1
|
Guerra RM, Pagliarini DJ. Coenzyme Q biochemistry and biosynthesis. Trends Biochem Sci 2023; 48:463-476. [PMID: 36702698 PMCID: PMC10106368 DOI: 10.1016/j.tibs.2022.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023]
Abstract
Coenzyme Q (CoQ) is a remarkably hydrophobic, redox-active lipid that empowers diverse cellular processes. Although most known for shuttling electrons between mitochondrial electron transport chain (ETC) complexes, the roles for CoQ are far more wide-reaching and ever-expanding. CoQ serves as a conduit for electrons from myriad pathways to enter the ETC, acts as a cofactor for biosynthetic and catabolic reactions, detoxifies damaging lipid species, and engages in cellular signaling and oxygen sensing. Many open questions remain regarding the biosynthesis, transport, and metabolism of CoQ, which hinders our ability to treat human CoQ deficiency. Here, we recount progress in filling these knowledge gaps, highlight unanswered questions, and underscore the need for novel tools to enable discoveries and improve the treatment of CoQ-related diseases.
Collapse
Affiliation(s)
- Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Departament of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Departament of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Villalba JM, Navas P. Regulation of coenzyme Q biosynthesis pathway in eukaryotes. Free Radic Biol Med 2021; 165:312-323. [PMID: 33549646 DOI: 10.1016/j.freeradbiomed.2021.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q (CoQ, ubiquinone/ubiquinol) is a ubiquitous and unique molecule that drives electrons in mitochondrial respiratory chain and an obligatory step for multiple metabolic pathways in aerobic metabolism. Alteration of CoQ biosynthesis or its redox stage are causing mitochondrial dysfunctions as hallmark of heterogeneous disorders as mitochondrial/metabolic, cardiovascular, and age-associated diseases. Regulation of CoQ biosynthesis pathway is demonstrated to affect all steps of proteins production of this pathway, posttranslational modifications and protein-protein-lipid interactions inside mitochondria. There is a bi-directional relationship between CoQ and the epigenome in which not only the CoQ status determines the epigenetic regulation of many genes, but CoQ biosynthesis is also a target for epigenetic regulation, which adds another layer of complexity to the many pathways by which CoQ levels are regulated by environmental and developmental signals to fulfill its functions in eukaryotic aerobic metabolism.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, 41013, Spain.
| |
Collapse
|
3
|
Rajdev K, Siddiqui EM, Jadaun KS, Mehan S. Neuroprotective potential of solanesol in a combined model of intracerebral and intraventricular hemorrhage in rats. IBRO Rep 2020; 8:101-114. [PMID: 32368686 PMCID: PMC7184235 DOI: 10.1016/j.ibror.2020.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) may be caused by trauma, aneurysm and arteriovenous malformation, as can any bleeding within the intracranial vault, including brain parenchyma and adjacent meningeal spaces (aneurism and atreovenous malformation). ICH is the cerebral stroke with the least treatable form. Over time, intraventricular hemorrhage (IVH) is associated with ICH, which contributes to hydrocephalus, and the major cause of most hemorrhagic death (Due to the cerebral hemorrhage and post hemorrhagic surgeries). Most patients suffer from memory impairment, grip strength, posture, and cognitive dysfunctions attributable to cerebral hemorrhage or post-brain hemorrhagic surgery. Nevertheless, a combined model of ICH based IVH is not present pre-clinically. Autologous blood (ALB) injection (20 μl/5 min) in the rat brain triggers hemorrhage, such as factors that further interfere with the normal functioning of neuroinflammatory cytokines, oxidative stress, and neurotransmitter dysfunction, such as CoQ10 insufficiency and dysregulation of mitochondrial ETC-complexes. For the prevention of post-brain hemorrhagic behavioral and neurochemical dysfunctions, there is no specific drug treatment available, only available therapy used to provide symptomatic relief. The current study reveals that long-term administration of Solanesol (SNL) 40 and 60 mg/kg alone and in combination with available drug therapy Donepezil (DNP) 3 mg/kg, Memantine (MEM) 20 mg/kg, Celecoxib (CLB) 20 mg/kg, Pregabalin (PGB) 30 mg/kg, may provide the neuroprotective effect by improving behavioral and neurochemical deficits, and gross pathological changes in ALB induced combined experimental model of ICH-IVH in post brain hemorrhagic conditions in rats. Thus, SNL can be a potential therapeutic approach to improve neuronal mitochondrial dysfunction associated with post brain hemorrhagic behavioral and neurochemical alterations.
