1
|
D'Agostino G, García-Cuesta EM, Gomariz RP, Rodríguez-Frade JM, Mellado M. The multilayered complexity of the chemokine receptor system. Biochem Biophys Res Commun 2020; 528:347-358. [PMID: 32145914 DOI: 10.1016/j.bbrc.2020.02.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 01/08/2023]
Abstract
The chemokines receptor family are membrane-expressed class A-specific seven-transmembrane receptors linked to G proteins. Through interaction with the corresponding ligands, the chemokines, they induce a wide variety of cellular responses including cell polarization, movement, immune and inflammatory responses, as well as the prevention of HIV-1 infection. Like a Russian matryoshka doll, the chemokine receptor system is more complex than initially envisaged. This review focuses on the mechanisms that contribute to this dazzling complexity and how they modulate the signaling events triggered by chemokines. The chemokines and their receptors exist as monomers, dimers and oligomers, their expression pattern is highly regulated, and the ligands can bind distinct receptors with similar affinities. The use of novel imaging-based technologies, particularly real-time imaging modalities, has shed new light on the very dynamic conformations that chemokine receptors adopt depending on the cellular context, and that affect chemokine-mediated responses. This complex scenario presents both challenging and exciting opportunities for drug discovery.
Collapse
Affiliation(s)
- Gianluca D'Agostino
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain
| | - Eva M García-Cuesta
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain
| | - Rosa P Gomariz
- Dept. Cell Biology, Complutense University of Madrid, Research Institute Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain
| | - Mario Mellado
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain.
| |
Collapse
|
2
|
Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal 2019; 54:69-80. [PMID: 30465827 PMCID: PMC6664297 DOI: 10.1016/j.cellsig.2018.11.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Chemokines play crucial roles in combating microbial infection and initiating tissue repair by recruiting neutrophils in a timely and coordinated manner. In humans, no less than seven chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8) and two receptors (CXCR1 and CXCR2) mediate neutrophil functions but in a context dependent manner. Neutrophil-activating chemokines reversibly exist as monomers and dimers, and their receptor binding triggers conformational changes that are coupled to G-protein and β-arrestin signaling pathways. G-protein signaling activates a variety of effectors including Ca2+ channels and phospholipase C. β-arrestin serves as a multifunctional adaptor and is coupled to several signaling hubs including MAP kinase and tyrosine kinase pathways. Both G-protein and β-arrestin signaling pathways play important non-overlapping roles in neutrophil trafficking and activation. Functional studies have established many similarities but distinct differences for a given chemokine and between chemokines at the level of monomer vs. dimer, CXCR1 vs. CXCR2 activation, and G-protein vs. β-arrestin pathways. We propose that two forms of the ligand binding two receptors and activating two signaling pathways enables fine-tuned neutrophil function compared to a single form, a single receptor, or a single pathway. We summarize the current knowledge on the molecular mechanisms by which chemokine monomers/dimers activate CXCR1/CXCR2 and how these interactions trigger G-protein/β-arrestin-coupled signaling pathways. We also discuss current challenges and knowledge gaps, and likely advances in the near future that will lead to a better understanding of the relationship between the chemokine-CXCR1/CXCR2-G-protein/β-arrestin axis and neutrophil function.
