1
|
Magbanua E, Zivkovic T, Hansen B, Beschorner N, Meyer C, Lorenzen I, Grötzinger J, Hauber J, Torda AE, Mayer G, Rose-John S, Hahn U. d(GGGT) 4 and r(GGGU) 4 are both HIV-1 inhibitors and interleukin-6 receptor aptamers. RNA Biol 2013; 10:216-27. [PMID: 23235494 PMCID: PMC3594281 DOI: 10.4161/rna.22951] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aptamers are oligonucleotides that bind targets with high specificity and affinity. They have become important tools for biosensing, target detection, drug delivery and therapy. We selected the quadruplex-forming 16-mer DNA aptamer AID-1 [d(GGGT) 4] with affinity for the interleukin-6 receptor (IL-6R) and identified single nucleotide variants that showed no significant loss of binding ability. The RNA counterpart of AID-1 [r(GGGU) 4] also bound IL-6R as quadruplex structure. AID-1 is identical to the well-known HIV inhibitor T30923, which inhibits both HIV infection and HIV-1 integrase. We also demonstrated that IL-6R specific RNA aptamers not only bind HIV-1 integrase and inhibit its 3' processing activity in vitro, but also are capable of preventing HIV de novo infection with the same efficacy as the established inhibitor T30175. All these aptamer target interactions are highly dependent on formation of quadruplex structure.
Collapse
Affiliation(s)
- Eileen Magbanua
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Tijana Zivkovic
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Björn Hansen
- Centre for Bioinformatics; Hamburg University; Hamburg, Germany
| | - Niklas Beschorner
- Heinrich Pette Institute; Leibnitz Institute for Experimental Virology; Hamburg, Germany
| | - Cindy Meyer
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Inken Lorenzen
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Joachim Hauber
- Heinrich Pette Institute; Leibnitz Institute for Experimental Virology; Hamburg, Germany
| | - Andrew E. Torda
- Centre for Bioinformatics; Hamburg University; Hamburg, Germany
| | - Günter Mayer
- Life and Medical Sciences Institute; University of Bonn; Bonn, Germany
| | - Stefan Rose-John
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Ulrich Hahn
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
- Correspondence to: Ulrich Hahn,
| |
Collapse
|
2
|
Xu Z, Zheng Y, Ao Z, Clement M, Mouland AJ, Kalpana GV, Belhumeur P, Cohen EA, Yao X. Contribution of the C-terminal region within the catalytic core domain of HIV-1 integrase to yeast lethality, chromatin binding and viral replication. Retrovirology 2008; 5:102. [PMID: 19014595 PMCID: PMC2615443 DOI: 10.1186/1742-4690-5-102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 11/14/2008] [Indexed: 11/29/2022] Open
Abstract
Background HIV-1 integrase (IN) is a key viral enzymatic molecule required for the integration of the viral cDNA into the genome. Additionally, HIV-1 IN has been shown to play important roles in several other steps during the viral life cycle, including reverse transcription, nuclear import and chromatin targeting. Interestingly, previous studies have demonstrated that the expression of HIV-1 IN induces the lethal phenotype in some strains of Saccharomyces cerevisiae. In this study, we performed mutagenic analyses of the C-terminal region of the catalytic core domain of HIV-1 IN in order to delineate the critical amino acid(s) and/or motif(s) required for the induction of the lethal phenotype in the yeast strain HP16, and to further elucidate the molecular mechanism which causes this phenotype. Results Our study identified three HIV-1 IN mutants, V165A, A179P and KR186,7AA, located in the C-terminal region of the catalytic core domain of IN that do not induce the lethal phenotype in yeast. Chromatin binding assays in yeast and mammalian cells demonstrated that these IN mutants were impaired for the ability to bind chromatin. Additionally, we determined that while these IN mutants failed to interact with LEDGF/p75, they retained the ability to bind Integrase interactor 1. Furthermore, we observed that VSV-G-pseudotyped HIV-1 containing these IN mutants was unable to replicate in the C8166 T cell line and this defect was partially rescued by complementation with the catalytically inactive D64E IN mutant. Conclusion Overall, this study demonstrates that three mutations located in the C-terminal region of the catalytic core domain of HIV-1 IN inhibit the IN-induced lethal phenotype in yeast by inhibiting the binding of IN to the host chromatin. These results demonstrate that the C-terminal region of the catalytic core domain of HIV-1 IN is important for binding to host chromatin and is crucial for both viral replication and the promotion of the IN-induced lethal phenotype in yeast.
