1
|
Lima GM, Jame-Chenarboo Z, Sojitra M, Sarkar S, Carpenter EJ, Yang CY, Schmidt E, Lai J, Atrazhev A, Yazdan D, Peng C, Volker EA, Ho R, Monteiro G, Lai R, Mahal LK, Macauley MS, Derda R. The liquid lectin array detects compositional glycocalyx differences using multivalent DNA-encoded lectins on phage. Cell Chem Biol 2024:S2451-9456(24)00406-9. [PMID: 39454580 DOI: 10.1016/j.chembiol.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/05/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Selective detection of disease-associated changes in the glycocalyx is an emerging field in modern targeted therapies. Detecting minor glycan changes on the cell surface is a challenge exacerbated by the lack of correspondence between cellular DNA/RNA and glycan structures. We demonstrate that multivalent displays of lectins on DNA-barcoded phages-liquid lectin array (LiLA)-detect subtle differences in density of glycans on cells. LiLA constructs displaying 73 copies of diCBM40 (CBM) lectin per virion (φ-CBM73) exhibit non-linear ON/OFF-like recognition of sialoglycans on the surface of normal and cancer cells. A high-valency φ-CBM290 display, or soluble CBM protein, cannot amplify the subtle differences detected by φ-CBM73. Similarly, multivalent displays of CBM and Siglec-7 detect differences in the glycocalyx between stem-like and non-stem populations in cancer. Multivalent display of lectins offer in situ detection of minor differences in glycocalyx in cells both in vitro and in vivo not feasible to currently available technologies.
Collapse
Affiliation(s)
- Guilherme M Lima
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Mirat Sojitra
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Claire Y Yang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Edward Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Justine Lai
- Department of Medicine, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Danial Yazdan
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Chuanhao Peng
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Elizabeth A Volker
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ray Ho
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP 05508 000, Brazil
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2J7, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
2
|
Kwon H, Jin S, Ko J, Ryu J, Ryu JH, Lee DW. Specific interaction between the DSPHTELP peptide and various functional groups. Phys Chem Chem Phys 2024; 26:20760-20769. [PMID: 39046426 DOI: 10.1039/d4cp01739k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
M13 bacteriophages serve as a versatile foundation for nanobiotechnology due to their unique biological and chemical properties. The polypeptides that comprise their coat proteins, specifically pVIII, can be precisely tailored through genetic engineering. This enables the customized integration of various functional elements through specific interactions, leading to the development of innovative hybrid materials for applications such as energy storage, biosensing, and catalysis. Notably, a certain genetically engineered M13 bacteriophage variant, referred to as DSPH, features a pVIII with a repeating DSPHTELP peptide sequence. This sequence facilitates specific adhesion to single-walled carbon nanotubes (SWCNTs), primarily through π-π and hydrophobic interactions, though the exact mechanism remains unconfirmed. In this study, we synthesized the DSPHTELP peptide (an 8-mer peptide) and analyzed its interaction forces with different functional groups across various pH levels using surface forces apparatus (SFA). Our findings indicate that the 8-mer peptide binds most strongly to CH3 groups (Wad = 13.74 ± 1.04 mJ m-2 at pH 3.0), suggesting that hydrophobic interactions are indeed the predominant mechanism. These insights offer both quantitative and qualitative understanding of the molecular interaction mechanisms of the 8-mer peptide and clarify the basis of its specific interaction with SWCNTs through the DSPHTELP M13 bacteriophage.
Collapse
Affiliation(s)
- Haeun Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Seongeon Jin
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Jina Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Jungki Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Renewable Carbon, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Rakonjac J, Gold VAM, León-Quezada RI, Davenport CH. Structure, Biology, and Applications of Filamentous Bacteriophages. Cold Spring Harb Protoc 2024; 2024:pdb.over107754. [PMID: 37460152 DOI: 10.1101/pdb.over107754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The closely related Escherichia coli Ff filamentous phages (f1, fd, and M13) have taken a fantastic journey over the past 60 years, from the urban sewerage from which they were first isolated, to their use in high-end technologies in multiple fields. Their relatively small genome size, high titers, and the virions that tolerate fusion proteins make the Ffs an ideal system for phage display. Folding of the fusions in the oxidizing environment of the E. coli periplasm makes the Ff phages a platform that allows display of eukaryotic surface and secreted proteins, including antibodies. Resistance of the Ffs to a broad range of pH and detergents facilitates affinity screening in phage display, whereas the stability of the virions at ambient temperature makes them suitable for applications in material science and nanotechnology. Among filamentous phages, only the Ffs have been used in phage display technology, because of the most advanced state of knowledge about their biology and the various tools developed for E. coli as a cloning host for them. Filamentous phages have been thought to be a rather small group, infecting mostly Gram-negative bacteria. A recent discovery of more than 10 thousand diverse filamentous phages in bacteria and archaea, however, opens a fascinating prospect for novel applications. The main aim of this review is to give detailed biological and structural information to researchers embarking on phage display projects. The secondary aim is to discuss the yet-unresolved puzzles, as well as recent developments in filamentous phage biology, from a viewpoint of their impact on current and future applications.
Collapse
Affiliation(s)
- Jasna Rakonjac
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- Nanophage Technologies Ltd., Palmerston North, Manawatu 4474, New Zealand
| | - Vicki A M Gold
- Living Systems Institute University of Exeter, Exeter, EX4 4QD, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| | - Rayén I León-Quezada
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- Nanophage Technologies Ltd., Palmerston North, Manawatu 4474, New Zealand
| | - Catherine H Davenport
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- Nanophage Technologies Ltd., Palmerston North, Manawatu 4474, New Zealand
| |
Collapse
|
4
|
Wang H, Yang Y, Xu Y, Chen Y, Zhang W, Liu T, Chen G, Wang K. Phage-based delivery systems: engineering, applications, and challenges in nanomedicines. J Nanobiotechnology 2024; 22:365. [PMID: 38918839 PMCID: PMC11197292 DOI: 10.1186/s12951-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Bacteriophages (phages) represent a unique category of viruses with a remarkable ability to selectively infect host bacteria, characterized by their assembly from proteins and nucleic acids. Leveraging their exceptional biological properties and modifiable characteristics, phages emerge as innovative, safe, and efficient delivery vectors. The potential drawbacks associated with conventional nanocarriers in the realms of drug and gene delivery include a lack of cell-specific targeting, cytotoxicity, and diminished in vivo transfection efficiency. In contrast, engineered phages, when employed as cargo delivery vectors, hold the promise to surmount these limitations and attain enhanced delivery efficacy. This review comprehensively outlines current strategies for the engineering of phages, delineates the principal types of phages utilized as nanocarriers in drug and gene delivery, and explores the application of phage-based delivery systems in disease therapy. Additionally, an incisive analysis is provided, critically examining the challenges confronted by phage-based delivery systems within the domain of nanotechnology. The primary objective of this article is to furnish a theoretical reference that contributes to the reasoned design and development of potent phage-based delivery systems.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Ying Yang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yan Xu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yi Chen
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Wenjie Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2145, Australia.