Collapse
Affiliation(s)
- Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Michael Schnoor
- Department for Molecular Biomedicine, Cinvestav-IPN, 07360 Mexico City, Mexico
| | - Ricardo M Richardson
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | | |
Collapse
|
3
|
Gulati K, Gangele K, Agarwal N, Jamsandekar M, Kumar D, Poluri KM. Molecular cloning and biophysical characterization of CXCL3 chemokine. Int J Biol Macromol 2017; 107:575-584. [PMID: 28928065 DOI: 10.1016/j.ijbiomac.2017.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023]
Abstract
CXCL3 is a neutrophil activating chemokine that belongs to GRO subfamily of CXC chemokines. GRO chemokine family comprises of three chemokines GRO α (CXCL1), GROβ (CXCL2), and GRO γ (CXCL3), which arose as a result of gene duplication events during the course of chemokine evolution. Although primary sequences of GRO chemokines are highly similar, they performs several protein specific functions in addition to their common property of neutrophil trafficking. However, the molecular basis for their differential functions has not well understood. Although structural details are available for CXCL1 and CXCL2, no such information regarding CXCL3 is available till date. In the present study, we have successfully cloned, expressed, and purified the recombinant CXCL3. Around 15mg/L of pure recombinant CXCL3 protein was obtained. Further, we investigated its functional divergence and biophysical characteristics such as oligomerization, thermal stability and heparin binding etc., and compared all these features with its closest paralog CXCL2. Our studies revealed that, although overall structural and oligomerization features of CXCL3 and CXCL2 are similar, prominent differences were observed in their surface characteristics, thus implicating for a functional divergence.
Collapse
Affiliation(s)
- Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand, India
| | - Krishnakant Gangele
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand, India
| | - Nipanshu Agarwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand, India
| | - Minal Jamsandekar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand, India
| | - Dinesh Kumar
- Centre for Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand, India.
| |
Collapse
|
4
|
Gene expression and in silico analysis of snakehead murrel interleukin 8 and antimicrobial activity of C-terminal derived peptide WS12. Vet Immunol Immunopathol 2017; 190:1-9. [DOI: 10.1016/j.vetimm.2017.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022]
|
5
|
Brown AJ, Sepuru KM, Rajarathnam K. Structural Basis of Native CXCL7 Monomer Binding to CXCR2 Receptor N-Domain and Glycosaminoglycan Heparin. Int J Mol Sci 2017; 18:ijms18030508. [PMID: 28245630 PMCID: PMC5372524 DOI: 10.3390/ijms18030508] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 11/23/2022] Open
Abstract
CXCL7, a chemokine highly expressed in platelets, orchestrates neutrophil recruitment during thrombosis and related pathophysiological processes by interacting with CXCR2 receptor and sulfated glycosaminoglycans (GAG). CXCL7 exists as monomers and dimers, and dimerization (~50 μM) and CXCR2 binding (~10 nM) constants indicate that CXCL7 is a potent agonist as a monomer. Currently, nothing is known regarding the structural basis by which receptor and GAG interactions mediate CXCL7 function. Using solution nuclear magnetic resonance (NMR) spectroscopy, we characterized the binding of CXCL7 monomer to the CXCR2 N-terminal domain (CXCR2Nd) that constitutes a critical docking site and to GAG heparin. We found that CXCR2Nd binds a hydrophobic groove and that ionic interactions also play a role in mediating binding. Heparin binds a set of contiguous basic residues indicating a prominent role for ionic interactions. Modeling studies reveal that the binding interface is dynamic and that GAG adopts different binding geometries. Most importantly, several residues involved in GAG binding are also involved in receptor interactions, suggesting that GAG-bound monomer cannot activate the receptor. Further, this is the first study that describes the structural basis of receptor and GAG interactions of a native monomer of the neutrophil-activating chemokine family.