Collapse
Affiliation(s)
- Zaikun Xu
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, University of Manitoba, 508-730 William Avenue, Winnipeg, R3E 0W3, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
HIV‐1 Integrase Inhibitors: Update and Perspectives. HIV-1: MOLECULAR BIOLOGY AND PATHOGENESIS 2008; 56:199-228. [DOI: 10.1016/s1054-3589(07)56007-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Métifiot M, Faure A, Guyonnet-Duperat V, Bellecave P, Litvak S, Ventura M, Andréola ML. Cellular uptake of ODNs in HIV-1 human-infected cells: a role for viral particles in DNA delivery? Oligonucleotides 2007; 17:151-65. [PMID: 17638520 DOI: 10.1089/oli.2006.0061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have previously described how a 16 nucleotides ODN (termed 93del) is capable of inhibiting the activity of recombinant integrase in a cell-free system as well as HIV-1 replication in human-infected cells with IC(50) in the low nanomolar range. Intracellular HIV-1 replication was inhibited when the ODN was added at the onset of infection. These results raise several questions. Is a naked ODN able to enter the cell? Does the virus play a role in ODN entry? The uptake of several ODNs (93del, 60del(sc), TBA, T30923) was evaluated and then tracked by labeling the ODN with a fluorescent dye and assessing its intracellular localization by confocal microscopy. A significant level of cellular uptake of free ODN was observed in several cell lines: HeLa epithelial cells, Huh7 hepatic cells, and H9 lymphocytes, and was detected for all ODNs tested except for TBA. Striking differences were observed when naked ODNs were added to cell in the presence or absence of the virus. When HIV-1 virions were present a sharp increase in cellular fluorescence was observed. These results strongly suggest a role for HIV-1 virions in the uptake of certain ODNs.
Collapse
Affiliation(s)
- Mathieu Métifiot
- UMR 5097 CNRS, Université Victor Segalen Bordeaux 2, 33076 Bordeaux cedex, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Desfarges S, San Filippo J, Fournier M, Calmels C, Caumont-Sarcos A, Litvak S, Sung P, Parissi V. Chromosomal integration of LTR-flanked DNA in yeast expressing HIV-1 integrase: down regulation by RAD51. Nucleic Acids Res 2006; 34:6215-24. [PMID: 17090598 PMCID: PMC1693895 DOI: 10.1093/nar/gkl843] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
HIV-1 integrase (IN) is the key enzyme catalyzing the proviral DNA integration step. Although the enzyme catalyzes the integration step accurately in vitro, whether IN is sufficient for in vivo integration and how it interacts with the cellular machinery remains unclear. We set up a yeast cellular integration system where integrase was expressed as the sole HIV-1 protein and targeted the chromosomes. In this simple eukaryotic model, integrase is necessary and sufficient for the insertion of a DNA containing viral LTRs into the genome, thereby allowing the study of the isolated integration step independently of other viral mechanisms. Furthermore, the yeast system was used to identify cellular mechanisms involved in the integration step and allowed us to show the role of homologous recombination systems. We demonstrated physical interactions between HIV-1 IN and RAD51 protein and showed that HIV-1 integrase activity could be inhibited both in the cell and in vitro by RAD51 protein. Our data allowed the identification of RAD51 as a novel in vitro IN cofactor able to down regulate the activity of this retroviral enzyme, thereby acting as a potential cellular restriction factor to HIV infection.
