyme Research and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.
| | | |
Collapse
|
43
|
Gamage N, Barnett A, Hempel N, Duggleby RG, Windmill KF, Martin JL, McManus ME. Human Sulfotransferases and Their Role in Chemical Metabolism. Toxicol Sci 2005; 90:5-22. [PMID: 16322073 DOI: 10.1093/toxsci/kfj061] [Citation(s) in RCA: 466] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual's response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.
Collapse
Affiliation(s)
- Niranjali Gamage
- School of Biomedical Sciences, School of Molecular and Microbial Sciences, and Institute for Molecular Bioscience, University of Queensland, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Lu JH, Li HT, Liu MC, Zhang JP, Li M, An XM, Chang WR. Crystal structure of human sulfotransferase SULT1A3 in complex with dopamine and 3'-phosphoadenosine 5'-phosphate. Biochem Biophys Res Commun 2005; 335:417-23. [PMID: 16083857 DOI: 10.1016/j.bbrc.2005.07.091] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 07/14/2005] [Indexed: 11/20/2022]
Abstract
The human sulfotransferase, SULT1A3, catalyzes specifically the sulfonation of monoamines such as dopamine, epinephrine, and norepinephrine. SULT1A3 also has a unique 3,4-dihydroxyphenylalanine (Dopa)/tyrosine-sulfating activity that is preferentially toward their D-form enantiomers and can be stimulated dramatically by Mn2+. To further our understanding of the molecular basis for the unique substrate specificity of this enzyme, we solved the crystal structure of human SULT1A3, complexed with dopamine and 3'-phosphoadenosine 5'-phosphate, at 2.6 A resolution and carried out autodocking analysis with D-Dopa. The structure of SULT1A3 enzyme-ligand complex clearly showed that residue Glu146 can form electrostatic interaction with dopamine and may play a pivotal role in the stereoselectivity and sulfating activity. On the other hand, residue Asp86 appeared to be critical to the Mn2+-stimulation of the Dopa/tyrosine-sulfating activity of SULT1A3, in addition to a supporting role in the stereoselectivity and sulfating activity.
Collapse
Affiliation(s)
- Jing-Hua Lu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Bejing 100101, PR China
| | | | | | | | | | | | | |
Collapse
|
45
|
Gamage NU, Tsvetanov S, Duggleby RG, McManus ME, Martin JL. The structure of human SULT1A1 crystallized with estradiol. An insight into active site plasticity and substrate inhibition with multi-ring substrates. J Biol Chem 2005; 280:41482-6. [PMID: 16221673 DOI: 10.1074/jbc.m508289200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human SULT1A1 belongs to the supergene family of sulfotransferases (SULTs) involved in the sulfonation of xeno- and endobiotics. The enzyme is also one of the SULTs responsible for metabolic activation of mutagenic and carcinogenic compounds and therefore is implicated in various cancer forms. Further, it is not well understood how substrate inhibition takes place with rigid fused multiring substrates such as 17beta-estradiol (E2) at high substrate concentrations when subcellular fractions or recombinant enzymes are used. To investigate how estradiol binds to SULT1A1, we co-crystallized SULT1A1 with sulfated estradiol and the cofactor product, PAP (3'-phosphoadenosine 5'-phosphate). The crystal structure of SULT1A1 that we present here has PAP and one molecule of E2 bound in a nonproductive mode in the active site. The structure reveals how the SULT1A1 binding site undergoes conformational changes to accept fused ring substrates such as steroids. In agreement with previous reports, the enzyme shows partial substrate inhibition at high concentrations of E2. A model to explain these kinetics is developed based on the formation of an enzyme x PAP x E2 dead-end complex during catalysis. This model provides a very good quantitative description of the rate versus the [E2] curve. This dead-end complex is proposed to be that described by the observed structure, where E2 is bound in a nonproductive mode.