| | - Gang Chen
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
5
|
Zhou L, Cai F, Li Y, Gao X, Wei Y, Fedorova A, Kirchhofer D, Hannoush RN, Zhang Y. Disulfide-constrained peptide scaffolds enable a robust peptide-therapeutic discovery platform. PLoS One 2024; 19:e0300135. [PMID: 38547109 PMCID: PMC10977697 DOI: 10.1371/journal.pone.0300135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Peptides present an alternative modality to immunoglobulin domains or small molecules for developing therapeutics to either agonize or antagonize cellular pathways associated with diseases. However, peptides often suffer from poor chemical and physical stability, limiting their therapeutic potential. Disulfide-constrained peptides (DCP) are naturally occurring and possess numerous desirable properties, such as high stability, that qualify them as drug-like scaffolds for peptide therapeutics. DCPs contain loop regions protruding from the core of the molecule that are amenable to peptide engineering via direct evolution by use of phage display technology. In this study, we have established a robust platform for the discovery of peptide therapeutics using various DCPs as scaffolds. We created diverse libraries comprising seven different DCP scaffolds, resulting in an overall diversity of 2 x 1011. The effectiveness of this platform for functional hit discovery has been extensively evaluated, demonstrating a hit rate comparable to that of synthetic antibody libraries. By utilizing chemically synthesized and in vitro folded peptides derived from selections of phage displayed DCP libraries, we have successfully generated functional inhibitors targeting the HtrA1 protease. Through affinity maturation strategies, we have transformed initially weak binders against Notch2 with micromolar Kd values to high-affinity ligands in the nanomolar range. This process highlights a viable hit-to-lead progression. Overall, our platform holds significant potential to greatly enhance the discovery of peptide therapeutics.
Collapse
Affiliation(s)
- Lijuan Zhou
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Fei Cai
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Yanjie Li
- Department of Peptide Therapeutics, Genentech, Inc., South San Francisco, California, United States of America
| | - Xinxin Gao
- Department of Peptide Therapeutics, Genentech, Inc., South San Francisco, California, United States of America
| | - Yuehua Wei
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Anna Fedorova
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Daniel Kirchhofer
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Rami N. Hannoush
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Yingnan Zhang
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| |
Collapse
|
6
|
Lima GM, Atrazhev A, Sarkar S, Sojitra M, Reddy R, Torres-Obreque K, de Oliveira Rangel-Yagui C, Macauley MS, Monteiro G, Derda R. DNA-Encoded Multivalent Display of Chemically Modified Protein Tetramers on Phage: Synthesis and in Vivo Applications. ACS Chem Biol 2022; 17:3024-3035. [PMID: 34928124 DOI: 10.1021/acschembio.1c00835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phage display links the phenotype of displayed polypeptides with the DNA sequence in the phage genome and offers a universal method for the discovery of proteins with novel properties. However, the display of large multisubunit proteins on phages remains a challenge. A majority of protein display systems are based on monovalent phagemid constructs, but methods for the robust display of multiple copies of large proteins are scarce. Here, we describe a DNA-encoded display of a ∼ 200 kDa tetrameric l-asparaginase protein on M13 and fd phages produced by ligation of SpyCatcher-Asparaginase fusion (ScA) and PEGylated-ScA (PEG-ScA) to barcoded phage clones displaying SpyTag peptide. Starting from the SpyTag display on p3 or p8 coat proteins yielded constructs with five copies of ScA displayed on p3 (ScA-p3), ∼100 copies of ScA on p8 protein (ScA-p8) and ∼300 copies of PEG-ScA on p8 protein (PEG-ScA-p8). Display constructs of different valencies and chemical modifications on protein (e.g., PEGylation) can be injected into mice and analyzed by deep sequencing of the DNA barcodes associated with phage clones. In these multiplexed studies, we observed a density and protein-dependent clearance rate in vivo. Our observations link the absence of PEGylation and increase in density of the displayed protein with the increased rate of the endocytosis by cells in vivo. In conclusion, we demonstrate that a multivalent display of l-asparaginase on phages could be used to study the circulation life of this protein in vivo, and such an approach opens the possibility to use DNA sequencing to investigate multiplexed libraries of other multisubunit proteins in vivo.
Collapse
Affiliation(s)
- Guilherme M Lima
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508 000, Brazil.,Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Revathi Reddy
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Karin Torres-Obreque
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508 000, Brazil
| | - Carlota de Oliveira Rangel-Yagui
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508 000, Brazil
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508 000, Brazil
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
7
|
Wang HY, Chang YC, Hu CW, Kao CY, Yu YA, Lim SK, Mou KY. Development of a Novel Cytokine Vehicle Using Filamentous Phage Display for Colorectal Cancer Treatment. ACS Synth Biol 2021; 10:2087-2095. [PMID: 34342970 DOI: 10.1021/acssynbio.1c00266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Due to its highly immunogenic nature and the great engineerability, filamentous phage has shown promising antitumor activities in preclinical studies. Previous designs of antitumor phage mainly focused on tumor targeting using a cancer-specific moiety displayed on the minor capsid protein, pIII. In this work, we developed a new therapeutic platform of filamentous phage, in which the major capsid protein pVIII was utilized for displaying an antitumor cytokine. We showcased that a 16.1-kD cytokine GM-CSF could be efficiently presented on the M13 phage particle using the 8 + 8 type display system through a highly tolerable pVIII variant P8(1a). We verified that the GM-CSF phage was a potent activator for STAT5 signaling in murine macrophage. The GM-CSF phage significantly reduced the tumor size by more than 50% as compared to the unmodified phage in a murine colorectal cancer model. Immunological profiling of the tumor-infiltrating leukocytes revealed that an increase of CD4+ lymphocytes in the GM-CSF phage treatment group. Furthermore, the combined therapy of the GM-CSF phage and radiation greatly improved the therapeutic potency with a 100% survival rate and a 25% complete remission rate. We observed that the IFN-γ expression was dramatically up-regulated by the combined therapy in multiple types of tumor-infiltrating immune cells. Overall, we created a novel vehicle for cytokine therapy using the pVIII filamentous phage display. This new platform can be multiplexed with other phage engineering approaches, such as displaying targeting ligands on pIII or encapsulating therapeutic genes inside phage capsids, to create multifunctional nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Han Ying Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - You-Chiun Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Che-Wei Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Yi Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 11529, Taiwan
| | - Yao-An Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan
| | - See-Khai Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
8
|
Abstract
Bacteriophages are viruses whose ubiquity in nature and remarkable specificity to their host bacteria enable an impressive and growing field of tunable biotechnologies in agriculture and public health. Bacteriophage capsids, which house and protect their nucleic acids, have been modified with a range of functionalities (e.g., fluorophores, nanoparticles, antigens, drugs) to suit their final application. Functional groups naturally present on bacteriophage capsids can be used for electrostatic adsorption or bioconjugation, but their impermanence and poor specificity can lead to inconsistencies in coverage and function. To overcome these limitations, researchers have explored both genetic and chemical modifications to enable strong, specific bonds between phage capsids and their target conjugates. Genetic modification methods involve introducing genes for alternative amino acids, peptides, or protein sequences into either the bacteriophage genomes or capsid genes on host plasmids to facilitate recombinant phage generation. Chemical modification methods rely on reacting functional groups present on the capsid with activated conjugates under the appropriate solution pH and salt conditions. This review surveys the current state-of-the-art in both genetic and chemical bacteriophage capsid modification methodologies, identifies major strengths and weaknesses of methods, and discusses areas of research needed to propel bacteriophage technology in development of biosensors, vaccines, therapeutics, and nanocarriers.