Collapse
Affiliation(s)
- S. Desfarges
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - J. San Filippo
- Deptartment of Molecular Biophysics and Biochemistry, Yale University School of Medicine333 Cedar Street, SHM C130, New Haven, CT 06520, USA
| | - M. Fournier
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - C. Calmels
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - A. Caumont-Sarcos
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - S. Litvak
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - P. Sung
- Deptartment of Molecular Biophysics and Biochemistry, Yale University School of Medicine333 Cedar Street, SHM C130, New Haven, CT 06520, USA
| | - V. Parissi
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
- To whom correspondence should be addressed. Tel: +33 5 57 57 1740; Fax: +33 5 57 57 1766;
| |
Collapse
|
6
|
Vera J, Parissi V, García A, Zúñiga R, Andreola ML, Caumont-Sarcos A, Tarrago-Litvak L, Leon O. Yeast system as a model to study Moloney murine leukemia virus integrase: expression, mutagenesis and search for eukaryotic partners. J Gen Virol 2005; 86:2481-2488. [PMID: 16099906 DOI: 10.1099/vir.0.81006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Moloney murine leukemia virus (M-MuLV) integrase (IN) catalyses the insertion of the viral genome into the host chromosomal DNA. The limited solubility of the recombinant protein produced in Escherichia coli led the authors to explore the use of Saccharomyces cerevisiae for expression of M-MuLV IN. IN was expressed in yeast and purified by chromatography on nickel-NTA agarose. IN migrated as a single band in SDS-PAGE and did not contain IN degradation products. The enzyme was about twofold more active than the enzyme purified from E. coli and was free of nucleases. Using the yeast system, the substitution of the putative catalytic amino acid Asp184 by alanine was also analysed. The mutated enzyme was inactive in the in vitro assays. This is the first direct demonstration that mutation of Asp184 inactivates M-MuLV IN. Finally, S. cerevisiae was used as a model to assess the ability of M-MuLV IN to interact with eukaryotic protein partners. The expression of an active M-MuLV IN in yeast strains deficient in RAD52 induced a lethal effect. This phenotype could be attributed to cellular damage, as suggested by the viability of cells expressing inactive D184A IN. Furthermore, when active IN was expressed in a yeast strain lacking the ySNF5 transcription factor, the lethal effect was abolished, suggesting the involvement of ySNF5 in the cellular damage induced by IN. These results indicate that S. cerevisiae could be a useful model to study the interaction of IN with cellular components in order to identify potential counterparts of the natural host.
Collapse
Affiliation(s)
- Jorge Vera
- Programa de Virologia, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Vincent Parissi
- Bordeaux, F-33000 France; IFR 66 'Pathologies Infectieuses et Cancers', Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
- CNRS UMR 5097, Bordeaux, F-33000 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Andrea García
- Programa de Virologia, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Roberto Zúñiga
- Programa de Virologia, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Marie-Line Andreola
- Bordeaux, F-33000 France; IFR 66 'Pathologies Infectieuses et Cancers', Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
- CNRS UMR 5097, Bordeaux, F-33000 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Anne Caumont-Sarcos
- Bordeaux, F-33000 France; IFR 66 'Pathologies Infectieuses et Cancers', Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
- CNRS UMR 5097, Bordeaux, F-33000 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Laura Tarrago-Litvak
- Bordeaux, F-33000 France; IFR 66 'Pathologies Infectieuses et Cancers', Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
- CNRS UMR 5097, Bordeaux, F-33000 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33000 France. 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Oscar Leon
- Programa de Virologia, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| |
Collapse
|
7
|
Bessong PO, Obi CL, Andréola ML, Rojas LB, Pouységu L, Igumbor E, Meyer JJM, Quideau S, Litvak S. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. JOURNAL OF ETHNOPHARMACOLOGY 2005; 99:83-91. [PMID: 15848024 DOI: 10.1016/j.jep.2005.01.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 01/05/2005] [Accepted: 01/28/2005] [Indexed: 05/24/2023]
Abstract
Seventeen aqueous and methanol extracts from nine South African medicinal plants, ethnobotanically selected, were screened for inhibitory properties against HIV-1 reverse transcriptase (RT). Isolated compounds were additionally evaluated on HIV-1 integrase (IN). The strongest inhibition against the RNA-dependent-DNA polymerase (RDDP) activity of RT was observed with the methanol extract of the stem-bark of Peltophorum africanum Sond. (Fabaceae) (IC(50) 3.5 microg/ml), while the methanol extract of the roots of Combretum molle R.Br. ex G. Don (Combretaceae) was the most inhibitory on the ribonuclease H (RNase H) activity (IC(50) 9.7 microg/ml). The known compounds bergenin and catechin, and a red coloured gallotannin composed of meta-depside chains of gallic and protocatechuic acids esterified to a 1-O-isobutyroly-beta-D-glucopyranose core, were isolated from the methanol extract of the roots and stem-bark of Peltophorum africanum. The gallotannin inhibited the RDDP and RNase H functions of RT with IC(50) values of 6.0 and 5.0 microM, respectively, and abolished the 3'-end processing activity of IN at 100 microM. Catechin showed no effect on RT but had a moderate activity on HIV-1 IN. Bergenin was inactive on both enzymes. The aqueous and methanol extracts were non-toxic in a HeLaP4 cell line at a concentration of 400 microg/ml.