Collapse
Affiliation(s)
- Kajal Rajdev
- Neuropharmacology Division, ISF College of Pharmacy, Moga, 142001 Punjab, India
| | | | | | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, 142001 Punjab, India
| |
Collapse
|
4
|
Tiefenbach J, Magomedova L, Liu J, Reunov AA, Tsai R, Eappen NS, Jockusch RA, Nislow C, Cummins CL, Krause HM. Idebenone and coenzyme Q 10 are novel PPARα/γ ligands, with potential for treatment of fatty liver diseases. Dis Model Mech 2018; 11:11/9/dmm034801. [PMID: 30171034 PMCID: PMC6177011 DOI: 10.1242/dmm.034801] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Current peroxisome proliferator-activated receptor (PPAR)-targeted drugs, such as the PPARγ-directed diabetes drug rosiglitazone, are associated with undesirable side effects due to robust agonist activity in non-target tissues. To find new PPAR ligands with fewer toxic effects, we generated transgenic zebrafish that can be screened in high throughput for new tissue-selective PPAR partial agonists. A structural analog of coenzyme Q10 (idebenone) that elicits spatially restricted partial agonist activity for both PPARα and PPARγ was identified. Coenzyme Q10 was also found to bind and activate both PPARs in a similar fashion, suggesting an endogenous role in relaying the states of mitochondria, peroxisomes and cellular redox to the two receptors. Testing idebenone in a mouse model of type 2 diabetes revealed the ability to reverse fatty liver development. These findings indicate new mechanisms of action for both PPARα and PPARγ, and new potential treatment options for nonalcoholic fatty liver disease (NAFLD) and steatosis. This article has an associated First Person interview with the first author of the paper. Summary: A zebrafish screen identifies a novel PPARα/γ ligand, idebenone, with potential for treatment of fatty liver diseases, as seen by testing it in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Jens Tiefenbach
- University of Toronto, Donnelly Ctr., 160 College St, Toronto, ON M5S 3E1, Canada .,InDanio Bioscience Inc., 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, 144 College St, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jiabao Liu
- University of Toronto, Donnelly Ctr., 160 College St, Toronto, ON M5S 3E1, Canada
| | - Arkadiy A Reunov
- InDanio Bioscience Inc., 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ricky Tsai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, 144 College St, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Neena S Eappen
- Department of Chemistry, 80 St George St, University of Toronto, Toronto, ON M5S 3H4, Canada
| | - Rebecca A Jockusch
- Department of Chemistry, 80 St George St, University of Toronto, Toronto, ON M5S 3H4, Canada
| | - Corey Nislow
- The University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, 144 College St, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Henry M Krause
- University of Toronto, Donnelly Ctr., 160 College St, Toronto, ON M5S 3E1, Canada .,InDanio Bioscience Inc., 160 College Street, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Gutierrez-Mariscal FM, Yubero-Serrano EM, Villalba JM, Lopez-Miranda J. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit Rev Food Sci Nutr 2018; 59:2240-2257. [DOI: 10.1080/10408398.2018.1442316] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Francisco M. Gutierrez-Mariscal
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena M. Yubero-Serrano
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain
| | - Jose Lopez-Miranda
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q 10 Supplementation in Aging and Disease. Front Physiol 2018; 9:44. [PMID: 29459830 PMCID: PMC5807419 DOI: 10.3389/fphys.2018.00044] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential component of the mitochondrial electron transport chain and an antioxidant in plasma membranes and lipoproteins. It is endogenously produced in all cells by a highly regulated pathway that involves a mitochondrial multiprotein complex. Defects in either the structural and/or regulatory components of CoQ complex or in non-CoQ biosynthetic mitochondrial proteins can result in a decrease in CoQ concentration and/or an increase in oxidative stress. Besides CoQ10 deficiency syndrome and aging, there are chronic diseases in which lower levels of CoQ10 are detected in tissues and organs providing the hypothesis that CoQ10 supplementation could alleviate aging symptoms and/or retard the onset of these diseases. Here, we review the current knowledge of CoQ10 biosynthesis and primary CoQ10 deficiency syndrome, and have collected published results from clinical trials based on CoQ10 supplementation. There is evidence that supplementation positively affects mitochondrial deficiency syndrome and the symptoms of aging based mainly on improvements in bioenergetics. Cardiovascular disease and inflammation are alleviated by the antioxidant effect of CoQ10. There is a need for further studies and clinical trials involving a greater number of participants undergoing longer treatments in order to assess the benefits of CoQ10 treatment in metabolic syndrome and diabetes, neurodegenerative disorders, kidney diseases, and human fertility.
Collapse
Affiliation(s)
- Juan D Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| |
Collapse
|
7
|
Rodríguez-Aguilera JC, Cortés AB, Fernández-Ayala DJM, Navas P. Biochemical Assessment of Coenzyme Q 10 Deficiency. J Clin Med 2017; 6:jcm6030027. [PMID: 28273876 PMCID: PMC5372996 DOI: 10.3390/jcm6030027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q10 (CoQ10) deficiency syndrome includes clinically heterogeneous mitochondrial diseases that show a variety of severe and debilitating symptoms. A multiprotein complex encoded by nuclear genes carries out CoQ10 biosynthesis. Mutations in any of these genes are responsible for the primary CoQ10 deficiency, but there are also different conditions that induce secondary CoQ10 deficiency including mitochondrial DNA (mtDNA) depletion and mutations in genes involved in the fatty acid β-oxidation pathway. The diagnosis of CoQ10 deficiencies is determined by the decrease of its content in skeletal muscle and/or dermal skin fibroblasts. Dietary CoQ10 supplementation is the only available treatment for these deficiencies that require a rapid and distinct diagnosis. Here we review methods for determining CoQ10 content by HPLC separation and identification using alternative approaches including electrochemical detection and mass spectrometry. Also, we review procedures to determine the CoQ10 biosynthesis rate using labeled precursors.
Collapse
Affiliation(s)
- Juan Carlos Rodríguez-Aguilera
- Laboratorio de Fisiopatología Celular y Bioenergética, 41013 Sevilla, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CISC, 41013 Sevilla, Spain.
| | - Ana Belén Cortés
- Laboratorio de Fisiopatología Celular y Bioenergética, 41013 Sevilla, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CISC, 41013 Sevilla, Spain.
| | - Daniel J M Fernández-Ayala
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CISC, 41013 Sevilla, Spain.
- Centro Andaluz de Biología del Desarrollo, 41013 Sevilla, Spain.
| | - Plácido Navas
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CISC, 41013 Sevilla, Spain.
- Centro Andaluz de Biología del Desarrollo, 41013 Sevilla, Spain.
| |
Collapse
|
8
|
Coenzyme Q biosynthesis and its role in the respiratory chain structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1073-1078. [PMID: 26970214 DOI: 10.1016/j.bbabio.2016.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 01/23/2023]
Abstract
Coenzyme Q (CoQ) is a unique electron carrier in the mitochondrial respiratory chain, which is synthesized on-site by a nuclear encoded multiprotein complex. CoQ receives electrons from different redox pathways, mainly NADH and FADH2 from tricarboxylic acid pathway, dihydroorotate dehydrogenase, electron transfer flavoprotein dehydrogenase and glycerol-3-phosphate dehydrogenase that support key aspects of the metabolism. Here we explore some lines of evidence supporting the idea of the interaction of CoQ with the respiratory chain complexes, contributing to their superassembly, including respirasome, and its role in reactive oxygen species production in the mitochondrial inner membrane. We also review the current knowledge about the involvement of mitochondrial genome defects and electron transfer flavoprotein dehydrogenase mutations in the induction of secondary CoQ deficiency. This mechanism would imply specific interactions coupling CoQ itself or the CoQ-biosynthetic apparatus with the respiratory chain components. These interactions would regulate mitochondrial CoQ steady-state levels and function. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
|
9
|
Cascajo MV, Abdelmohsen K, Noh JH, Fernández-Ayala DJM, Willers IM, Brea G, López-Lluch G, Valenzuela-Villatoro M, Cuezva JM, Gorospe M, Siendones E, Navas P. RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7. RNA Biol 2015; 13:622-34. [PMID: 26690054 PMCID: PMC7609068 DOI: 10.1080/15476286.2015.1119366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3′-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.