Collapse
Affiliation(s)
| | - Julie M. Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
10
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Putyrski M, Vakhrusheva O, Bonn F, Guntur S, Vorobyov A, Brandts C, Dikic I, Ernst A. Disrupting the LC3 Interaction Region (LIR) Binding of Selective Autophagy Receptors Sensitizes AML Cell Lines to Cytarabine. Front Cell Dev Biol 2020; 8:208. [PMID: 32296703 PMCID: PMC7137635 DOI: 10.3389/fcell.2020.00208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Short linear motifs (SLiMs) located in disordered regions of multidomain proteins are important for the organization of protein-protein interaction networks. By dynamic association with their binding partners, SLiMs enable assembly of multiprotein complexes, pivotal for the regulation of various aspects of cell biology in higher organisms. Despite their importance, there is a paucity of molecular tools to study SLiMs of endogenous proteins in live cells. LC3 interacting regions (LIRs), being quintessential for orchestrating diverse stages of autophagy, are a prominent example of SLiMs and mediate binding to the ubiquitin-like LC3/GABARAP family of proteins. The role of LIRs ranges from the posttranslational processing of their binding partners at early stages of autophagy to the binding of selective autophagy receptors (SARs) to the autophagosome. In order to generate tools to study LIRs in cells, we engineered high affinity binders of LIR motifs of three archetypical SARs: OPTN, p62, and NDP52. In an array of in vitro and cellular assays, the engineered binders were shown to have greatly improved affinity and specificity when compared with the endogenous LC3/GABARAP family of proteins, thus providing a unique possibility for modulating LIR interactions in living systems. We exploited these novel tools to study the impact of LIR inhibition on the fitness and the responsiveness to cytarabine treatment of THP-1 cells - a model for studying acute myeloid leukemia (AML). Our results demonstrate that inhibition of LIR of a single autophagy receptor is insufficient to sensitize the cells to cytarabine, while simultaneous inhibition of three LIR motifs in three distinct SARs reduces the IC50 of the chemotherapeutic.
Collapse
Affiliation(s)
- Mateusz Putyrski
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Frankfurt, Germany
| | - Olesya Vakhrusheva
- Department of Medicine, Hematology/Oncology, Goethe-University, Frankfurt, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Suchithra Guntur
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Andrew Vorobyov
- Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Frankfurt, Germany
| | - Christian Brandts
- Department of Medicine, Hematology/Oncology, Goethe-University, Frankfurt, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,University Cancer Center Frankfurt, Goethe-University, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Andreas Ernst
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Frankfurt, Germany
| |
Collapse
|
12
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Keyser SGL, Utz A, Bertozzi CR. Computation-Guided Rational Design of a Peptide Motif That Reacts with Cyanobenzothiazoles via Internal Cysteine-Lysine Relay. J Org Chem 2018; 83:7467-7479. [PMID: 29771122 DOI: 10.1021/acs.joc.8b00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-selective protein modification based on covalent reactions of peptide tags and small molecules is a key capability for basic research as well as for the development of new therapeutic bioconjugates. Here, we describe the computation-guided rational design of a cysteine- and lysine-containing 11-residue peptide sequence that reacts with 2-cyanobenzothiazole (CBT) derivatives. Our data show that the cysteine residue reversibly reacts with the nitrile group on the CBT moiety to form an intermediate thioimidate, which undergoes irreversible SN transfer to the lysine residue, yielding an amidine-linked product. The concepts outlined herein lay a foundation for future development of peptide tags in the context of site-selective modification of lysine residues within engineered microenvironments.
Collapse
Affiliation(s)
- Samantha G L Keyser
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | | | | |
Collapse
|
14
|
Lopes RS, Queiroz MAF, Gomes STM, Vallinoto ACR, Goulart LR, Ishak R. Phage display: an important tool in the discovery of peptides with anti-HIV activity. Biotechnol Adv 2018; 36:1847-1854. [PMID: 30012540 DOI: 10.1016/j.biotechadv.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/14/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus (HIV) remains a worldwide health problem despite huge investments and research breakthroughs, and no single drug is effective in killing the virus yet. Among new strategies to control HIV infection, the phage display (PD) technology has become a promising tool in the discovery of peptides that can be used as new drugs, or also as possible vaccine candidates. This review discusses basic aspects of PD and its use to advance two main objectives related to combating HIV-1 infection: the identification of peptides that inhibit virus replication and the identification of peptides that induce the production of neutralizing antibodies. We will cover the different approaches used for mapping and selection of mimotopes, and discuss the promising results of these biologicals as antiviral agents.
Collapse
Affiliation(s)
- Ronaldo Souza Lopes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Maria Alice Freitas Queiroz
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Samara Tatielle Monteiro Gomes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlândia (Universidade Federal de Uberlândia - UFU), Laboratory of Nanobiotechnology, Av. Amazonas s/n, Bloco 2E, Sala 248 - Campus Umuarama, Uberlândia, MG, CEP 38400-902, Brazil.
| | - Ricardo Ishak
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| |
Collapse
|
15
|
Ryvkin A, Ashkenazy H, Weiss-Ottolenghi Y, Piller C, Pupko T, Gershoni JM. Phage display peptide libraries: deviations from randomness and correctives. Nucleic Acids Res 2018; 46:e52. [PMID: 29420788 PMCID: PMC5961013 DOI: 10.1093/nar/gky077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/25/2017] [Accepted: 01/31/2018] [Indexed: 12/14/2022] Open
Abstract
Peptide-expressing phage display libraries are widely used for the interrogation of antibodies. Affinity selected peptides are then analyzed to discover epitope mimetics, or are subjected to computational algorithms for epitope prediction. A critical assumption for these applications is the random representation of amino acids in the initial naïve peptide library. In a previous study, we implemented next generation sequencing to evaluate a naïve library and discovered severe deviations from randomness in UAG codon over-representation as well as in high G phosphoramidite abundance causing amino acid distribution biases. In this study, we demonstrate that the UAG over-representation can be attributed to the burden imposed on the phage upon the assembly of the recombinant Protein 8 subunits. This was corrected by constructing the libraries using supE44-containing bacteria which suppress the UAG driven abortive termination. We also demonstrate that the overabundance of G stems from variant synthesis-efficiency and can be corrected using compensating oligonucleotide-mixtures calibrated by mass spectroscopy. Construction of libraries implementing these correctives results in markedly improved libraries that display random distribution of amino acids, thus ensuring that enriched peptides obtained in biopanning represent a genuine selection event, a fundamental assumption for phage display applications.
Collapse
Affiliation(s)
- Arie Ryvkin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Ashkenazy
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Weiss-Ottolenghi
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Piller
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan M Gershoni
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
16
|
Chevrel A, Mesneau A, Sanchez D, Celma L, Quevillon-Cheruel S, Cavagnino A, Nessler S, Li de la Sierra-Gallay I, van Tilbeurgh H, Minard P, Valerio-Lepiniec M, Urvoas A. Alpha repeat proteins (αRep) as expression and crystallization helpers. J Struct Biol 2018; 201:88-99. [DOI: 10.1016/j.jsb.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022]
|
17
|
Song IW, Park H, Park JH, Kim H, Kim SH, Yi S, Jaworski J, Sang BI. Silica formation with nanofiber morphology via helical display of the silaffin R5 peptide on a filamentous bacteriophage. Sci Rep 2017; 7:16212. [PMID: 29176625 PMCID: PMC5701198 DOI: 10.1038/s41598-017-16278-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/09/2017] [Indexed: 11/17/2022] Open
Abstract
Biological systems often generate unique and useful structures, which can have industrial relevance either as direct components or as an inspiration for biomimetic materials. For fabrication of nanoscale silica structures, we explored the use of the silaffin R5 peptide from Cylindrotheca fusiformis expressed on the surface of the fd bacteriophage. By utilizing the biomineralizing peptide component displayed on the bacteriophage surface, we found that low concentrations (0.09 mg/mL of the R5 bacteriophage, below the concentration range used in other studies) could be used to create silica nanofibers. An additional benefit of this approach is the ability of our R5-displaying phage to form silica materials without the need for supplementary components, such as aminopropyl triethoxysilane, that are typically used in such processes. Because this method for silica formation can occur under mild conditions when implementing our R5 displaying phage system, we may provide a relatively simple, economical, and environmentally friendly process for creating silica nanomaterials.