Collapse
Affiliation(s)
- Pascal Obong Bessong
- Department of Microbiology, University of Venda for Science and Technology, PMB X5050, Thohoyandou 0950, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Métifiot M, Leon O, Tarrago-Litvak L, Litvak S, Andréola ML. Targeting HIV-1 integrase with aptamers selected against the purified RNase H domain of HIV-1 RT. Biochimie 2005; 87:911-9. [PMID: 16164998 DOI: 10.1016/j.biochi.2005.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 02/10/2005] [Accepted: 03/18/2005] [Indexed: 11/17/2022]
Abstract
Several in vitro strategies have been developed to selectively screen for nucleic acid sequences that bind to specific proteins. We previously used the SELEX procedure to search for aptamers against HIV-1 RNase H activity associated with reverse transcriptase (RT) and human RNase H1. Aptamers containing G-rich sequences were selected in both cases. To investigate whether the interaction with G-rich oligonucleotides (ODNs) was a characteristic of these enzymes, a second in vitro selection was performed with an isolated RNase H domain of HIV-1 RT (p15) as a target and a new DNA library. In this work we found that the second SELEX led again to the isolation of G-rich aptamers. But in contrast to the first selection, these latter ODNs were not able to inhibit the RNase H activity of either the p15 domain or the RNase H embedded in the complete RT. On the other hand, the aptamers from the first SELEX that were inhibitors of the RT-associated RNase H did not inhibit the activity of the isolated p15 domain. This suggests that the active conformation of both RNase H domains is different according to the presence or absence of the DNA polymerase domain. HIV-1 RNase H and integrase both belong to the phosphotransferase family and share structural similarities. An interesting result was obtained when the DNA aptamers initially raised against p15 RNase H were assayed against HIV-1 integrase. In contrast to RNase H, the HIV-1 integrase was inhibited by these aptamers. Our results point out that prototype structures can be exploited to develop inhibitors of two related enzymes.