Collapse
Affiliation(s)
- María V Cascajo
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Kotb Abdelmohsen
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Ji Heon Noh
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Daniel J M Fernández-Ayala
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Imke M Willers
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Gloria Brea
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Guillermo López-Lluch
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Marina Valenzuela-Villatoro
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - José M Cuezva
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Myriam Gorospe
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Emilio Siendones
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Plácido Navas
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| |
Collapse
|
10
|
Effects of various squalene epoxides on coenzyme Q and cholesterol synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:977-86. [DOI: 10.1016/j.bbalip.2014.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022]
|
11
|
Bentinger M, Tekle M, Dallner G, Brismar K, Gustafsson JÅ, Steffensen KR, Catrina SB. Influence of liver-X-receptor on tissue cholesterol, coenzyme Q and dolichol content. Mol Membr Biol 2012; 29:299-308. [PMID: 22694168 DOI: 10.3109/09687688.2012.694484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The organ content of the mevalonate pathway lipids was investigated in liver-X-receptor (LXR) α, β and double knock-out mice. An extensive or moderate increase of total cholesterol in the double KO mice was found in all organs elicited by the increase of the esterified form. In LXRα and double KO mice, coenzyme Q (CoQ) was decreased in liver and increased in spleen, thymus and lung, while dolichol was increased in all organs investigated. This effect was confirmed using LXR- agonist GW 3965. Analysis of CoQ distribution in organelles showed that the modifications are present in all cellular compartments and that the increase of the lipid in mitochondria was the result of a net increase of CoQ without changing the number of mitochondria. It appears that LXR influences not only cellular cholesterol homeostasis but also the metabolism of CoQ and dolichol, in an indirect manner.
Collapse
Affiliation(s)
- Magnus Bentinger
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
12
|
Ioannou N, Hargreaves IP, Allen G, Duberley K, Land JM, Heales SJR. Bezafibrate induced increase in mitochondrial electron transport chain complex IV activity in human astrocytoma cells: Implications for mitochondrial cytopathies and neurodegenerative diseases. Biofactors 2010; 36:468-73. [PMID: 20872762 DOI: 10.1002/biof.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 07/10/2010] [Indexed: 01/08/2023]
Abstract
Mitochondrial encephalomyopathies resulting from electron transport chain (ETC) dysfunction can present with a wide spectrum of clinical manifestations having significant neuropathology and a progressive nature. Despite advances in diagnosis of ETC disorders, treatment still remains inadequate. A recent study in fibroblasts and myoblasts revealed the ability of fibrate treatment to correct ETC enzyme deficiencies. Therefore, fibrates may represent potential therapeutic agents to correct the neurological ETC impairment responsible for the encephalopathic presentation of these disorders. Consequently, this study assessed the effect of bezafibrate on human astrocytoma (HA) 1321N cell ETC activity and coenzyme Q(10) (CoQ(10) ) status. HA cells were incubated for 72 H with 300 μM or 500 μM bezafibrate and for 7 days with only 500 μM bezafibrate. A significant effect on ETC activity was observed after 7 days incubation with 500 μM bezafibrate yielding a 130% (P < 0.05) increase in complex IV activity, accompanied by a 33% (P < 0.05) increase in cellular ATP level and a 25% (P < 0.001) decrease in extracellular lactate/pyruvate ratio compared to control levels. Following 7 days culture with bezafibrate, the CoQ(10) status of the HA cells appeared to increase although this was not found to be significant. The results of this study have indicated evidence of a bezafibrate induced increase in ETC complex IV activity. Further studies are required to assess the ability of bezafibrate treatment to correct neurological ETC impairment in available animal models of ETC dysfunction before the therapeutic efficacy of this pharmacological agent can be further considered in the treatment of the encephalopathic presentation of ETC disorders.
Collapse
Affiliation(s)
- Nicola Ioannou
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | | | | | | |
Collapse
|
13
|
Bentinger M, Tekle M, Dallner G. Coenzyme Q – Biosynthesis and functions. Biochem Biophys Res Commun 2010; 396:74-9. [PMID: 20494114 DOI: 10.1016/j.bbrc.2010.02.147] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/21/2010] [Indexed: 11/16/2022]
Affiliation(s)
- Magnus Bentinger
- Rolf Luft Centre for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Brea-Calvo G, Siendones E, Sánchez-Alcázar JA, de Cabo R, Navas P. Cell survival from chemotherapy depends on NF-kappaB transcriptional up-regulation of coenzyme Q biosynthesis. PLoS One 2009; 4:e5301. [PMID: 19390650 PMCID: PMC2669882 DOI: 10.1371/journal.pone.0005301] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/26/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Coenzyme Q (CoQ) is a lipophilic antioxidant that is synthesized by a mitochondrial complex integrated by at least ten nuclear encoded COQ gene products. CoQ increases cell survival under different stress conditions, including mitochondrial DNA (mtDNA) depletion and treatment with cancer drugs such as camptothecin (CPT). We have previously demonstrated that CPT induces CoQ biosynthesis in mammal cells. METHODOLOGY/PRINCIPAL FINDINGS CPT activates NF-kappaB that binds specifically to two kappaB binding sites present in the 5'-flanking region of the COQ7 gene. This binding is functional and induces both the COQ7 expression and CoQ biosynthesis. The inhibition of NF-kappaB activation increases cell death and decreases both, CoQ levels and COQ7 expression induced by CPT. In addition, using a cell line expressing very low of NF-kappaB, we demonstrate that CPT was incapable of enhancing enhance both CoQ biosynthesis and COQ7 expression in these cells. CONCLUSIONS/SIGNIFICANCE We demonstrate here, for the first time, that a transcriptional mechanism mediated by NF-kappaB regulates CoQ biosynthesis. This finding contributes new data for the understanding of the regulation of the CoQ biosynthesis pathway.