Collapse
Affiliation(s)
- In-Wong Song
- Department of Fuel Cell and Hydrogen Technology, Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyojung Park
- Department of Chemical Engineering, Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jung Han Park
- Science&Technology Policy Coordination Division, Ministry of Science, ICT and Future Planning, 47 Gwanmun-ro, Gwacheon-si, Gyeonggi-do, 13809, Republic of Korea
| | - Hyunook Kim
- Department of Environmental Engineering, 163 Seoulsiripdaero, Dongdaemun-gu, The University of Seoul, Seoul, 02504, Republic of Korea
| | - Seong Hun Kim
- Department of Organic and Nano Engineering, Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sung Yi
- Department of Fuel Cell and Hydrogen Technology, Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- Department of Chemical Engineering, Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Justyn Jaworski
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX, 76019, USA.
| | - Byoung-In Sang
- Department of Fuel Cell and Hydrogen Technology, Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- Department of Chemical Engineering, Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
18
|
Alfaleh MA, Jones ML, Howard CB, Mahler SM. Strategies for Selecting Membrane Protein-Specific Antibodies using Phage Display with Cell-Based Panning. Antibodies (Basel) 2017; 6:E10. [PMID: 31548525 PMCID: PMC6698842 DOI: 10.3390/antib6030010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Membrane proteins are attractive targets for monoclonal antibody (mAb) discovery and development. Although several approved mAbs against membrane proteins have been isolated from phage antibody libraries, the process is challenging, as it requires the presentation of a correctly folded protein to screen the antibody library. Cell-based panning could represent the optimal method for antibody discovery against membrane proteins, since it allows for presentation in their natural conformation along with the appropriate post-translational modifications. Nevertheless, screening antibodies against a desired antigen, within a selected cell line, may be difficult due to the abundance of irrelevant organic molecules, which can potentially obscure the antigen of interest. This review will provide a comprehensive overview of the different cell-based phage panning strategies, with an emphasis placed on the optimisation of four critical panning conditions: cell surface antigen presentation, non-specific binding events, incubation time, and temperature and recovery of phage binders.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
19
|
Kim EJ, Jeon CS, Hwang I, Chung TD. Translocation Pathway-Dependent Assembly of Streptavidin- and Antibody-Binding Filamentous Virus-Like Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601693. [PMID: 27762503 DOI: 10.1002/smll.201601693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Compared to well-tolerated p3 fusion, the display of fast-folding proteins fused to the minor capsid p7 and the major capsid p8, as well as in vivo biotinylation of biotin acceptor peptide (AP) fused to p7, are found to be markedly inefficient using the filamentous phage. Here, to overcome such limitations, the effect of translocation pathways, amber mutation, and phage and phagemid display systems on p7 and p8 display of antibody-binding domains are examined, while comparing the level of in vivo biotinylation of AP fused to p7 or p3. Interestingly, the in vivo biotinylation of AP occurs only in p3 fusion and the fast-folding antibody-binding scaffolds fused to p7 and p8 are best displayed via a twin-arginine translocation pathway in TG1 cells. The lower the expression level of the wild-type p8 and the smaller the size of the guest protein, the better the display of Z-domain fused to the recombinant p8. The in vivo biotinylated multifunctional filamentous virus-like particles can be vertically immobilized on streptavidin (SAV)-coated microspheres to resemble cellular microvilli-like structures, which reportedly enhance protein-protein interactions due to dramatically expanded flexible surface area.
Collapse
Affiliation(s)
- Eun Joong Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Chang Su Jeon
- Samsung Electronics Co., Ltd, Samsungjeonja-ro 1, Hwaseong-si, Gyeonggi-do, 18448, Korea
| | - Inseong Hwang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do, 16229, Korea
| |
Collapse
|
20
|
Stolz A, Putyrski M, Kutle I, Huber J, Wang C, Major V, Sidhu SS, Youle RJ, Rogov VV, Dötsch V, Ernst A, Dikic I. Fluorescence-based ATG8 sensors monitor localization and function of LC3/GABARAP proteins. EMBO J 2016; 36:549-564. [PMID: 28028054 DOI: 10.15252/embj.201695063] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a cellular surveillance pathway that balances metabolic and energy resources and transports specific cargos, including damaged mitochondria, other broken organelles, or pathogens for degradation to the lysosome. Central components of autophagosomal biogenesis are six members of the LC3 and GABARAP family of ubiquitin-like proteins (mATG8s). We used phage display to isolate peptides that possess bona fide LIR (LC3-interacting region) properties and are selective for individual mATG8 isoforms. Sensitivity of the developed sensors was optimized by multiplication, charge distribution, and fusion with a membrane recruitment (FYVE) or an oligomerization (PB1) domain. We demonstrate the use of the engineered peptides as intracellular sensors that recognize specifically GABARAP, GABL1, GABL2, and LC3C, as well as a bispecific sensor for LC3A and LC3B. By using an LC3C-specific sensor, we were able to monitor recruitment of endogenous LC3C to Salmonella during xenophagy, as well as to mitochondria during mitophagy. The sensors are general tools to monitor the fate of mATG8s and will be valuable in decoding the biological functions of the individual LC3/GABARAPs.
Collapse
Affiliation(s)
- Alexandra Stolz
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany
| | - Mateusz Putyrski
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - Ivana Kutle
- Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Jessica Huber
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Chunxin Wang
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Viktória Major
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research, The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Andreas Ernst
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany .,Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Kowalsky CA, Whitehead TA. Determination of binding affinity upon mutation for type I dockerin-cohesin complexes from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing. Proteins 2016; 84:1914-1928. [PMID: 27699856 DOI: 10.1002/prot.25175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/05/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022]
Abstract
The comprehensive sequence determinants of binding affinity for type I cohesin toward dockerin from Clostridium thermocellum and Clostridium cellulolyticum was evaluated using deep mutational scanning coupled to yeast surface display. We measured the relative binding affinity to dockerin for 2970 and 2778 single point mutants of C. thermocellum and C. cellulolyticum, respectively, representing over 96% of all possible single point mutants. The interface ΔΔG for each variant was reconstructed from sequencing counts and compared with the three independent experimental methods. This reconstruction results in a narrow dynamic range of -0.8-0.5 kcal/mol. The computational software packages FoldX and Rosetta were used to predict mutations that disrupt binding by more than 0.4 kcal/mol. The area under the curve of receiver operator curves was 0.82 for FoldX and 0.77 for Rosetta, showing reasonable agreements between predictions and experimental results. Destabilizing mutations to core and rim positions were predicted with higher accuracy than support positions. This benchmark dataset may be useful for developing new computational prediction tools for the prediction of the mutational effect on binding affinities for protein-protein interactions. Experimental considerations to improve precision and range of the reconstruction method are discussed. Proteins 2016; 84:1914-1928. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caitlin A Kowalsky
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, 48824
| | - Timothy A Whitehead
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, 48824
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
22
|
Identification and binding mechanism of phage displayed peptides with specific affinity to acidalkali treated titanium. Colloids Surf B Biointerfaces 2016; 146:307-17. [DOI: 10.1016/j.colsurfb.2016.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/27/2016] [Accepted: 06/18/2016] [Indexed: 11/20/2022]
|
23
|
Abstract
Long fascinating to biologists, viruses offer nanometer-scale benchtops for building molecular-scale devices and materials. Viruses tolerate a wide range of chemical modifications including reaction conditions, pH values, and temperatures. Recent examples of nongenetic manipulation of viral surfaces have extended viruses into applications ranging from biomedical imaging, drug delivery, tissue regeneration, and biosensors to materials for catalysis and energy generation. Chemical reactions on the phage surface include both covalent and noncovalent modifications, including some applied in conjunction with genetic modifications. Here, we survey viruses chemically augmented with capabilities limited only by imagination.