Collapse
Affiliation(s)
- Aaron J Brown
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
6
|
Couñago R, Knapp K, Nakatani Y, Fleming S, Corbett M, Wise L, Mercer A, Krause K. Structures of Orf Virus Chemokine Binding Protein in Complex with Host Chemokines Reveal Clues to Broad Binding Specificity. Structure 2015; 23:1199-213. [DOI: 10.1016/j.str.2015.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
|
7
|
Sepuru KM, Poluri KM, Rajarathnam K. Solution structure of CXCL5--a novel chemokine and adipokine implicated in inflammation and obesity. PLoS One 2014; 9:e93228. [PMID: 24695525 PMCID: PMC3973705 DOI: 10.1371/journal.pone.0093228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/01/2014] [Indexed: 11/19/2022] Open
Abstract
The chemokine CXCL5 is selectively expressed in highly specialized cells such as epithelial type II cells in the lung and white adipose tissue macrophages in muscle, where it mediates diverse functions from combating microbial infections by regulating neutrophil trafficking to promoting obesity by inhibiting insulin signaling. Currently very little is known regarding the structural basis of how CXCL5 mediates its novel functions. Towards this missing knowledge, we have solved the solution structure of the CXCL5 dimer by NMR spectroscopy. CXCL5 is a member of a subset of seven CXCR2-activating chemokines (CAC) that are characterized by the highly conserved ELR motif in the N-terminal tail. The structure shows that CXCL5 adopts the typical chemokine fold, but also reveals several distinct differences in the 30 s loop and N-terminal residues; not surprisingly, crosstalk between N-terminal and 30 s loop residues have been implicated as a major determinant of receptor activity. CAC function also involves binding to highly sulfated glycosaminoglycans (GAG), and the CXCL5 structure reveals a distinct distribution of positively charged residues, suggesting that differences in GAG interactions also influence function. The availability of the structure should now facilitate the design of experiments to better understand the molecular basis of various CXCL5 functions, and also serve as a template for the design of inhibitors for use in a clinical setting.
Collapse
Affiliation(s)
- Krishna Mohan Sepuru
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Krishna Mohan Poluri
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Krishna Rajarathnam
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Poluri KM, Joseph PRB, Sawant KV, Rajarathnam K. Molecular basis of glycosaminoglycan heparin binding to the chemokine CXCL1 dimer. J Biol Chem 2013; 288:25143-25153. [PMID: 23864653 DOI: 10.1074/jbc.m113.492579] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosaminoglycan (GAG)-bound and soluble chemokine gradients in the vasculature and extracellular matrix mediate neutrophil recruitment to the site of microbial infection and sterile injury in the host tissue. However, the molecular principles by which chemokine-GAG interactions orchestrate these gradients are poorly understood. This, in part, can be directly attributed to the complex interrelationship between the chemokine monomer-dimer equilibrium and binding geometry and affinities that are also intimately linked to GAG length. To address some of this missing knowledge, we have characterized the structural basis of heparin binding to the murine CXCL1 dimer. CXCL1 is a neutrophil-activating chemokine and exists as both monomers and dimers (Kd = 36 μm). To avoid interference from monomer-GAG interactions, we designed a trapped dimer (dCXCL1) by introducing a disulfide bridge across the dimer interface. We characterized the binding of GAG heparin octasaccharide to dCXCL1 using solution NMR spectroscopy. Our studies show that octasaccharide binds orthogonally to the interhelical axis and spans the dimer interface and that heparin binding enhances the structural integrity of the C-terminal helical residues and stability of the dimer. We generated a quadruple mutant (H20A/K22A/K62A/K66A) on the basis of the binding data and observed that this mutant failed to bind heparin octasaccharide, validating our structural model. We propose that the stability enhancement of dimers upon GAG binding regulates in vivo neutrophil trafficking by increasing the lifetime of "active" chemokines, and that this structural knowledge could be exploited for designing inhibitors that disrupt chemokine-GAG interactions and neutrophil homing to the target tissue.
Collapse
Affiliation(s)
- Krishna Mohan Poluri
- From the Department of Biochemistry and Molecular Biology,; Sealy Center for Structural Biology and Molecular Biophysics, and
| | - Prem Raj B Joseph
- From the Department of Biochemistry and Molecular Biology,; Sealy Center for Structural Biology and Molecular Biophysics, and
| | - Kirti V Sawant
- From the Department of Biochemistry and Molecular Biology
| | - Krishna Rajarathnam
- From the Department of Biochemistry and Molecular Biology,; Sealy Center for Structural Biology and Molecular Biophysics, and; Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas 77555.
| |
Collapse
|
9
|
Chemokine oligomerization in cell signaling and migration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:531-78. [PMID: 23663982 DOI: 10.1016/b978-0-12-386931-9.00020-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemokines are small proteins best known for their role in controlling the migration of diverse cells, particularly leukocytes. Upon binding to their G-protein-coupled receptors on the leukocytes, chemokines stimulate the signaling events that cause cytoskeletal rearrangements involved in cell movement, and migration of the cells along chemokine gradients. Depending on the cell type, chemokines also induce many other types of cellular responses including those related to defense mechanisms, cell proliferation, survival, and development. Historically, most research efforts have focused on the interaction of chemokines with their receptors, where monomeric forms of the ligands are the functionally relevant state. More recently, however, the importance of chemokine interactions with cell surface glycosaminoglycans has come to light, and in most cases appears to involve oligomeric chemokine structures. This review summarizes existing knowledge relating to the structure and function of chemokine oligomers, and emerging methodology for determining structures of complex chemokine assemblies in the future.