Collapse
Affiliation(s)
- Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Sevilla, Spain
| | - Emilio Siendones
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Sevilla, Spain
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Sevilla, Spain
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Sevilla, Spain
| |
Collapse
|
15
|
Padilla S, Tran UC, Jiménez-Hidalgo M, López-Martín JM, Martín-Montalvo A, Clarke CF, Navas P, Santos-Ocaña C. Hydroxylation of demethoxy-Q6 constitutes a control point in yeast coenzyme Q6 biosynthesis. Cell Mol Life Sci 2009; 66:173-86. [PMID: 19002377 PMCID: PMC3070445 DOI: 10.1007/s00018-008-8547-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Coenzyme Q is a lipid molecule required for respiration and antioxidant protection. Q biosynthesis in Saccharomyces cerevisiae requires nine proteins (Coq1p-Coq9p). We demonstrate in this study that Q levels are modulated during growth by its conversion from demethoxy-Q (DMQ), a late intermediate. Similar conversion was produced when cells were subjected to oxidative stress conditions. Changes in Q(6)/DMQ(6) ratio were accompanied by changes in COQ7 gene mRNA levels encoding the protein responsible for the DMQ hydroxylation, the penultimate step in Q biosynthesis pathway. Yeast coq null mutant failed to accumulate any Q late biosynthetic intermediate. However, in coq7 mutants the addition of exogenous Q produces the DMQ synthesis. Similar effect was produced by over-expressing ABC1/COQ8. These results support the existence of a biosynthetic complex that allows the DMQ(6) accumulation and suggest that Coq7p is a control point for the Q biosynthesis regulation in yeast.
Collapse
Affiliation(s)
- S. Padilla
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), Carretera de Utrera, km 1, ISCIII, 41013 Sevilla, Spain
| | - U. C. Tran
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, 90095 CA USA
| | - M. Jiménez-Hidalgo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), Carretera de Utrera, km 1, ISCIII, 41013 Sevilla, Spain
| | - J. M. López-Martín
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), Carretera de Utrera, km 1, ISCIII, 41013 Sevilla, Spain
| | - A. Martín-Montalvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), Carretera de Utrera, km 1, ISCIII, 41013 Sevilla, Spain
| | - C. F. Clarke
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, 90095 CA USA
| | - P. Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), Carretera de Utrera, km 1, ISCIII, 41013 Sevilla, Spain
| | - C. Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), Carretera de Utrera, km 1, ISCIII, 41013 Sevilla, Spain
| |
Collapse
|
16
|
Bentinger M, Tekle M, Brismar K, Chojnacki T, Swiezewska E, Dallner G. Polyisoprenoid Epoxides Stimulate the Biosynthesis of Coenzyme Q and Inhibit Cholesterol Synthesis. J Biol Chem 2008; 283:14645-53. [DOI: 10.1074/jbc.m710202200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Abstract
Uptake of dietary coenzyme Q (CoQ) into organs is limited but there are some exceptions such as adrenal glands and ovaries. Under deficient conditions an optimal solution could be stimulation of the endogenous synthesis. In rodent exercise, cold exposure and a few substances elevate the CoQ levels to some extent. Investigations of the nuclear receptors PPARalpha, RXRalpha and LXRalpha&beta did not answer the question which nuclear receptor regulates CoQ biosynthesis and at present we cannot design a ligand for upregulation of the synthesis. Upon ultraviolet irradiation of CoQ a number of products are formed which influence the synthesis of the mevalonate pathway lipids. Among them epoxidated derivatives were identified. Upon chemical epoxidation of a series of polyisoprenoids it was found that none of the tested poly-cis polyisoprenols had any effect but some of the all-trans polyisoprenols stimulated CoQ synthesis and in some cases also inhibited cholesterol biosynthesis. Tocotrienol epoxides were proved to be very efficient, those having one epoxide in the side chain doubled or trebled the CoQ synthesis while those with two epoxides additionally also inhibited cholesterol synthesis by 50-90%. The elevation of CoQ synthesis was elicited by increased mRNA levels for biosynthetic enzymes while the inhibition point in the cholesterol synthesis was localized to oxidosqualene cyclase.
Collapse
Affiliation(s)
- Magnus Bentinger
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion 2007; 7 Suppl:S41-50. [PMID: 17482888 DOI: 10.1016/j.mito.2007.02.006] [Citation(s) in RCA: 342] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/01/2007] [Accepted: 02/18/2007] [Indexed: 01/23/2023]
Abstract
A number of functions for coenzyme Q (CoQ) have been established during the years but its role as an effective antioxidant of the cellular membranes remains of dominating interest. This compound is our only endogenously synthesized lipid soluble antioxidant, present in all membranes and exceeding both in amount and efficiency that of other antioxidants. The protective effect is extended to lipids, proteins and DNA mainly because of its close localization to the oxidative events and the effective regeneration by continuous reduction at all locations. Its biosynthesis is influenced by nuclear receptors which may give the possibility, in the future, by using agonists or antagonists, of reestablishing the normal level in deficiencies caused by genetic mutations, aging or cardiomyopathy. An increase in CoQ concentration in specific cellular compartments in the presence of various types of oxidative stress appears to be of considerable interest.