Collapse
Affiliation(s)
- Kritika Mohan
- Department of Chemistry and ‡Department of
Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Gregory A. Weiss
- Department of Chemistry and ‡Department of
Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
24
|
Zhao N, Schmitt MA, Fisk JD. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library. FEBS J 2016; 283:1351-67. [DOI: 10.1111/febs.13674] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Zhao
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
| | - Margaret A. Schmitt
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
| | - John D. Fisk
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
- Department of Chemistry; Colorado State University; Fort Collins CO USA
- School of Biomedical Engineering; Colorado State University; Fort Collins CO USA
| |
Collapse
|
25
|
Henry KA, Arbabi-Ghahroudi M, Scott JK. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 2015; 6:755. [PMID: 26300850 PMCID: PMC4523942 DOI: 10.3389/fmicb.2015.00755] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
For the past 25 years, phage display technology has been an invaluable tool for studies of protein-protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage's potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage's large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use.
Collapse
Affiliation(s)
- Kevin A. Henry
- Human Health Therapeutics Portfolio, National Research Council Canada, OttawaON, Canada
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Portfolio, National Research Council Canada, OttawaON, Canada
- School of Environmental Sciences, University of Guelph, GuelphON, Canada
- Department of Biology, Carleton University, OttawaON, Canada
| | - Jamie K. Scott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCCanada
- Faculty of Health Sciences, Simon Fraser University, BurnabyBC, Canada
| |
Collapse
|
26
|
Abstract
INTRODUCTION Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. AREAS COVERED This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. EXPERT OPINION Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.
Collapse
Affiliation(s)
- Kobra Omidfar
- Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Biosensor Research Center , Tehran , Iran
| | | |
Collapse
|
27
|
|
28
|
Chung WJ, Lee DY, Yoo SY. Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine. Int J Nanomedicine 2014; 9:5825-36. [PMID: 25540583 PMCID: PMC4270384 DOI: 10.2147/ijn.s73883] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
M13 bacteriophage (phage) has emerged as an attractive bionanomaterial owing to its genetically tunable surface chemistry and its potential to self-assemble into hierarchical structures. Furthermore, because of its unique nanoscopic structure, phage has been proposed as a model system in soft condensed physics and as a biomimetic building block for structured functional materials. Genetic engineering of phage provides great opportunities to develop novel nanomaterials with functional surface peptide motifs; however, this biological approach is generally limited to peptides containing the 20 natural amino acids. To extend the scope of phage applications, strategies involving chemical modification have been employed to incorporate a wider range of functional groups, including synthetic chemical compounds. In this review, we introduce the design of chemoselective phage functionalization and discuss how such a strategy is combined with genetic engineering for a variety of medical applications, as reported in recent literature.
Collapse
Affiliation(s)
- Woo-Jae Chung
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Doe-Young Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, Republic of Korea ; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
29
|
Hwang I. Virus outbreaks in chemical and biological sensors. SENSORS (BASEL, SWITZERLAND) 2014; 14:13592-612. [PMID: 25068866 PMCID: PMC4179090 DOI: 10.3390/s140813592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022]
Abstract
Filamentous bacteriophages have successfully been used to detect chemical and biological analytes with increased selectivity and sensitivity. The enhancement largely originates not only from the ability of viruses to provide a platform for the surface display of a wide range of biological ligands, but also from the geometric morphologies of the viruses that constitute biomimetic structures with larger surface area-to-volume ratio. This review will appraise the mechanism of multivalent display of the viruses that enables surface modification of virions either by chemical or biological methods. The accommodation of functionalized virions to various materials, including polymers, proteins, metals, nanoparticles, and electrodes for sensor applications will also be discussed.
Collapse
Affiliation(s)
- Inseong Hwang
- The Research Institute of Basic Sciences, Seoul National University, Seoul 147-779, Korea.
| |
Collapse
|
30
|
Ebrahimizadeh W, Rajabibazl M. Bacteriophage vehicles for phage display: biology, mechanism, and application. Curr Microbiol 2014; 69:109-20. [PMID: 24638925 DOI: 10.1007/s00284-014-0557-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/26/2014] [Indexed: 11/29/2022]
Abstract
The phage display technique is a powerful tool for selection of various biological agents. This technique allows construction of large libraries from the antibody repertoire of different hosts and provides a fast and high-throughput selection method. Specific antibodies can be isolated based on distinctive characteristics from a library consisting of millions of members. These features made phage display technology preferred method for antibody selection and engineering. There are several phage display methods available and each has its unique merits and application. Selection of appropriate display technique requires basic knowledge of available methods and their mechanism. In this review, we describe different phage display techniques, available bacteriophage vehicles, and their mechanism.
Collapse
Affiliation(s)
- Walead Ebrahimizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran,
| | | |
Collapse
|
31
|
Taskinen B, Airenne TT, Jänis J, Rahikainen R, Johnson MS, Kulomaa MS, Hytönen VP. A novel chimeric avidin with increased thermal stability using DNA shuffling. PLoS One 2014; 9:e92058. [PMID: 24632863 PMCID: PMC3954883 DOI: 10.1371/journal.pone.0092058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
Avidins are a family of proteins widely employed in biotechnology. We have previously shown that functional chimeric mutant proteins can be created from avidin and avidin-related protein 2 using a methodology combining random mutagenesis by recombination and selection by a tailored biopanning protocol (phage display). Here, we report the crystal structure of one of the previously selected and characterized chimeric avidin forms, A/A2-1. The structure was solved at 1.8 Å resolution and revealed that the protein fold was not affected by the shuffled sequences. The structure also supports the previously observed physicochemical properties of the mutant. Furthermore, we improved the selection and screening methodology to select for chimeric avidins with slower dissociation rate from biotin than were selected earlier. This resulted in the chimeric mutant A/A2-B, which showed increased thermal stability as compared to A/A2-1 and the parental proteins. The increased stability was especially evident at conditions of extreme pH as characterized using differential scanning calorimetry. In addition, amino acid sequence and structural comparison of the chimeric mutants and the parental proteins led to the rational design of A/A2-B I109K. This mutation further decreased the dissociation rate from biotin and yielded an increase in the thermal stability.
Collapse
Affiliation(s)
- Barbara Taskinen
- BioMediTech, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Tomi T. Airenne
- Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Rolle Rahikainen
- BioMediTech, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Mark S. Johnson
- Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Markku S. Kulomaa
- BioMediTech, University of Tampere, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
| | - Vesa P. Hytönen
- BioMediTech, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
- * E-mail:
| |
Collapse
|
32
|
Abstract
In order to comprehensively manipulate the human proteome we require a vast repertoire of pharmacological reagents. To address these needs we have developed repertoires of synthetic antibodies by phage display, where diversified oligonucleotides are used to modify the complementarity-determining regions (CDRs) of a human antigen-binding fragment (Fab) scaffold. As diversity is produced outside the confines of the mammalian immune system, synthetic antibody libraries allow us to bypass several limitations of hybridoma technology while improving the experimental parameters under which pharmacological reagents are produced. Here we describe the methodologies used to produce synthetic antibody libraries from a single human framework with diversity restricted to four CDRs. These synthetic repertoires can be extremely functional as they produce highly selective, high affinity Fabs to the majority of soluble human antigens. Finally we describe selection methodologies that allow us to overcome immuno-dominance in our selections to target a variety of epitopes per antigen. Together these methodologies allow us to produce human monoclonal antibodies to manipulate the human proteome.