Collapse
Affiliation(s)
- Niranjali U Gamage
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
46
|
Zheng QC, Li ZS, Xiao JF, Sun M, Zhang Y, Sun CC. Homology modeling and PAPS ligand (cofactor) binding study of bovine phenol sulfotransferase. J Mol Model 2005; 11:97-104. [PMID: 15838710 DOI: 10.1007/s00894-004-0225-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Accepted: 11/03/2004] [Indexed: 10/25/2022]
Abstract
In order to understand the mechanisms of ligand binding and the interaction between the ligand and the bovine phenol sulfotransferase, (bSULT1A1, EC 2.8.2.1) a three-dimensional (3D) model of the bSULT1A1 is generated based on the crystal structure of the estrogen sulfotransferase (PDB code 1AQU) by using the InsightII/Homology module. With the aid of the molecular mechanics and molecular dynamics methods, the final refined model is obtained and is further assessed by Profile-3D and ProStat, which show that the refined model is reliable. With this model, a flexible docking study is performed and the results indicate that 3'-phosphoadenosine-5'- phosphosulfate (PAPS) is a more preferred ligand than coenzyme A (CoA), and that His108 forms hydrogen bond with PAPS, which is in good agreement with the experimental results. From these docking studies, we also suggest that Phe255, Phe24 and Tyr169 in bSULT1A1 are three important determinant residues in binding as they have strong van-der-Waals contacts with the ligand. The hydrogen-bonding interactions also play an important role for the stability of the complex. Our results may be helpful for further experimental investigations.
Collapse
Affiliation(s)
- Qing-Chuan Zheng
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, Peopie's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Phylogenomic approaches to common problems encountered in the analysis of low copy repeats: the sulfotransferase 1A gene family example. BMC Evol Biol 2005; 5:22. [PMID: 15752422 PMCID: PMC555591 DOI: 10.1186/1471-2148-5-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 03/07/2005] [Indexed: 11/30/2022] Open
Abstract
Background Blocks of duplicated genomic DNA sequence longer than 1000 base pairs are known as low copy repeats (LCRs). Identified by their sequence similarity, LCRs are abundant in the human genome, and are interesting because they may represent recent adaptive events, or potential future adaptive opportunities within the human lineage. Sequence analysis tools are needed, however, to decide whether these interpretations are likely, whether a particular set of LCRs represents nearly neutral drift creating junk DNA, or whether the appearance of LCRs reflects assembly error. Here we investigate an LCR family containing the sulfotransferase (SULT) 1A genes involved in drug metabolism, cancer, hormone regulation, and neurotransmitter biology as a first step for defining the problems that those tools must manage. Results Sequence analysis here identified a fourth sulfotransferase gene, which may be transcriptionally active, located on human chromosome 16. Four regions of genomic sequence containing the four human SULT1A paralogs defined a new LCR family. The stem hominoid SULT1A progenitor locus was identified by comparative genomics involving complete human and rodent genomes, and a draft chimpanzee genome. SULT1A expansion in hominoid genomes was followed by positive selection acting on specific protein sites. This episode of adaptive evolution appears to be responsible for the dopamine sulfonation function of some SULT enzymes. Each of the conclusions that this bioinformatic analysis generated using data that has uncertain reliability (such as that from the chimpanzee genome sequencing project) has been confirmed experimentally or by a "finished" chromosome 16 assembly, both of which were published after the submission of this manuscript. Conclusion SULT1A genes expanded from one to four copies in hominoids during intra-chromosomal LCR duplications, including (apparently) one after the divergence of chimpanzees and humans. Thus, LCRs may provide a means for amplifying genes (and other genetic elements) that are adaptively useful. Being located on and among LCRs, however, could make the human SULT1A genes susceptible to further duplications or deletions resulting in 'genomic diseases' for some individuals. Pharmacogenomic studies of SULT1Asingle nucleotide polymorphisms, therefore, should also consider examining SULT1A copy number variability when searching for genotype-phenotype associations. The latest duplication is, however, only a substantiated hypothesis; an alternative explanation, disfavored by the majority of evidence, is that the duplication is an artifact of incorrect genome assembly.