Collapse
|
10
|
Kraemer S, Lue H, Zernecke A, Kapurniotu A, Andreetto E, Frank R, Lennartz B, Weber C, Bernhagen J. MIF-chemokine receptor interactions in atherogenesis are dependent on an N-loop-based 2-site binding mechanism. FASEB J 2010; 25:894-906. [PMID: 21106938 DOI: 10.1096/fj.10-168559] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine that mediates inflammatory diseases. MIF promotes atherogenic leukocyte recruitment through a promiscuous, yet highly affine, interaction with CXCR2 and CXCR4. Binding to CXCR2 is dependent on a pseudo-(E)LR motif in MIF, but a second interaction site has been elusive. Here we identified an N-like loop in MIF, suggesting that MIF binding to CXCR2 follows the 2-site binding mode of bona fide chemokines. For MIF, the model predicts interactions between the N-like loop and the CXCR2 N domain (site 1) and pseudo-(E)LR and extracellular loops (ELs) of CXCR2 (site 2). Applying biophysical and peptide array analysis, we demonstrated an interaction between MIF and the CXCR2 N domain, which was pseudo-(E)LR independent. Peptide array analysis also indicated that the pseudo-(E)LR motif is responsible for MIF binding to EL2 and 3. Notably, peptides MIF-(40-49) and MIF-(47-56), representing N-like-loop-derived peptides, but not a scrambled control peptide, significantly blocked MIF/CXCR2 binding, MIF-mediated monocyte arrest under flow on aortic endothelial cells in vitro (IC(50): 1.24×10(-6) M), and MIF-dependent monocyte adhesion to atherosclerotic mouse carotid arteries in vivo. Thus, the N-like loop in MIF is critical for MIF's noncognate interaction with CXCR2 and proatherogenic functions. The 2-site binding model that explains chemokine receptor activation also applies to MIF.
Collapse
Affiliation(s)
- Sandra Kraemer
- Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Eliasson M, Mörgelin M, Farber JM, Egesten A, Albiger B. Streptococcus pneumoniae induces expression of the antibacterial CXC chemokine MIG/CXCL9 via MyD88-dependent signaling in a murine model of airway infection. Microbes Infect 2010; 12:565-73. [PMID: 20381636 DOI: 10.1016/j.micinf.2010.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/23/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
MIG/CXCL9 belongs to the CXC family of chemokines and participates in the regulation of leukocyte-trafficking and angiogenesis. Certain chemokines, including human MIG/CXCL9, exert strong antibacterial activity in vitro, although the importance of this property in vivo is unknown. In the present study, we investigated the expression and a possible role for MIG/CXCL9 in host defense during mucosal airway infection caused by Streptococcus pneumoniae in vivo. We found that intranasal challenge of C57BL/6 wild-type mice with pneumococci elicited production of high levels of MIG/CXCL9 in the lungs via the MyD88-dependent signaling pathway. Whereas both human and murine MIG/CXCL9 showed efficient killing of S. pneumoniae in vitro, MIG/CXCL9 knock-out mice were not more susceptible to pneumococcal infection. Our data demonstrate that, in vivo this chemokine probably has a redundant role, acting together with other antibacterial peptides and chemokines, in innate and adaptive host defense mechanisms against pneumococcal infections.