Collapse
Affiliation(s)
- Jarrett J Adams
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
33
|
Frascione N, Codina-Barrios A, Bassindale AR, Taylor PG. Enhancing in vitro selection techniques to assist the discovery, understanding and use of inorganic binding peptides. Dalton Trans 2013; 42:10337-46. [PMID: 23740479 DOI: 10.1039/c3dt50541c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reflecting the increasing interest in combinatorial approaches, peptide phage display has seen an unprecedented expansion in a wide range of research areas. Its application to the discovery and analysis of metal binding peptides has opened up new research directions and largely contributed to the nanotechnology field. The rationale behind the need to identify such peptides varies depending on the final aim of the research and its application. Therefore, the possibility to modify the selection technique according to the different requirements would allow for a more systematic approach to be adopted and would ultimately provide substantial benefits. Although the standard panning method can be virtually applied to any target, its use for the identification of metal binding peptides does not provide the characteristics and the flexibility required for an efficient and tailored selection. Here we report on the development of a new panning method that can contribute to a faster, versatile and more informative analysis. Through the use of rolling-circle amplification, polymerase reaction and wild type phage, we have converted the standard selection technique into a more dynamic process in which adjustments can be evaluated and made consistently with the need of the experiment. The successfulness of the improved method is demonstrated in a number of panning experiments with different inorganic targets. The modifications applied to each selection are described and comparisons between the results obtained are made in order to extensively assess and evaluate the impact of the new process. The importance of tailoring the screening method to the specific objectives of a study is also considered. New binder sequences for the materials included in the investigation are identified; their sequences and distinctive characteristics are reported and their ability to act as templates for the nucleation of inorganic material is demonstrated and discussed.
Collapse
Affiliation(s)
- Nunzianda Frascione
- Department of Life, Health and Chemical Sciences, Open University, Venables Building, Walton Hall, Milton Keynes, UK.
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Scott Banta
- Department of Chemical Engineering, Columbia University, New York, NY 10027;
| | - Kevin Dooley
- Department of Chemical Engineering, Columbia University, New York, NY 10027;
| | - Oren Shur
- Department of Chemical Engineering, Columbia University, New York, NY 10027;
- Current affiliation: Boston Consulting Group, New York, NY 10022
| |
Collapse
|
35
|
Sherwood LJ, Hayhurst A. Hapten mediated display and pairing of recombinant antibodies accelerates assay assembly for biothreat countermeasures. Sci Rep 2012; 2:807. [PMID: 23150778 PMCID: PMC3495282 DOI: 10.1038/srep00807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/17/2012] [Indexed: 11/14/2022] Open
Abstract
A bottle-neck in recombinant antibody sandwich immunoassay development is pairing, demanding protein purification and modification to distinguish captor from tracer. We developed a simple pairing scheme using microliter amounts of E. coli osmotic shockates bearing site-specific biotinylated antibodies and demonstrated proof of principle with a single domain antibody (sdAb) that is both captor and tracer for polyvalent Marburgvirus nucleoprotein. The system could also host pairs of different sdAb specific for the 7 botulinum neurotoxin (BoNT) serotypes, enabling recognition of the cognate serotype. Inducible supE co-expression enabled sdAb populations to be propagated as either phage for more panning from repertoires or expressed as soluble sdAb for screening within a single host strain. When combined with streptavidin-g3p fusions, a novel transdisplay system was formulated to retrofit a semi-synthetic sdAb library which was mined for an anti-Ebolavirus sdAb which was immediately immunoassay ready, thereby speeding up the recombinant antibody discovery and utilization processes.
Collapse
Affiliation(s)
- Laura J. Sherwood
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Andrew Hayhurst
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
36
|
Bazan J, Całkosiński I, Gamian A. Phage display--a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccin Immunother 2012; 8:1817-28. [PMID: 22906939 DOI: 10.4161/hv.21703] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
One of the most effective molecular diversity techniques is phage display. This technology is based on a direct linkage between phage phenotype and its encapsulated genotype, which leads to presentation of molecule libraries on the phage surface. Phage display is utilized in studying protein-ligand interactions, receptor binding sites and in improving or modifying the affinity of proteins for their binding partners. Generating monoclonal antibodies and improving their affinity, cloning antibodies from unstable hybridoma cells and identifying epitopes, mimotopes and functional or accessible sites from antigens are also important advantages of this technology. Techniques originating from phage display have been applied to transfusion medicine, neurological disorders, mapping vascular addresses and tissue homing of peptides. Phages have been applicable to immunization therapies, which may lead to development of new tools used for treating autoimmune and cancer diseases. This review describes the phage display technology and presents the recent advancements in therapeutic applications of phage display.
Collapse
Affiliation(s)
- Justyna Bazan
- Department of Medical Biochemistry; Wroclaw Medical University; Wroclaw, Poland.
| | | | | |
Collapse
|
37
|
Hess GT, Cragnolini JJ, Popp MW, Allen MA, Dougan SK, Spooner E, Ploegh HL, Belcher AM, Guimaraes CP. M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins. Bioconjug Chem 2012; 23:1478-87. [PMID: 22759232 DOI: 10.1021/bc300130z] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We exploit bacterial sortases to attach a variety of moieties to the capsid proteins of M13 bacteriophage. We show that pIII, pIX, and pVIII can be functionalized with entities ranging from small molecules (e.g., fluorophores, biotin) to correctly folded proteins (e.g., GFP, antibodies, streptavidin) in a site-specific manner, and with yields that surpass those of any reported using phage display technology. A case in point is modification of pVIII. While a phage vector limits the size of the insert into pVIII to a few amino acids, a phagemid system limits the number of copies actually displayed at the surface of M13. Using sortase-based reactions, a 100-fold increase in the efficiency of display of GFP onto pVIII is achieved. Taking advantage of orthogonal sortases, we can simultaneously target two distinct capsid proteins in the same phage particle and maintain excellent specificity of labeling. As demonstrated in this work, this is a simple and effective method for creating a variety of structures, thus expanding the use of M13 for materials science applications and as a biological tool.
Collapse
Affiliation(s)
- Gaelen T Hess
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Miersch S, Sidhu SS. Synthetic antibodies: concepts, potential and practical considerations. Methods 2012; 57:486-98. [PMID: 22750306 DOI: 10.1016/j.ymeth.2012.06.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 01/08/2023] Open
Abstract
The last 100 years of enquiry into the fundamental basis of humoral immunity has resulted in the identification of antibodies as key molecular sentinels responsible for the in vivo surveillance, neutralization and clearance of foreign substances. Intense efforts aimed at understanding and exploiting their exquisite molecular specificity have positioned antibodies as a cornerstone supporting basic research, diagnostics and therapeutic applications [1]. More recently, efforts have aimed to circumvent the limitations of developing antibodies in animals by developing wholly in vitro techniques for designing antibodies of tailored specificity. This has been realized with the advent of synthetic antibody libraries that possess diversity outside the scope of natural immune repertoires and are thus capable of yielding specificities not otherwise attainable. This review examines the convergence of technologies that have contributed to the development of combinatorial phage-displayed antibody libraries. It further explores the practical concepts that underlie phage display, antibody diversity and the methods used in the generation of and selection from phage-displayed synthetic antibody libraries, highlighting specific applications in which design approaches gave rise to specificities that could not easily be obtained with libraries based upon natural immune repertories.