Collapse
|
48
|
Abstract
Sulfotransferases catalyze the transfer of a sulfuryl group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to proteins, carbohydrates and small molecules. The sulfotransferases comprise cytosolic and Golgi-resident enzymes; Golgi-resident enzymes represent fertile territory for identifying pharmaceutical targets. Structure-based sequence alignments indicate that the structural fold, and the PAPS-binding site, is conserved between the two classes. Initial efforts to identify sulfotransferase inhibitors by screening kinase inhibitor libraries yielded competitive inhibitors of PAPS with muM IC(50) values. Within particular classes of Golgi-resident sulfotransferases that show tight in vitro specificity, the substrate-binding site might be a suitable drug target, although sulfotransferases are generally assumed to be difficult to inhibit as a result of the expected size and chemical character of the substrate-binding site.
Collapse
Affiliation(s)
- Virginia L Rath
- Thios Pharmaceuticals, 5980 Horton Street, Suite 400, Emeryville, CA 94608, USA.
| | | | | |
Collapse
|
49
|
Wang L, Yee VC, Weinshilboum RM. Aggresome formation and pharmacogenetics: sulfotransferase 1A3 as a model system. Biochem Biophys Res Commun 2004; 325:426-33. [PMID: 15530410 DOI: 10.1016/j.bbrc.2004.10.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Indexed: 01/16/2023]
Abstract
A common cause for pharmacogenetic alteration in drug response is genetic variation in encoded amino acid sequence. We have used the catecholamine and drug-metabolizing enzyme sulfotransferase (SULT)1A3 to create an artificial model system to study mechanisms-especially possible aggresome formation-by which genetic alteration in amino acid sequence might influence function. Specifically, we created a double variant SULT1A3 allozyme that included the naturally occurring Asn234 polymorphism plus an additional Trp172Arg mutation. Analysis of the SULT1A3 X-ray crystal structure had indicated that the Trp172Arg mutation might destabilize the protein's structure. Expression of SULT1A3 Arg172,Asn234 in COS-1 cells resulted in undetectable enzyme activity and a virtual lack of enzyme protein. Rabbit reticulocyte lysate degradation studies showed that the double variant allozyme was degraded much more rapidly than was wild type SULT1A3 by a ubiquitin-proteasome-dependent process. In addition, after expression in COS-1 cells, the double variant allozyme localized to aggresomes, a process not previously described or studied in pharmacogenetics. Therefore, the alteration of only one or two amino acids can lead to decreased levels of protein as a result of both aggresome formation and accelerated degradation. The possible role of aggresome formation in pharmacogenetics should be evaluated in naturally occurring systems with inherited alteration in encoded amino acid sequence.
Collapse
Affiliation(s)
- Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Medical School-Mayo Clinic-Mayo Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
50
|
Pi N, Yu Y, Mougous JD, Leary JA. Observation of a hybrid random ping-pong mechanism of catalysis for NodST: a mass spectrometry approach. Protein Sci 2004; 13:903-12. [PMID: 15044725 PMCID: PMC2280043 DOI: 10.1110/ps.03581904] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An efficient enzyme kinetics assay using electrospray ionization mass spectrometry (ESI-MS) was initially applied to the catalytic mechanism investigation of a carbohydrate sulfotransferase, NodST. Herein, the recombinant NodST was overexpressed with a His(6)-tag and purified via Ni-NTA metal-affinity chromatography. In this bisubstrate enzymatic system, an internal standard similar in structure and ionization efficiency to the product was chosen in the ESI-MS assay, and a single point normalization factor was determined and used to quantify the product concentration. The catalytic mechanism of NodST was rapidly determined by fitting the MS kinetic data into a nonlinear regression analysis program. The initial rate kinetics analysis and product inhibition study described support a hybrid double-displacement, two-site ping-pong mechanism of NodST with formation of a sulfated NodST intermediate. This covalent intermediate was further isolated and detected via trypsin digestion and Fourier transform ion cyclotron resonance mass spectrometry. To our knowledge, these are the first mechanistic data reported for the bacterial sulfotransferase, NodST, which demonstrated the power of mass spectrometry in elucidating the reaction pathway and catalytic mechanism of promising enzymatic systems.
Collapse
Affiliation(s)
- Na Pi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|