Collapse
Affiliation(s)
- Magnus Bentinger
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Brea-Calvo G, Rodríguez-Hernández A, Fernández-Ayala DJM, Navas P, Sánchez-Alcázar JA. Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell lines. Free Radic Biol Med 2006; 40:1293-302. [PMID: 16631519 DOI: 10.1016/j.freeradbiomed.2005.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 10/13/2005] [Accepted: 11/16/2005] [Indexed: 11/17/2022]
Abstract
Free radicals have been implicated in the action of many chemotherapeutic drugs. Here we tested the hypothesis that camptothecin and other chemotherapeutic drugs, such as etoposide, doxorubicin, and methotrexate, induce an increase in coenzyme Q(10) levels as part of the antioxidant defense against free radical production under these anticancer treatments in cancer cell lines. Chemotherapy treatment induced both free radical production and an increase in coenzyme Q(10) levels in all the cancer cell lines tested. Reduced coenzyme Q(10) form levels were particularly enhanced. Coenzyme Q(10)-increased levels were associated with up-regulation of COQ genes expression, involved in coenzyme Q(10) biosynthesis. At the translational level, COQ7 protein expression levels were also increased. Furthermore, coenzyme Q(10) biosynthesis inhibition blocked camptothecin-induced coenzyme Q(10) increase, and enhanced camptothecin cytotoxicity. Our findings suggest that coenzyme Q(10) increase is implicated in the cellular defense under chemotherapy treatment and may contribute to cell survival.
Collapse
Affiliation(s)
- Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, Spain
| | | | | | | | | |
Collapse
|
20
|
Asano A, Kobayashi J, Murase Y, Nohara A, Kawashiri MA, Inazu A, Shimizu M, Mabuchi H. Effects of Fenofibrate Therapy on Plasma Ubiquinol-10 and Ubiquinone-10 Levels in Japanese Patients with Hyperlipidemia and Type 2 Diabetes Mellitus. Pharmacotherapy 2006; 26:447-51. [PMID: 16553501 DOI: 10.1592/phco.26.4.447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
STUDY OBJECTIVE To assess the effects of fenofibrate therapy on concentrations of plasma ubiquinol-10 and ubiquinone-10-the reduced and oxidized forms, respectively, of coenzyme Q(10). DESIGN Prospective, open-label, non-controlled study. SETTING University clinic and laboratory. PATIENTS Eighteen patients with hyperlipidemia and type 2 diabetes mellitus. INTERVENTION Patients received fenofibrate 150 mg/day for 12 weeks. MEASUREMENTS AND MAIN RESULTS Metabolic parameters were assessed 4, 8, and 12 weeks after the start of fenofibrate treatment. Plasma ubiquinol-10 and ubiquinone-10 levels were measured by reverse-phase high-performance liquid chromatography. At 4, 8, and 12 weeks, significant reductions in fasting triglyceride levels and significant increases in high-density lipoprotein cholesterol levels were noted. Total cholesterol, low-density lipoprotein cholesterol, fasting plasma glucose, and adiponectin levels, however, did not change significantly. Plasma ubiquinol-10 concentrations significantly increased after 8 and 12 weeks (p<0.05 for both), whereas ubiquinone-10 concentrations tended to decrease, especially at 12 weeks. CONCLUSION Our findings suggest that fenofibrate may help produce energy or prevent oxidation by increasing plasma ubiquinol-10 concentration; this effect may protect against the development and progression of atherosclerosis. In addition, treatment with fenofibrate demonstrated a favorable effect on serum lipid parameters.
Collapse
Affiliation(s)
- Akimichi Asano
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Garbe TR. Co-induction of methyltransferase Rv0560c by naphthoquinones and fibric acids suggests attenuation of isoprenoid quinone action in Mycobacterium tuberculosis. Can J Microbiol 2005; 50:771-8. [PMID: 15644891 DOI: 10.1139/w04-067] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The superoxide generator menadione was previously demonstrated as an inducer of growth stage dependent protein patterns in Mycobacterium tuberculosis. The present study refines this observation by characterizing a novel 27-kDa protein that had not been observed in previous studies relying on younger cultures. A very similar response, based on two-dimensional gel electrophoretic analyses, was induced by the closely related naphthoquinone plumbagin. The 27-kDa protein was also induced by the pro-oxidant peroxisome proliferator gemfibrozil and to a lesser extent by the structurally related compounds fenofibrate and clofibrate. N-terminal sequence data of proteolytic fragments from the 27-kDa protein demonstrated its identity with protein Rv0560c, previously demonstrated to be inducible by salicylate, which also possesses peroxisome proliferating properties. Protein Rv0560c bears three conserved motifs characteristic of S-adenosylmethionine-dependent methyltransferases. Further sequence similarities suggest a function in the bio syn thesis of isoprenoid compounds, e.g., tocopherol, ubiquinone, and sterols. Such involvement is supported by the recognized yet unexplained widespread interference of menadione, salicylate, and fibrates with the isoprenoid quinones ubiquinone, menaquinone, and vitamin K. Induction of Rv0560c by fibrates, salicylate, and naphthoquinones is thus suggested to be caused by action on the plasma membrane, reminiscent of cytochrome P450BM-3 induction by fibrates in Bacillus megaterium, which catalyzes the hydroxylation of fatty acids and thus modulates membrane properties.
Collapse
Affiliation(s)
- Thomas R Garbe
- Department of Microbiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78285-7739, USA.
| |
Collapse
|
22
|
Khan SA. Effects of Dehydroepiandrosterone (DHEA) on Ubiquinone and Catalase in the Livers of Male F-344 Rats. Biol Pharm Bull 2005; 28:1301-3. [PMID: 15997119 DOI: 10.1248/bpb.28.1301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adrenal steroid, dehydroepiandrosterone (DHEA) acts as a peroxisome proliferator in the rodents. The present study examined the effects on cellular antioxidants ubiquinone and catalase in the liver of DHEA-treated rats. When administered to male F-344 rats for 8 weeks, DHEA produced a significant increase in hepatic ubiquinone-9 and lipid peroxide levels while no change was observed after 2 weeks. Activity of catalase, in contrast, followed an inverse pattern, being significantly induced at 2 weeks with a return to normal levels after 8 weeks. A marked reduction of ubiquinone-10 in DHEA-treated rat livers was only observed after 2 weeks. These findings indicate the potentials of high dose DHEA to modulate ubiquinone in rat hepatic tissue.