Collapse
Affiliation(s)
- Mathieu Métifiot
- UMR 5097 CNRS, Université Victor Segalen Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
9
|
Konsavage WM, Burkholder S, Sudol M, Harper AL, Katzman M. A substitution in rous sarcoma virus integrase that separates its two biologically relevant enzymatic activities. J Virol 2005; 79:4691-9. [PMID: 15795255 PMCID: PMC1069555 DOI: 10.1128/jvi.79.8.4691-4699.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/28/2004] [Indexed: 11/20/2022] Open
Abstract
Retroviral integrase prepares viral DNA for integration by removing 2 nucleotides from each end of unintegrated DNA in a reaction referred to as processing. However, it has been known since the processing assay was first described that avian integrases frequently nick 3 nucleotides, as well as 2 nucleotides, from viral DNA ends when reaction mixtures contain Mn2+. We now report that specificity for the biologically relevant "-2" site is enhanced when the serine at amino acid 124 of Rous sarcoma virus (RSV) integrase is replaced by alanine, valine, glycine, lysine, or aspartate. The protein with a serine-to-aspartate substitution exhibited especially high fidelity for the correct site, as evidenced by a ratio of -2 nicks to -3 nicks that was more than 40-fold greater than that for the wild-type enzyme in reactions with Mn2+. Even with Mg2+, the substituted proteins exhibited greater specificity than the wild type, especially the S124D protein. Moreover, this protein was more efficient than the wild type at processing viral DNA ends. Unexpectedly, however, the S124D protein was significantly impaired at catalyzing the insertion of viral DNA ends in reactions with Mn2+ and joining was undetectable in reactions with Mg2+. Thus, the S124D protein has separated the processing and joining activities of integrase. Similar results were found for human immunodeficiency virus integrase with the analogous substitution. No proteins with comparable properties have been described. Moreover, RSV virions containing integrase with the S124D mutation were unable to replicate in cell cultures. Together, these data suggest that integrase has evolved to have submaximal processing activity so that it can also catalyze DNA joining.
Collapse
Affiliation(s)
- Wesley M Konsavage
- Department of Microbiology and Immunology, The Milton S. Hershey Medical Center, P.O. Box 850, Mail Code H036, Hershey, PA 17033-0850, USA
| | | | | | | | | |
Collapse
|
10
|
Calmels C, de Soultrait VR, Caumont A, Desjobert C, Faure A, Fournier M, Tarrago-Litvak L, Parissi V. Biochemical and random mutagenesis analysis of the region carrying the catalytic E152 amino acid of HIV-1 integrase. Nucleic Acids Res 2004; 32:1527-38. [PMID: 14999095 PMCID: PMC390286 DOI: 10.1093/nar/gkh298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HIV-1 integrase (IN) catalyzes the integration of the proviral DNA into the cellular genome. The catalytic triad D64, D116 and E152 of HIV-1 IN is involved in the reaction mechanism and the DNA binding. Since the integration and substrate binding processes are not yet exactly known, we studied the role of amino acids localized in the catalytic site. We focused our interest on the V151E152S153 region. We generated random mutations inside this domain and selected mutated active INs by using the IN-induced yeast lethality assay. In vitro analysis of the selected enzymes showed that the IN nuclease activities (specific 3'-processing and non-sequence-specific endonuclease), the integration and disintegration reactions and the binding of the various DNA substrates were affected differently. Our results support the hypothesis that the three reactions may involve different DNA binding sites, enzyme conformations or mechanisms. We also show that the V151E152S153 region involvement in the integration reaction is more important than for the 3'-processing activity and can be involved in the recognition of DNA. The IN mutants may lead to the development of new tools for studying the integration reaction, and could serve as the basis for the discovery of integration-specific inhibitors.
Collapse
Affiliation(s)
- C Calmels
- UMR-5097, CNRS-Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux cedex, and IFR 66 Pathologies Infectieuses et Cancers, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Parissi V, Caumont A, de Soultrait VR, Desjobert C, Calmels C, Fournier M, Gourgue G, Bonneu M, Tarrago-Litvak L, Litvak S. The lethal phenotype observed after HIV-1 integrase expression in yeast cells is related to DNA repair and recombination events. Gene 2004; 322:157-68. [PMID: 14644507 DOI: 10.1016/j.gene.2003.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) catalyzes the insertion of the viral genome into the host cell DNA, an essential reaction during the retroviral cycle. We described previously that expression of HIV-1 IN in some yeast strains may lead to the emergence of a lethal phenotype which was not observed when the catalytically crucial residues D, D, (35)E were mutated. The lethal effect in yeast seems to be related to the mutagenic effect of the recombinant HIV-1 IN, most probably via the non-sequence-specific endonucleolytic activity carried by this enzyme. This non-sequence-specific endonuclease activity was further characterized. Although the enzyme was active on DNA substrates devoid of viral long terminal repeat (LTR) sequences, the presence of LTR regions stimulated significantly this activity. Genetic experiments were designed to show that both the mutagenic effect and the level of recombination events were affected in cells expressing the active retroviral enzyme, while expression of the mutated inactive IN D116A has no significant effect. A close interaction was demonstrated between integrase activity and in vivo/in vitro recombination process, suggesting that retroviral integration and recombination mechanism are linked in the infected cell. Our results show that the yeast system is a powerful cellular model to study the non-sequence-specific endonucleolytic activity of IN. Its characterization is essential since this activity might represent a very important step in the retroviral infectious cycle and would provide further insights into the function of IN. Indeed, effectors of this activity should be sought as potential antiviral agents since stimulation of this enzymatic activity would induce the destruction of early synthesized proviral DNA.