Collapse
Affiliation(s)
- Mette Eliasson
- Lund University and Lund University Hospital, Department of Clinical Sciences, Section for Respiratory Medicine, and Allergology, Lund, Sweden
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Streptococcus agalactiae CspA is a serine protease that inactivates chemokines. J Bacteriol 2008; 191:1847-54. [PMID: 19114481 DOI: 10.1128/jb.01124-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) remains a leading cause of invasive infections in neonates and has emerged as a pathogen of the immunocompromised and elderly populations. The virulence mechanisms of GBS are relatively understudied and are still poorly understood. Previous evidence indicated that the GBS cspA gene is necessary for full virulence and the cleavage of fibrinogen. The predicted cspA product displays homology to members of the extracellular cell envelope protease family. CXC chemokines, many of which can recruit neutrophils to sites of infection, are important signaling peptides of the immune system. In this study, we purified CspA and demonstrated that it readily cleaved the CXC chemokines GRO-alpha, GRO-beta, GRO-gamma, neutrophil-activating peptide 2 (NAP-2), and granulocyte chemotactic protein 2 (GCP-2) but did not cleave interleukin-8. CspA did not cleave a panel of other test substrates, suggesting that it possesses a certain degree of specificity. CXC chemokines also underwent cleavage by whole GBS cells in a cspA-dependent manner. CspA abolished the abilities of three representative CXC chemokines, GRO-gamma, NAP-2, and GCP-2, to attract and activate neutrophils. Genetic and biochemical evidence indicated that CspA is a serine protease with S575 at its active site. D180 was also implicated as part of the signature serine protease catalytic triad, and both S575 and D180 were required for both N-terminal and C-terminal autocatalytic processing of CspA.
Collapse
|
14
|
Jabeen T, Leonard P, Jamaluddin H, Acharya KR. Structure of mouse IP-10, a chemokine. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2008; 64:611-9. [PMID: 18560148 PMCID: PMC2665906 DOI: 10.1107/s0907444908007026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 03/13/2008] [Indexed: 01/26/2023]
Abstract
Interferon-gamma-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated beta-sheet of approximately 90 A in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin-binding sites were observed on the surface and were present at the interface of each of the two beta-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance.
Collapse
Affiliation(s)
- Talat Jabeen
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| | - Philip Leonard
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| | - Haryati Jamaluddin
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| |
Collapse
|
15
|
Liu D, Madani N, Li Y, Cao R, Choi WT, Kawatkar SP, Lim MY, Kumar S, Dong CZ, Wang J, Russell JD, Lefebure CR, An J, Wilson S, Gao YG, Pallansch LA, Sodroski JG, Huang Z. Crystal structure and structural mechanism of a novel anti-human immunodeficiency virus and D-amino acid-containing chemokine. J Virol 2007; 81:11489-98. [PMID: 17686848 PMCID: PMC2045531 DOI: 10.1128/jvi.02845-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chemokines and their receptors play important roles in normal physiological functions and the pathogeneses of a wide range of human diseases, including the entry of human immunodeficiency virus type 1 (HIV-1). However, the use of natural chemokines to probe receptor biology or to develop therapeutic drugs is limited by their lack of selectivity and the poor understanding of mechanisms in ligand-receptor recognition. We addressed these issues by combining chemical and structural biology in research into molecular recognition and inhibitor design. Specifically, the concepts of chemical biology were used to develop synthetically and modularly modified (SMM) chemokines that are unnatural and yet have properties improved over those of natural chemokines in terms of receptor selectivity, affinity, and the ability to explore receptor functions. This was followed by using structural biology to determine the structural basis for synthetically perturbed ligand-receptor selectivity. As a proof-of-principle for this combined chemical and structural-biology approach, we report a novel D-amino acid-containing SMM-chemokine designed based on the natural chemokine called viral macrophage inflammatory protein II (vMIP-II). The incorporation of unnatural D-amino acids enhanced the affinity of this molecule for CXCR4 but significantly diminished that for CCR5 or CCR2, thus yielding much more selective recognition of CXCR4 than wild-type vMIP-II. This D-amino acid-containing chemokine also showed more potent and specific inhibitory activity against HIV-1 entry via CXCR4 than natural chemokines. Furthermore, the high-resolution crystal structure of this D-amino acid-containing chemokine and a molecular-modeling study of its complex with CXCR4 provided the structure-based mechanism for the selective interaction between the ligand and chemokine receptors and the potent anti-HIV activity of D-amino acid-containing chemokines.
