1
|
Sulatsky MI, Stepanenko OV, Stepanenko OV, Povarova OI, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Broken but not beaten: Challenge of reducing the amyloids pathogenicity by degradation. J Adv Res 2024:S2090-1232(24)00161-9. [PMID: 38642804 DOI: 10.1016/j.jare.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The accumulation of ordered protein aggregates, amyloid fibrils, accompanies various neurodegenerative diseases (such as Parkinson's, Huntington's, Alzheimer's, etc.) and causes a wide range of systemic and local amyloidoses (such as insulin, hemodialysis amyloidosis, etc.). Such pathologies are usually diagnosed when the disease is already irreversible and a large amount of amyloid plaques have accumulated. In recent years, new drugs aimed at reducing amyloid levels have been actively developed. However, although clinical trials have demonstrated a reduction in amyloid plaque size with these drugs, their effect on disease progression has been controversial and associated with significant side effects, the reasons of which are not fully understood. AIM OF REVIEW The purpose of this review is to summarize extensive array of data on the effect of exogenous and endogenous factors (physico-mechanical effects, chemical effects of low molecular weight compounds, macromolecules and their complexes) on the structure and pathogenicity of mature amyloids for proposing future directions of the development of effective and safe anti-amyloid therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW Our analysis show that destruction of amyloids is in most cases incomplete and degradation products often retain the properties of amyloids (including high and sometimes higher than fibrils, cytotoxicity), accelerate amyloidogenesis and promote the propagation of amyloids between cells. Probably, the appearance of protein aggregates, polymorphic in structure and properties (such as amorphous aggregates, fibril fragments, amyloid oligomers, etc.), formed because of uncontrolled degradation of amyloids, may be one of the reasons for the ambiguous effectiveness and serious side effects of the anti-amyloid drugs. This means that all medications that are supposed to be used both for degradation and slow down the fibrillogenesis must first be tested on mature fibrils: the mechanism of drug action and cytotoxic, seeding, and infectious activity of the degradation products must be analyzed.
Collapse
Affiliation(s)
- Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| |
Collapse
|
2
|
Protein Nanofibrils as Storage Forms of Peptide Drugs and Hormones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:265-290. [PMID: 31713202 DOI: 10.1007/978-981-13-9791-2_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloids are highly organized cross β-sheet protein nanofibrils that are associated with both diseases and functions. Thermodynamically amyloids are stable structures as they represent the lowest free energy state that proteins can attain. However, recent studies suggest that amyloid fibrils can be dissociated by a change in environmental parameters such as pH and ionic strength. This reversibility of amyloids can not only be associated with disease, but function as well. In disease-associated amyloids, fibrils can act as reservoirs of cytotoxic oligomers. Recently, in higher organisms such as mammals, hormones were found to be stored in amyloid-like state, where these were reported to act as a reservoir of functional monomers. These hormone amyloids can dissociate to monomers upon release from the secretory granules, and subsequently bind to their respective receptors and perform their functions. In this book chapter, we describe in detail how these protein nanofibrils represent the densest possible peptide packing and are suitable for long-term storage. Thus, mimicking the feature of amyloids to release functional monomers, it is possible to formulate amyloid-based peptide/protein drugs, which can be used for sustained release.
Collapse
|
3
|
Takekiyo T, Yoshimura Y. Suppression and dissolution of amyloid aggregates using ionic liquids. Biophys Rev 2018; 10:853-860. [PMID: 29696571 DOI: 10.1007/s12551-018-0421-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/08/2018] [Indexed: 12/22/2022] Open
Abstract
Amyloid aggregates are composed of protein fibrils with a dominant β-sheet structure, are water-insoluble, and are involved in the pathogenesis of many neurodegenerative diseases. Development of pharmaceuticals to treat these diseases and the design of recovery agents for amyloid-type inclusion bodies require the successful suppression and dissolution of such aggregates. Since ionic liquids (ILs) are composed of both a cation and anion and are known to suppress protein aggregation and to dissolve water-insoluble compounds such as cellulose; they may also have potential use as suppression/dissolution agents for amyloid aggregates. In the following review, we present the suppression and dissolution effects of ILs on amyloid aggregates so far reported. The protein-IL affinity (the ability of ILs to interact with amyloid proteins) was found to be the biochemical basis for ILs' suppression of amyloid formation, and the hydrogen-bonding basicity of ILs might be the basis for their ability to dissolve amyloid aggregates. These findings present the potential of ILs to serve as novel pharmaceuticals to treat neurodegenerative diseases and as recovery agents for various amyloid aggregates.