Collapse
Affiliation(s)
- Vincent Parissi
- UMR-5097 REGER, CNRS-Université Victor Segalen Bordeaux 2, IFR 66 "Pathologies Infectieuses", 146 rue Léo Saignat, 33076 cedex Bordeaux, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Park KW, Webster DA, Stark BC, Howard AJ, Kim KJ. Fusion protein system designed to provide color to aid in the expression and purification of proteins in Escherichia coli. Plasmid 2003; 50:169-75. [PMID: 14597006 DOI: 10.1016/s0147-619x(03)00046-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have designed and constructed a new fusion expression vector (pKW32), which contains the His-tagged Vitreoscilla hemoglobin (VHb) coding gene upstream of the multiple cloning site. The pKW32 vector was designed to express target proteins as VHb fusions, which can be purified in one step by affinity chromatography. Due to the color of the heme in VHb, the VHb-fused target proteins have a red color that provides a visual aid for estimating their expression level and solubility. The red color can also be used as a visual marker throughout purification, while the concentration of the fusion protein can be determined by measuring the amount of VHb using carbon monoxide difference spectra. In addition, because of inherently high solubility of VHb, the fusion can increase the solubility of sparingly soluble target proteins. Target proteins can be easily separated from His-tagged VHb due to the presence of a thrombin-cleavage site between them. A mutant VHb, the soluble domain of Vitreoscilla cytochrome bo subunit II, and HIV integrase expressed and purified using the pKW32 system have native function. In addition, the integrase, which is known to be difficult to purify because of low solubility, was purified simply and without solubilizing agents using our system.
Collapse
Affiliation(s)
- Kyung-Won Park
- Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, 3101 S Dearborn Chicago, Chicago, IL 60616, USA
| | | | | | | | | |
Collapse
|
13
|
de Soultrait VR, Lozach PY, Altmeyer R, Tarrago-Litvak L, Litvak S, Andréola ML. DNA aptamers derived from HIV-1 RNase H inhibitors are strong anti-integrase agents. J Mol Biol 2002; 324:195-203. [PMID: 12441099 DOI: 10.1016/s0022-2836(02)01064-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HIV-1 integrase, the retroviral-encoded enzyme involved in the integration of the retrotranscribed viral genome into the host nuclear DNA, is an attractive and still unexploited target. To date, very few inhibitors of this enzyme with a potential therapeutic value have been described. During the search for new HIV-1 targets, we recently described DNA oligodeoxynucleotide aptamers (ODN 93 and ODN 112) that are strong inhibitors of the RNase H activity associated with HIV-1 reverse transcriptase. The striking structural homology between RNase H and integrase led us to study the effect of the RNase H inhibitors on the integrase. Shorter DNA aptamers derived from ODNs 93 and 112 (ODNs 93del and 112del) were able to inhibit HIV-1 integrase in the nanomolar range. They had G-rich sequences able to form G-quartets stabilized by the presence of K(+). The presence of these ions increased the inhibitory efficiency of these agents dramatically. Inhibition of enzymatic activities by ODN 93del and ODN 112del was observed in a cell-free assay system using a recombinant integrase and HIV-1 replication was abolished in infected human cells. Moreover, cell fusion assays showed that these agents do not block viral cell entry at concentrations where viral replication is stopped.