Collapse
Affiliation(s)
- Seher Akhtar Khan
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
23
|
Le Jossic-Corcos C, Pastori GM, Duclos S, Kawabe Y, Pineau T, Bournot P. Peroxisome proliferator-activated receptor alpha (PPARalpha) activators induce hepatic farnesyl diphosphate synthase gene expression in rodents. J Steroid Biochem Mol Biol 2004; 88:203-11. [PMID: 15084352 DOI: 10.1016/j.jsbmb.2003.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 11/04/2003] [Indexed: 10/26/2022]
Abstract
Fibrates are hypolipidemic drugs that exert multiple effects on lipid metabolism by activating peroxisome proliferator-activated receptor alpha (PPARalpha) and modulating the expression of many target genes. In order to investigate the link between PPARalpha and cholesterol synthesis, we analysed the effect of fibrates on expression of the farnesyl diphosphate synthase (FPP synthase) gene, known to be regulated by sterol regulatory element-binding proteins (SREBPs), in conjunction with HMG-CoA reductase. In wild-type mice, both fenofibrate and WY 14,643 induced FPP synthase gene expression, an effect impaired in PPARalpha-null mice. A three-fold induction was observed in ciprofibrate-treated rat hepatocytes, in primary culture. This effect was decreased in presence of 5,6-dichlorobenzimidazole riboside (DRB) and cycloheximide (CHX), transcription and translation inhibitors, respectively. Acyl-CoA oxidase (AOX), a bona fide PPARalpha target gene, was induced by ciprofibrate but slower and more strongly than FPP synthase. In addition, induction of FPP synthase gene expression was abolished in the presence of 25-hydroxycholesterol (25-OH Chol). Thus, activation of PPARalpha by fibrates induced FPP synthase gene expression in both hepatocytes in culture and in mouse liver. This effect is likely to be dependent on cellular sterol level, possibly through SREBP-mediated transcriptional activation.
Collapse
Affiliation(s)
- Catherine Le Jossic-Corcos
- Laboratoire de Biologie Moleculaire et Cellulaire (GDR CNRS no. 2583), Université de Bourgogne, Dijon 21000, France.
| | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Jacob Grünler
- Department of Molecular Medicine, Karolinska Hospital, Karolinska Institutet Medical School, Stockholm, Sweden
| | | |
Collapse
|
25
|
Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1660:171-99. [PMID: 14757233 DOI: 10.1016/j.bbamem.2003.11.012] [Citation(s) in RCA: 705] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coenzyme Q (CoQ) is present in all cells and membranes and in addition to be a member of the mitochondrial respiratory chain it has also several other functions of great importance for the cellular metabolism. This review summarizes the findings available to day concerning CoQ distribution, biosynthesis, regulatory modifications and its participation in cellular metabolism. There are a number of indications that this lipid is not always functioning by its direct presence at the site of action but also using e.g. receptor expression modifications, signal transduction mechanisms and action through its metabolites. The biosynthesis of CoQ is studied in great detail in bacteria and yeast but only to a limited extent in animal tissues and therefore the informations available is restricted. However, it is known that the CoQ is compartmentalized in the cell with multiple sites of biosynthesis, breakdown and regulation which is the basis of functional specialization. Some regulatory mechanisms concerning amount and biosynthesis are established and nuclear transcription factors are partly identified in this process. Using appropriate ligands of nuclear receptors the biosynthetic rate can be increased in experimental system which raises the possibility of drug-induced upregulation of the lipid in deficiency. During aging and pathophysiological conditions the tissue concentration of CoQ is modified which influences cellular functions. In this case the extent of disturbances is dependent on the localization and the modified distribution of the lipid at cellular and membrane levels.
Collapse
Affiliation(s)
- Mikael Turunen
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
26
|
Peters JM, Aoyama T, Burns AM, Gonzalez FJ. Bezafibrate is a dual ligand for PPARalpha and PPARbeta: studies using null mice. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1632:80-9. [PMID: 12782154 DOI: 10.1016/s1388-1981(03)00065-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bezafibrate is a known activator of peroxisome proliferator-activated receptors (PPARs) that can activate both PPARalpha and PPARbeta. To determine the role(s) of these receptors in mediating the biological effects of this chemical, the effect of bezafibrate was examined in PPARalpha-null and PPARbeta-null mice. Wild-type, PPARalpha-null, or PPARbeta-null mice were fed either a control diet or one containing 0.5% bezafibrate for 10 days. Bezafibrate feeding caused a significant increase in liver weight in wild-type and PPARbeta-null mice compared to controls, while liver weight was unchanged in bezafibrate-fed PPARalpha-null mice. Gonadal adipose stores were significantly smaller in wild-type and PPARbeta-null mice fed bezafibrate than in controls, and this effect was not found in similarly fed PPARalpha-null mice. Analysis of liver, white adipose tissue, and intestinal mRNAs showed that bezafibrate caused similar changes of mRNAs encoding lipid metabolizing enzymes in wild-type and PPARbeta-null mice compared to controls. Interestingly, in PPARalpha-null mice, bezafibrate also induced several mRNAs previously thought to be solely controlled by PPARalpha, showing that the effects of this drug are not exclusively modulated by this PPAR isoform. Western blot analysis of liver protein was consistent with changes in mRNA expression showing that the alterations in mRNA expression correlate with protein expression in this tissue. Results from these studies demonstrate that the effect of bezafibrate is mediated in large part by PPARalpha, although some changes in gene expression are dependent on PPARbeta. In contrast to other PPARalpha ligands such as WY-14,643, induction of some target genes by bezafibrate can also be modulated in the absence of a functional PPARalpha.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary Science, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, 226 Fenske Laboratory, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
27
|
Bentinger M, Turunen M, Zhang XX, Wan YJY, Dallner G. Involvement of retinoid X receptor alpha in coenzyme Q metabolism. J Mol Biol 2003; 326:795-803. [PMID: 12581641 DOI: 10.1016/s0022-2836(02)01447-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nuclear retinoid X receptor alpha (RXRalpha) is the heterodimer partner in several nuclear receptors, some of them regulating lipid biosynthesis. Since coenzyme Q (CoQ) levels are greatly modified in aging and a number of diseases, we have investigated the involvement of RXRalpha in the biosynthetic regulation of this lipid by using a hepatocyte-specific RXRalpha-deficient mouse strain (RXRalpha-def). In the receptor-deficient liver, the amount of CoQ decreased to half of the control, and it was demonstrated that this decrease was caused by a significantly lowered rate of biosynthesis. On the other hand, induction of CoQ was extensive in both control and RXRalpha-def liver using the peroxisomal inducer di(2-ethylhexyl)phthalate (DEHP). Since the RXRalpha deficiency was specific to liver, no change in CoQ content or biosynthesis was observed in kidney. The other mevalonate pathway lipids, cholesterol and dolichol, were unchanged in the RXRalpha-def liver. Upon treatment with DEHP, cholesterol decreased in the control but remained unchanged in the receptor-deficient mice. In control mice, cold exposure elevated CoQ levels by 60%, but this induction did not occur in the liver of RXRalpha-def mice. In contrast, PPARalpha-null mice, which lack induction upon treatment with peroxisomal inducers, respond to cold exposure and CoQ content is increased. The amount of cholesterol decreased in both control and RXRalpha-def liver upon cold treatment. The results demonstrate that RXRalpha is required for CoQ biosynthesis and for its induction upon cold treatment, but does not appear to be involved in the basic synthesis of cholesterol and dolichol. The receptor is not involved in the elevated CoQ biosynthesis during peroxisomal induction.