Collapse
Affiliation(s)
- S Miersch
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
39
|
Qi H, Lu H, Qiu HJ, Petrenko V, Liu A. Phagemid Vectors for Phage Display: Properties, Characteristics and Construction. J Mol Biol 2012; 417:129-43. [PMID: 22310045 DOI: 10.1016/j.jmb.2012.01.038] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/20/2012] [Accepted: 01/24/2012] [Indexed: 11/20/2022]
Affiliation(s)
- Huan Qi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | | | | | | | | |
Collapse
|
40
|
Abstract
Antibodies are invaluable macromolecules effectively utilized as detection reagents and therapeutics. Traditionally, researchers have relied upon the entire immunoglobulin molecule, however advances in protein engineering have ushered the use of antibody fragments as equally important biological tools such that at present, the downstream application generally dictates the antibody format employed. We provide herein robust and proven protocols for the isolation of autonomous human antibody variable heavy domains (VH). The strategy utilizes combinatorial phage-displayed libraries targeting human VH domain positions previously shown to promote autonomous behavior, and selection against a specified antigen. Subsequently, autonomous VH domains are characterized and chosen using standard biophysical methods.
Collapse
Affiliation(s)
- Raffi Tonikian
- Terrence Donnelly Center for Cellular and Biomolecular Research and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
41
|
Niederhauser B, Siivonen J, Määttä JA, Jänis J, Kulomaa MS, Hytönen VP. DNA family shuffling within the chicken avidin protein family – A shortcut to more powerful protein tools. J Biotechnol 2012; 157:38-49. [DOI: 10.1016/j.jbiotec.2011.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/30/2011] [Accepted: 10/30/2011] [Indexed: 10/15/2022]
|
42
|
Vithayathil R, Hooy RM, Cocco MJ, Weiss GA. The scope of phage display for membrane proteins. J Mol Biol 2011; 414:499-510. [PMID: 22037583 PMCID: PMC3230673 DOI: 10.1016/j.jmb.2011.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/09/2011] [Accepted: 10/12/2011] [Indexed: 02/03/2023]
Abstract
Numerous examples of phage display applied to soluble proteins demonstrate the power of the technique for protein engineering, affinity reagent discovery and structure-function studies. Recent reports have expanded phage display to include membrane proteins (MPs). The scope and limitations of MP display remain undefined. Therefore, we report data from the phage display of representative types of membrane-associated proteins including plasma, nuclear, peripheral, single and multipass. The peripheral MP neuromodulin displays robustly with packaging by conventional M13-KO7 helper phage. The monotopic MP Nogo-66 can also display on the phage surface, if packaged by the modified M13-KO7(+) helper phage. The modified phage coat of KO7(+) can better mimic the zwitterionic character of the plasma membrane. Four examples of putatively α-helical, integral MPs failed to express as fusions to an anchoring phage coat protein and therefore did not display on the phage surface. However, the β-barrel MPs ShuA (Shigella heme uptake A) and MOMP (major outer membrane protein), which pass through the membrane 22 and 16 times, respectively, can display surprisingly well on the surfaces of both conventional and KO7(+) phages. The results provide a guide for protein engineering and large-scale mutagenesis enabled by the phage display of MPs.
Collapse
Affiliation(s)
- Rosemarie Vithayathil
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Richard M. Hooy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Melanie J. Cocco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Gregory A. Weiss
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
43
|
|
44
|
Kaltenbach M, Stein V, Hollfelder F. SNAP dendrimers: multivalent protein display on dendrimer-like DNA for directed evolution. Chembiochem 2011; 12:2208-16. [PMID: 21780273 DOI: 10.1002/cbic.201100240] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Indexed: 01/25/2023]
Abstract
Display systems connect a protein with the DNA encoding it. Such systems (e.g., phage or ribosome display) have found widespread application in the directed evolution of protein binders and constitute a key element of the biotechnological toolkit. In this proof-of-concept study we describe the construction of a system that allows the display of multiple copies of a protein of interest in order to take advantage of avidity effects during affinity panning. To this end, dendrimer-like DNA is used as a scaffold with docking points that can join the coding DNA with multiple protein copies. Each DNA construct is compartmentalised in water-in-oil emulsion droplets. The corresponding protein is expressed, in vitro, inside the droplets as a SNAP-tag fusion. The covalent bond between DNA and the SNAP-tag is created by reaction with dendrimer-bound benzylguanine (BG). The ability to form dendrimer-like DNA straightforwardly from oligonucleotides bearing BG allowed the comparison of a series of templates differing in size, valency and position of BG. In model selections the most efficient constructs show recoveries of up to 0.86 % and up to 400-fold enrichments. The comparison of mono- and multivalent constructs suggests that the avidity effect enhances enrichment by up to fivefold and recovery by up to 25-fold. Our data establish a multivalent format for SNAP-display based on dendrimer-like DNA as the first in vitro display system with defined tailor-made valencies and explore a new application for DNA nanostructures. These data suggest that multivalent SNAP dendrimers have the potential to facilitate the selection of protein binders especially during early rounds of directed evolution, allowing a larger diversity of candidate binders to be recovered.
Collapse
Affiliation(s)
- Miriam Kaltenbach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK
| | | | | |
Collapse
|
45
|
Riihimäki TA, Hiltunen S, Rangl M, Nordlund HR, Määttä JAE, Ebner A, Hinterdorfer P, Kulomaa MS, Takkinen K, Hytönen VP. Modification of the loops in the ligand-binding site turns avidin into a steroid-binding protein. BMC Biotechnol 2011; 11:64. [PMID: 21658230 PMCID: PMC3201017 DOI: 10.1186/1472-6750-11-64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/09/2011] [Indexed: 01/20/2023] Open
Abstract
Background Engineered proteins, with non-immunoglobulin scaffolds, have become an important alternative to antibodies in many biotechnical and therapeutic applications. When compared to antibodies, tailored proteins may provide advantageous properties such as a smaller size or a more stable structure. Results Avidin is a widely used protein in biomedicine and biotechnology. To tailor the binding properties of avidin, we have designed a sequence-randomized avidin library with mutagenesis focused at the loop area of the binding site. Selection from the generated library led to the isolation of a steroid-binding avidin mutant (sbAvd-1) showing micromolar affinity towards testosterone (Kd ~ 9 μM). Furthermore, a gene library based on the sbAvd-1 gene was created by randomizing the loop area between β-strands 3 and 4. Phage display selection from this library led to the isolation of a steroid-binding protein with significantly decreased biotin binding affinity compared to sbAvd-1. Importantly, differential scanning calorimetry and analytical gel-filtration revealed that the high stability and the tetrameric structure were preserved in these engineered avidins. Conclusions The high stability and structural properties of avidin make it an attractive molecule for the engineering of novel receptors. This methodology may allow the use of avidin as a universal scaffold in the development of novel receptors for small molecules.