Collapse
Affiliation(s)
- Dongxiang Liu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rajagopalan L, Rajarathnam K. Structural basis of chemokine receptor function--a model for binding affinity and ligand selectivity. Biosci Rep 2006; 26:325-39. [PMID: 17024562 PMCID: PMC2671010 DOI: 10.1007/s10540-006-9025-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Chemokine receptors play fundamental roles in human physiology from embryogenesis to inflammatory response. The receptors belong to the G-protein coupled receptor class, and are activated by chemokine ligands with a range of specificities and affinities that result in a complicated network of interactions. The molecular basis for function is largely a black box, and can be directly attributed to the lack of structural information on the receptors. Studies to date indicate that function can be best described by a two-site model, that involves interactions between the receptor N-domain and ligand N-terminal loop residues (site-I), and between receptor extracellular loop and the ligand N-terminal residues (site-II). In this review, we describe how the two-site model could modulate binding affinity and ligand selectivity, and also highlight some of the unique chemokine receptor features, and their role in function.
Collapse
Affiliation(s)
- Lavanya Rajagopalan
- Department of Biochemistry and Molecular Biology and Sealy Center for Structural Biology, The University of Texas Medical Branch, Galveston, TX 77555-1055, USA, e-mail:
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology and Sealy Center for Structural Biology, The University of Texas Medical Branch, Galveston, TX 77555-1055, USA, e-mail:
| |
Collapse
|
17
|
Nesmelova IV, Sham Y, Dudek AZ, van Eijk LI, Wu G, Slungaard A, Mortari F, Griffioen AW, Mayo KH. Platelet Factor 4 and Interleukin-8 CXC Chemokine Heterodimer Formation Modulates Function at the Quaternary Structural Level. J Biol Chem 2005; 280:4948-58. [PMID: 15531763 DOI: 10.1074/jbc.m405364200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apparent complexity of biology increases as more biomolecular interactions that mediate function become known. We have used NMR spectroscopy and molecular modeling to provide direct evidence that tetrameric platelet factor-4 (PF4) and dimeric interleukin-8 (IL8), two members of the CXC chemokine family, readily interact by exchanging subunits and forming heterodimers via extension of their antiparallel beta-sheet domains. We further demonstrate using functional assays that PF4/IL8 heterodimerization has a direct and significant consequence on the biological activity of both chemokines. Formation of heterodimers enhances the anti-proliferative effect of PF4 on endothelial cells in culture, as well as the IL8-induced migration of CXCR2 vector-transfected Baf3 cells. These results suggest that CXC chemokine biology, and perhaps cytokine biology in general, may be functionally modulated at the molecular level by formation of heterodimers. This concept, in turn, has implications for designing chemokine/cytokine variants with modified biological properties.
Collapse
Affiliation(s)
- Irina V Nesmelova
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Casarosa P, Waldhoer M, LiWang PJ, Vischer HF, Kledal T, Timmerman H, Schwartz TW, Smit MJ, Leurs R. CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor. J Biol Chem 2004; 280:3275-85. [PMID: 15546882 DOI: 10.1074/jbc.m407536200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the causative agent of life-threatening systemic diseases in immunocompromised patients as well as a risk factor for vascular pathologies, like atherosclerosis, in immunocompetent individuals. HCMV encodes a G-protein-coupled receptor (GPCR), referred to as US28, that displays homology to the human chemokine receptor CCR1 and binds several chemokines of the CC family as well as the CX3C chemokine fractalkine with high affinity. Most importantly, following HCMV infection, US28 activates several intracellular pathways, either constitutively or in a chemokine-dependent manner. In this study, our goal was to understand the molecular interactions between chemokines and the HCMV-encoded US28 receptor. To achieve this goal, a double approach has been used, consisting in the analysis of both receptor and ligand mutants. This approach has led us to identify several amino acids located in the N terminus of US28 that differentially contribute to the high affinity binding of CC versus CX3C chemokines. Additionally, our results highlight the importance of secondary modifications occurring at US28, such as sulfation, for ligand recognition. Finally, the effects of chemokine dimerization and interaction with glycosaminoglycans (GAGs) on chemokine binding and activation of US28 were investigated as well using CCL4 as model ligand. In line with the two-state model describing chemokine/receptor interaction, we show that an aromatic residue in the N-loop region of CCL4 promotes tight binding to US28, whereas receptor activation depends on the presence of the N terminus of CCL4, as shown previously for CCR5.