Collapse
Affiliation(s)
- Magnus Bentinger
- Department of Biochemistry and Biophysics, Stockholm University, 10391 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
28
|
Wheeler MD, Smutney OM, Check JF, Rusyn I, Schulte-Hermann R, Thurman RG. Impaired Ras membrane association and activation in PPARalpha knockout mice after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2003; 284:G302-12. [PMID: 12388208 DOI: 10.1152/ajpgi.00175.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver regeneration after partial hepatectomy (PH) involves several signaling mechanisms including activation of the small GTPases Ras and RhoA in response to mitogens leading to DNA synthesis and cell proliferation. Peroxisome proliferator-activated receptor-alpha (PPARalpha) regulates the expression of several key enzymes in isoprenoid synthesis, which are key events for membrane association of Ras and RhoA. Thus the role of PPARalpha in cell proliferation after PH was tested. After PH, an increase in PPARalpha DNA binding was observed in wild-type mice, correlating with an increase in the PPARalpha-regulated enzyme acyl-CoA oxidase. In addition, the PPARalpha-regulated genes farnesyl pyrophosphate synthase and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase were significantly increased in wild-type mice. However, these increases were not observed in PPARalpha knockout (PPARalpha -/-) mice. The peak in DNA synthesis observed 42 h after PH was reduced by approximately 60% in PPARalpha -/- mice, despite increases in TNF-alpha and IL-1. Also, under these conditions, membrane association of Ras was high in wild-type mice after PH but was impaired in PPARalpha -/- mice. Accordingly, Ras was significantly elevated in the cytosol in PPARalpha -/- mice. This observation correlated with lower levels of active GTP-bound Ras after PH in PPARalpha -/- mice compared with wild-type mice. Similar observations were made for RhoA. Moreover, deletion of PPARalpha blunted the activation of cyclin-dependent kinase (cdk)2/cyclin E and cdk4/cyclin D complexes. Collectively, these results support the hypothesis that PPARalpha is necessary for cell cycle progression in regenerating mouse liver via mechanisms involving prenylation of small GTPases Ras and RhoA.
Collapse
Affiliation(s)
- Michael D Wheeler
- Laboratory of Hepatobiology and Toxicology, Department of Pharmacology, Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
All animal cells synthesize sufficient amounts of coenzyme Q (CoQ) and the cells also possess the capacity to metabolize the lipid. The main product of the metabolism is an intact ring with a short carboxylated side chain which glucuronidated in the liver and excreted mainly into the bile (Nakamura et al., Biofactors 9 (1999), 111-119). In other cells CoQ is phosphorylated, transferred into the blood and excreted through the urine. The biosynthesis of this lipid is regulated by nuclear receptors. PPARalpha is not required for the biosynthesis, or induction upon cold exposure, but it is necessary for the elevated CoQ synthesis during peroxisomal induction. RXRalpha is involved in the basal synthesis of CoQ and also in the increased synthesis upon cold treatment but is not required for peroxisomal induction. Dietary CoQ in human appear in the blood and it is taken up by mononuclear but not polynuclear cells. The former cells display a specific phospholipid modification, an increase of arachidonic acid content. In monocytes the CoQ administration leads to a significant decrease of the beta2-integrin CD11b and the complement receptor CD35. CD11b is one of the adhesion factors regulating the entry of these cells into the arterial wall which demonstrates that the anti-atherogenic effect of CoQ is mediated by other mechanisms beside its antioxidant protection.
Collapse
Affiliation(s)
- Gustav Dallner
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden.
| | | | | | | |
Collapse
|
30
|
Kasahara E, Sato EF, Miyoshi M, Konaka R, Hiramoto K, Sasaki J, Tokuda M, Nakano Y, Inoue M. Role of oxidative stress in germ cell apoptosis induced by di(2-ethylhexyl)phthalate. Biochem J 2002; 365:849-56. [PMID: 11982482 PMCID: PMC1222724 DOI: 10.1042/bj20020254] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 04/25/2002] [Accepted: 05/01/2002] [Indexed: 01/24/2023]
Abstract
Phthalate esters have been used extensively as plasticizers of synthetic polymers. Recent studies have revealed that these esters induce atrophy of the testis, although its pathogenesis remains unknown. The present study describes the possible involvement of oxidative stress in the pathogenesis of atrophy of the rat testis induced by di(2-ethylhexyl)phthalate (DEHP). Biochemical and immunohistochemical analysis revealed that oral administration of DEHP increased the generation of reactive oxygen species, with concomitant decrease in the concentration of glutathione and ascorbic acid in the testis, and selectively induced apoptosis of spermatocytes, thereby causing atrophy of this organ. Oxidative stress was selectively induced in germ cells, but not in Sertoli cells, treated with mono(2-ethylhexyl)phthalate (MEHP), a hydrolysed metabolite of DEHP. Furthermore, MEHP selectively induced the release of cytochrome c from mitochondria of the testis. These results indicate that oxidative stress elicited by MEHP principally injured mitochondrial function and induced the release of cytochrome c, thereby inducing apoptosis of spermatocytes and causing atrophy of the testis.