Collapse
Affiliation(s)
- Tiina A Riihimäki
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, FI-33520 Tampere, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rapali P, Radnai L, Süveges D, Harmat V, Tölgyesi F, Wahlgren WY, Katona G, Nyitray L, Pál G. Directed evolution reveals the binding motif preference of the LC8/DYNLL hub protein and predicts large numbers of novel binders in the human proteome. PLoS One 2011; 6:e18818. [PMID: 21533121 PMCID: PMC3078936 DOI: 10.1371/journal.pone.0018818] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/10/2011] [Indexed: 11/27/2022] Open
Abstract
LC8 dynein light chain (DYNLL) is a eukaryotic hub protein that is thought to function as a dimerization engine. Its interacting partners are involved in a wide range of cellular functions. In its dozens of hitherto identified binding partners DYNLL binds to a linear peptide segment. The known segments define a loosely characterized binding motif: [D/S]-4K-3X-2[T/V/I]-1Q0[T/V]1[D/E]2. The motifs are localized in disordered segments of the DYNLL-binding proteins and are often flanked by coiled coil or other potential dimerization domains. Based on a directed evolution approach, here we provide the first quantitative characterization of the binding preference of the DYNLL binding site. We displayed on M13 phage a naïve peptide library with seven fully randomized positions around a fixed, naturally conserved glutamine. The peptides were presented in a bivalent manner fused to a leucine zipper mimicking the natural dimer to dimer binding stoichiometry of DYNLL-partner complexes. The phage-selected consensus sequence V-5S-4R-3G-2T-1Q0T1E2 resembles the natural one, but is extended by an additional N-terminal valine, which increases the affinity of the monomeric peptide twentyfold. Leu-zipper dimerization increases the affinity into the subnanomolar range. By comparing crystal structures of an SRGTQTE-DYNLL and a dimeric VSRGTQTE-DYNLL complex we find that the affinity enhancing valine is accommodated in a binding pocket on DYNLL. Based on the in vitro evolved sequence pattern we predict a large number of novel DYNLL binding partners in the human proteome. Among these EML3, a microtubule-binding protein involved in mitosis contains an exact match of the phage-evolved consensus and binds to DYNLL with nanomolar affinity. These results significantly widen the scope of the human interactome around DYNLL and will certainly shed more light on the biological functions and organizing role of DYNLL in the human and other eukaryotic interactomes.
Collapse
Affiliation(s)
- Péter Rapali
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - László Radnai
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Dániel Süveges
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Veronika Harmat
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
- Protein Modeling Research Group, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Tölgyesi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | - Gergely Katona
- Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- * E-mail: (LN); (GP)
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- * E-mail: (LN); (GP)
| |
Collapse
|
47
|
Vaks L, Benhar I. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria. Methods Mol Biol 2011; 726:187-206. [PMID: 21424451 DOI: 10.1007/978-1-61779-052-2_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The increasing development of bacterial resistance to traditional antibiotics has reached alarming levels, thus there is an urgent need to develop new antimicrobial agents. To be effective, these new antimicrobials should possess novel modes of action and/or different cellular targets compared with existing antibiotics. Bacteriophages (phages) have been used for over a century as tools for the treatment of bacterial infections, for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. We describe a new application in the area of antibacterial nanomedicines where filamentous phages can be formulated as targeted drug-delivery vehicles of nanometric dimensions (phage nanomedicines) and used for therapeutic purposes. This protocol involves both genetic and chemical engineering of these phages. The genetic engineering of the phage coat, which results in the display of a target-specificity-conferring peptide or protein on the phage coat, can be used to design the drug-release mechanism and is not described herein. However, the methods used to chemically conjugate cytotoxic drugs at high density on the phage coat are described. Further, assays to measure the drug load on the surface of the phage and the potency of the system in the inhibition of growth of target cells as well as assessment of the therapeutic potential of the phages in a mouse disease model are discussed.
Collapse
Affiliation(s)
- Lilach Vaks
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | | |
Collapse
|
48
|
Jackrel ME, Cortajarena AL, Liu TY, Regan L. Screening libraries to identify proteins with desired binding activities using a split-GFP reassembly assay. ACS Chem Biol 2010; 5:553-62. [PMID: 20038141 DOI: 10.1021/cb900272j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Designer protein modules, which bind specifically to a desired target, have numerous potential applications. One approach to creating such proteins is to construct and screen libraries. Here we present a detailed description of using a split-GFP reassembly assay to screen libraries and identify proteins with novel binding properties. Attractive features of the split-GFP based screen are the absence of false positives and the simplicity, robustness, and ease of automation of the screen. Here, we describe both the construction of a naive protein library, and screening of the library using the split-GFP assay to identify proteins that bind specifically to chosen peptide sequences.
Collapse
Affiliation(s)
| | | | - Tina Y. Liu
- Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Lynne Regan
- Departments of Chemistry
- Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
49
|
Brown NG, Palzkill T. Identification and characterization of beta-lactamase inhibitor protein-II (BLIP-II) interactions with beta-lactamases using phage display. Protein Eng Des Sel 2010; 23:469-78. [PMID: 20308189 DOI: 10.1093/protein/gzq017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein-protein interactions are critical to cellular processes yet the ability to predict and rationally design interactions is limited because of incomplete knowledge of the principles governing these interactions. The beta-lactamase inhibitory protein (BLIP)/beta-lactamase interaction has become a model system to investigate protein-protein interactions and has been the focus of several structural, thermodynamic and binding specificity studies. BLIP-II also inhibits beta-lactamase but has no sequence homology with BLIP. The structure of BLIP-II in complex with TEM-1 beta-lactamase revealed that BLIP-II has a completely different structure than BLIP but it interacts with the same protruding loop-helix region of TEM-1 as does BLIP. The significance of the individual interacting residues in molecular recognition by BLIP-II is currently unknown. Therefore, a phage display vector was developed with the purpose of expressing BLIP-II onto the surface of the M13 filamentous bacteriophage. The BLIP-II displayed phage bound to TEM-1 with picomolar affinity indicating that BLIP-II is properly folded while on the surface of the phage. The phage system, as well as enzyme inhibition assays with purified proteins, revealed that BLIP-II is a more potent inhibitor than BLIP for several class A beta-lactamases with K(i) values in the low picomolar range.
Collapse
Affiliation(s)
- N G Brown
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
50
|
Wang KC, Wang X, Zhong P, Luo PP. Adapter-directed display: a modular design for shuttling display on phage surfaces. J Mol Biol 2009; 395:1088-101. [PMID: 19969002 DOI: 10.1016/j.jmb.2009.11.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/20/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
A novel adapter-directed phage display system was developed with modular features. In this system, the target protein is expressed as a fusion protein consisting of adapter GR1 from the phagemid vector, while the recombinant phage coat protein is expressed as a fusion protein consisting of adapter GR2 in the helper phage vector. Surface display of the target protein is accomplished through specific heterodimerization of GR1 and GR2 adapters, followed by incorporation of the heterodimers into phage particles. A series of engineered helper phages were constructed to facilitate both display valency and formats, based on various phage coat proteins. As the target protein is independent of a specific phage coat protein, this modular system allows the target protein to be displayed on any given phage coat protein and allows various display formats from the same vector without the need for reengineering. Here, we demonstrate the shuttling display of a single-chain Fv antibody on phage surfaces between multivalent and monovalent formats, as well as the shuttling display of an antigen-binding fragment molecule on phage coat proteins pIII, pVII, and pVIII using the same phagemid vectors combined with different helper phage vectors. This adapter-directed display concept has been applied to eukaryotic yeast surface display and to a novel cross-species display that can shuttle between prokaryotic phage and eukaryotic yeast systems.
Collapse
Affiliation(s)
- Kevin Caili Wang
- Abmaxis Inc., a wholly owned subsidiary of Merck & Co, Inc, WP26-413, 770 Sumneytown Pike, West Point, PA 19486, USA.
| | | | | | | |
Collapse
|