Collapse
Affiliation(s)
- V R de Soultrait
- UMR 5097, CNRS-Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Human immunodeficiency virus type-1 (HIV-1) integrase catalyzes the irreversible insertion of the viral genome into host chromosomal DNA. We have developed a mammalian expression system for the synthesis of authentic HIV-1 integrase in the absence of other viral proteins. Integrase, which bears a N-terminal phenylalanine, was found to be a short-lived protein in human embryo kidney 293T cells. The degradation of integrase could be suppressed by proteasome inhibitors. N-terminal phenylalanine is recognized as a degradation signal by a ubiquitin-proteasome proteolytic system known as the N-end rule pathway. The replacement of N-terminal phenylalanine with methionine, valine, or glycine, which are stabilizing residues in the N-end rule, resulted in metabolically stabilized integrase proteins (half-life of N-terminal Met-integrase was at least 3 h). Conversely, the substitution of N-terminal phenylalanine with other destabilizing residues retained the metabolic instability of integrase. These findings indicate that the HIV-1 integrase is a physiological substrate of the N-end rule. We discuss a possible functional similarity to the better understood turnover of the bacteriophage Mu transposase and functions of integrase instability to the maintenance and integrity of the host cell genome.
Collapse
Affiliation(s)
- L C Mulder
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA
| | | |
Collapse
|
15
|
Pommier Y, Marchand C, Neamati N. Retroviral integrase inhibitors year 2000: update and perspectives. Antiviral Res 2000; 47:139-48. [PMID: 10974366 DOI: 10.1016/s0166-3542(00)00112-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
HIV-1 integrase is an essential enzyme for retroviral replication and a rational target for the design of anti-AIDS drugs. A number of inhibitors have been reported in the past 8 years. This review focuses on the recent developments in the past 2 years. There are now several inhibitors with known sites of actions and antiviral activity. The challenge is to convert these leads into drugs that will selectively target integrase in vivo, and can be added to our antiviral armamentarium.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Bethesda, MD 20892-4255, USA.
| | | | | |
Collapse
|
16
|
Parissi V, Caumont A, Richard de Soultrait V, Dupont CH, Pichuantes S, Litvak S. Inactivation of the SNF5 transcription factor gene abolishes the lethal phenotype induced by the expression of HIV-1 integrase in yeast. Gene 2000; 247:129-36. [PMID: 10773452 DOI: 10.1016/s0378-1119(00)00108-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ubiquitous human transcription factor Ini1 has been shown to interact with HIV-1 integrase (IN) and to stimulate in vitro the reactions catalyzed by this enzyme. We have previously used a yeast model to study the effect of HIV-1 IN expression (Caumont, A.B., Jamieson, G.A., Pichuantes, S., Nguyen, A.T., Litvak, S., Dupont, C. -H., 1996. Expression of functional HIV-1 integrase in the yeast Saccharomyces cerevisiae leads to the emergence of a lethal phenotype: potential use for inhibitor screening. Curr. Genet. 29, 503-510). Here, we describe the effect of the inactivation of the gene encoding for SNF5, a yeast transcription factor homologous to Ini1, on the lethality induced by the expression of HIV-1 IN in yeast. We observed that the retroviral IN was unable to perform its lethal activity in cells where the SNF5 gene has been disrupted, suggesting that SNF5 may play a role in the lethal effect induced by IN in yeast. SNF5 inactivation affects neither yeast viability nor expression of HIV-1 IN. Given the homology between SNF5 and its human counterpart Ini1, our results suggest that this factor may be important for IN activity in infected cells. Moreover, given the important role proposed for this transcription factor in the integration step and the fact that it is dispensable for cell viability, the interaction between Ini1/ySNF5 and HIV-1 IN should become a potential target in the search for new antiretroviral agents.
Collapse
Affiliation(s)
- V Parissi
- CNRS UMR-5097. IFR 66 'Pathologies Infectieuses', Université Victor Segalen Bordeaux 2. 146 rue Leo Saignat, 33076, Bordeaux, France.
| | | | | | | | | | | |
Collapse
|