Collapse
Affiliation(s)
- Paola Casarosa
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Chemistry, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang XL, Skene RJ, McRee DE, Schimmel P. Crystal structure of a human aminoacyl-tRNA synthetase cytokine. Proc Natl Acad Sci U S A 2002; 99:15369-74. [PMID: 12427973 PMCID: PMC137723 DOI: 10.1073/pnas.242611799] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2002] [Indexed: 11/18/2022] Open
Abstract
The 20 aminoacyl-tRNA synthetases catalyze the first step of protein synthesis and establish the rules of the genetic code through aminoacylation reactions. Biological fragments of two human enzymes, tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, connect protein synthesis to cell-signaling pathways including angiogenesis. Alternative splicing or proteolysis produces these fragments. The proangiogenic N-terminal fragment mini-TyrRS has IL-8-like cytokine activity that, like other CXC cytokines, depends on a Glu-Leu-Arg motif. Point mutations in this motif abolish cytokine activity. The full-length native TyrRS lacks cytokine activity. No structure has been available for any mammalian tRNA synthetase that, in turn, might give insight into why mini-TyrRS and not TyrRS has cytokine activities. Here, the structure of human mini-TyrRS, which contains both the catalytic and the anticodon recognition domain, is reported to a resolution of 1.18 A. The critical Glu-Leu-Arg motif is located on an internal alpha-helix of the catalytic domain, where the guanidino side chain of R is part of a hydrogen-bonding network tethering the anticodon-recognition domain back to the catalytic site. Whereas the catalytic domains of the human and bacterial enzymes superimpose, the spatial disposition of the anticodon recognition domain relative to the catalytic domain is unique in mini-TyrRS relative to the bacterial orthologs. This unique orientation of the anticodon-recognition domain can explain why the fragment mini-TyrRS, and not full-length native TyrRS, is active in cytokine-signaling pathways.
Collapse
Affiliation(s)
- Xiang-Lei Yang
- The Skaggs Institute for Chemical Biology, BCC-379, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Chemokines are the largest family of cytokines in human immunophysiology. These proteins are defined by four invariant cysteines and are categorized based on the sequence around the first two cysteines, which leads to two major and two minor subfamilies. Chemokines function by activating specific G protein-coupled receptors, which results in, among other functions, the migration of inflammatory and noninflammatory cells to the appropriate tissues or compartments within tissues. Some of these proteins and receptors have been implicated or shown to be involved in inflammation, autoimmune diseases, and infection by HIV-1. The three-dimensional structure of each monomer is virtually identical, but the quaternary structure of chemokines is different for each subfamily. Structure-function studies reveal several regions of chemokines to be involved in function, with the N-terminal region playing a dominant role. A number of proteins and small-molecule antagonists have been identified that inhibit chemokine activities. In this review, we discuss aspects of the structure, function, and inhibition of chemokines.