Collapse
Affiliation(s)
- Emiko Kasahara
- Department of Biochemistry and Molecular Pathology, Osaka City University Medical School, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bolon B, Galbreath E. Use of genetically engineered mice in drug discovery and development: wielding Occam's razor to prune the product portfolio. Int J Toxicol 2002; 21:55-64. [PMID: 11936900 DOI: 10.1080/10915810252826019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetically engineered mice (GEMs) that either overexpress (transgenic) or lack (gene-targeted, or "knock-out") genes are used increasingly in industry to investigate molecular mechanisms of disease, to evaluate innovative therapeutic targets, and to screen agents for efficacy and/or toxicity. High throughput GEM construction in drug discovery and development (DDD) serves two main purposes: to test whether a given gene participates in a disease condition, or to determine the function(s) of a protein that is encoded by an expressed sequence tag (EST, an mRNA fragment for a previously uncharacterized protein). In some instances, phenotypes induced by such novel GEMs also may yield clues regarding potential target organs and toxic effects of potential therapeutic molecules. The battery of tests used in phenotypic analysis of GEMs varies between companies, but the goal is to define one or more easily measured endpoints that can be used to monitor the disease course--especially during in vivo treatment with novel drug candidates. In many DDD projects, overt phenotypes are subtle or absent even in GEMs in which high-level expression or total ablation of an engineered gene can be confirmed. This outcome presents a major quandary for biotechnology and pharmaceutical firms: given the significant expense and labor required to generate GEMs, what should be done with "negative" constructs? The 14th century philosophical principle known as Occam's razor-that the simplest explanation for a phenomenon is likely the truth-provides a reasonable basis for pruning potential therapeutic molecules and targets. In the context of DDD, Occam's razor may be construed to mean that correctly engineered GEMs lacking obvious functional or structural phenotypes have none because the affected gene is not uniquely essential to normal homeostasis or disease progression. Thus, a "negative" GEM construct suggests that the gene under investigation encodes a ligand or target molecule without significant therapeutic potential. This interpretation indicates that, at least in a market-driven industrial setting, such "negative" projects should be pruned aggressively so that resources may be redirected to more promising DDD ventures.
Collapse
Affiliation(s)
- Brad Bolon
- Amgen, Inc, Thousand Oaks, California 91320-1789, USA.
| | | |
Collapse
|
32
|
Akiyama TE, Nicol CJ, Fievet C, Staels B, Ward JM, Auwerx J, Lee SS, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-alpha regulates lipid homeostasis, but is not associated with obesity: studies with congenic mouse lines. J Biol Chem 2001; 276:39088-93. [PMID: 11495927 DOI: 10.1074/jbc.m107073200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Considerable controversy exists in determining the role of peroxisome proliferator-activated receptor-alpha (PPARalpha) in obesity. Two purebred congenic strains of PPARalpha-null mice were developed to study the role of this receptor in modulating lipid transport and storage. Weight gain and average body weight in wild-type and PPARalpha-null mice on either an Sv/129 or a C57BL/6N background were not markedly different between genotypes from 3 to 9 months of age. However, gonadal adipose stores were significantly greater in both strains of male and female PPARalpha-null mice. Hepatic accumulation of lipids was greater in both strains and sexes of PPARalpha-null mice compared with wild-type controls. Administration of the peroxisome proliferator WY-14643 caused hepatomegaly, alterations in mRNAs encoding proteins that regulate lipid metabolism, and reduced serum triglycerides in a PPARalpha-dependent mechanism. Constitutive differences in serum cholesterol and triglycerides in PPARalpha-null mice were found between genetic backgrounds. Results from this work establish that PPARalpha is a critical modulator of lipid homeostasis in two congenic mouse lines. This study demonstrates that disruption of the murine gene encoding PPARalpha results in significant alterations in constitutive serum, hepatic, and adipose tissue lipid metabolism. However, an overt, obese phenotype in either of the two congenic strains was not observed. In contrast to earlier published work, this study establishes that PPARalpha is not associated with obesity in mice.
Collapse
Affiliation(s)
- T E Akiyama
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vanhorebeek I, Baes M, Declercq PE. Isoprenoid biosynthesis is not compromised in a Zellweger syndrome mouse model. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1532:28-36. [PMID: 11420171 DOI: 10.1016/s1388-1981(01)00108-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Because several studies indicated that peroxisomes are important for the biosynthesis of isoprenoids, we wanted to investigate whether a reduced availability of isoprenoids could be one of the pathogenic factors contributing to the severe phenotype of the Pex5(-/-) mouse, a model for Zellweger syndrome. Total cholesterol was determined in plasma, brain and liver of newborn mice. In none of these tissues a significant difference was observed between Pex5(-/-) and wild type or heterozygous mice. The hepatic ubiquinone content was found to be even higher in Pex5(-/-) mice as compared to wild type or heterozygous littermates. To investigate whether the Pex5(-/-) fetuses are able to synthesise their own isoprenoids, fibroblasts derived from these mice were incubated with radiolabeled mevalonolactone as a substrate for isoprenoid synthesis. No significant difference was observed between the cholesterol production rates of Pex5(-/-) and normal fibroblasts. Our results show that there is no deficiency of isoprenoids in newborn Pex5(-/-) mice, excluding the possibility that a lack of these compounds is a determinant factor in the development of the disease state before birth.
Collapse
Affiliation(s)
- I Vanhorebeek
- Laboratory of Clinical Chemistry, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N, Herestraat 49, 3000, Leuven, Belgium
| | | | | |
Collapse
|