Collapse
Affiliation(s)
- Elias J Fernandez
- Department of Pharmacology, Yale University, New Haven, Connecticut 06520-8066, USA.
| | | |
Collapse
|
21
|
Kuloğlu ES, McCaslin DR, Kitabwalla M, Pauza CD, Markley JL, Volkman BF. Monomeric solution structure of the prototypical 'C' chemokine lymphotactin. Biochemistry 2001; 40:12486-96. [PMID: 11601972 PMCID: PMC3826542 DOI: 10.1021/bi011106p] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lymphotactin, the sole identified member of the C class of chemokines, specifically attracts T lymphocytes and natural killer cells. This 93-residue protein lacks 2 of the 4 conserved cysteine residues characteristic of the other 3 classes of chemokines and possesses an extended carboxyl terminus, which is required for chemotactic activity. We have determined the three-dimensional solution structure of recombinant human lymphotactin by NMR spectroscopy. Under the conditions used for the structure determination, lymphotactin was predominantly monomeric; however, pulsed field gradient NMR self-diffusion measurements and analytical ultracentrifugation revealed evidence of dimer formation. Sequence-specific chemical shift assignments were determined through analysis of two- and three-dimensional NMR spectra of (15)N- and (13)C/(15)N-enriched protein samples. Input for the torsion angle dynamics calculations used in determining the structure included 1258 unique NOE-derived distance constraints and 60 dihedral angle constraints obtained from chemical-shift-based searching of a protein conformational database. The ensemble of 20 structures chosen to represent the structure had backbone and heavy atom rms deviations of 0.46 +/- 0.11 and 1.02 +/- 0.14 A, respectively. The results revealed that human lymphotactin adopts the conserved chemokine fold, which is characterized by a three-stranded antiparallel beta-sheet and a C-terminal alpha-helix. Two regions are dynamically disordered as evidenced by (1)H and (13)C chemical shifts and [(15)N]-(1)H NOEs: residues 1-9 of the amino terminus and residues 69-93 of the C-terminal extension. A functional role for the C-terminal extension, which is unique to lymphotactin, remains to be elucidated.
Collapse
Affiliation(s)
| | - Darrell R. McCaslin
- Department of Biochemistry and Biophysics Instrumentation Facility, University of Wisconsin–Madison, 433 Babcock DriVe, Madison, Wisconsin 53706
| | - Moiz Kitabwalla
- Institute of Human Virology, University of Maryland, 725 West Lombard Street, Baltimore, Maryland 21201
| | - C. David Pauza
- Institute of Human Virology, University of Maryland, 725 West Lombard Street, Baltimore, Maryland 21201
| | - John L. Markley
- Department of Biochemistry and National Magnetic Resonance Facility at Madison, University of Wisconsin–Madison, 433 Babcock DriVe, Madison, Wisconsin 53706
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226
| |
Collapse
|
22
|
Abstract
Chemokines are a family of proteins involved in inflammatory and immune response. They share a common fold, made up of a three-stranded beta-sheet, and an overlaying alpha-helix. Chemokines are mainly categorized into two subfamilies distinguished by the presence or absence of a residue between two conserved cysteines in the N-terminus. Although dimers and higher-order quaternary structures are common in chemokines, they are known to function as monomers. Yet, there is quite a bit of controversy on how the actual function takes place. The mechanisms of binding and activation in the chemokine family are investigated using the gaussian network model of proteins, a low-resolution model that monitors the collective motions in proteins. It is particularly suitable for elucidating the global dynamic characteristics of large proteins or the common properties of a group of related proteins such as the chemokine family presently investigated. A sample of 16 proteins that belong to the CC, CXC, or CX(3)C subfamilies are inspected. Local packing density and packing order of residues are used to determine the type and range of motions on a global scale, such as those occurring between various loop regions. The 30s-loop, although not directly involved in the binding interface like the N-terminus and the N-loop, is identified as having a prominent role in both binding/activation and dimerization. Two mechanisms are distinguished based on the communication among the three flexible regions. In these two-step mechanisms, the 30s-loop assists either the N-loop or the N-terminus during binding and activation. The findings are verified by molecular mechanics and molecular dynamics simulations carried out on the detailed structure of representative proteins from each mechanism type. A basis for the construction of hybrids of chemokines to bind and/or activate various chemokine receptors is presented. Proteins 2001;43:150-160.
Collapse
Affiliation(s)
- C Baysal
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 81474, Istanbul, Turkey.
| | | |
Collapse
|