Collapse
Affiliation(s)
- Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan.
| | - Yukihiro Yoshimura
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan
| |
Collapse
|
4
|
Structural basis for the dissociation of α-synuclein fibrils triggered by pressure perturbation of the hydrophobic core. Sci Rep 2016; 6:37990. [PMID: 27901101 PMCID: PMC5128797 DOI: 10.1038/srep37990] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease is a neurological disease in which aggregated forms of the α-synuclein (α-syn) protein are found. We used high hydrostatic pressure (HHP) coupled with NMR spectroscopy to study the dissociation of α-syn fibril into monomers and evaluate their structural and dynamic properties. Different dynamic properties in the non-amyloid-β component (NAC), which constitutes the Greek-key hydrophobic core, and in the acidic C-terminal region of the protein were identified by HHP NMR spectroscopy. In addition, solid-state NMR revealed subtle differences in the HHP-disturbed fibril core, providing clues to how these species contribute to seeding α-syn aggregation. These findings show how pressure can populate so far undetected α-syn species, and they lay out a roadmap for fibril dissociation via pathways not previously observed using other approaches. Pressure perturbs the cavity-prone hydrophobic core of the fibrils by pushing water inward, thereby inducing the dissociation into monomers. Our study offers the molecular details of how hydrophobic interaction and the formation of water-excluded cavities jointly contribute to the assembly and stabilization of the fibrils. Understanding the molecular forces behind the formation of pathogenic fibrils uncovered by pressure perturbation will aid in the development of new therapeutics against Parkinson’s disease.
Collapse
|
5
|
Di Carlo MG, Vetri V, Buscarino G, Leone M, Vestergaard B, Foderà V. Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution. Biophys Chem 2016; 216:23-30. [DOI: 10.1016/j.bpc.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 01/05/2023]
|
6
|
Khan JM, Khan MS, Ali MS, Al-Shabib NA, Khan RH. Cetyltrimethylammonium bromide (CTAB) promote amyloid fibril formation in carbohydrate binding protein (concanavalin A) at physiological pH. RSC Adv 2016. [DOI: 10.1039/c6ra03707k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Low concentration of CTAB provoked cross β-sheet formation whereas high concentrations of CTAB direct to alpha helix induction in Con A.
Collapse
Affiliation(s)
- Javed Masood Khan
- Department of Food Science and Nutrition
- Faculty of Food and Agricultural Sciences
- King Saud University
- 2460 Riyadh 11451
- Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair
- Department of Biochemistry
- College of Science
- King Saud University
- Riyadh
| | - Mohd Sajid Ali
- Department of Chemistry
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition
- Faculty of Food and Agricultural Sciences
- King Saud University
- 2460 Riyadh 11451
- Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
7
|
Wear MP, Kryndushkin D, O’Meally R, Sonnenberg JL, Cole RN, Shewmaker FP. Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates. PLoS One 2015; 10:e0136362. [PMID: 26317359 PMCID: PMC4552826 DOI: 10.1371/journal.pone.0136362] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Maggie P. Wear
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
| | - Dmitry Kryndushkin
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
| | - Robert O’Meally
- Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Jason L. Sonnenberg
- Chemistry department, School of Sciences, Stevenson University, Stevenson, Maryland, 21153, United States of America
| | - Robert N. Cole
- Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Frank P. Shewmaker
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
- * E-mail:
| |
Collapse
|
8
|
Mompeán M, Hervás R, Xu Y, Tran TH, Guarnaccia C, Buratti E, Baralle F, Tong L, Carrión-Vázquez M, McDermott AE, Laurents DV. Structural Evidence of Amyloid Fibril Formation in the Putative Aggregation Domain of TDP-43. J Phys Chem Lett 2015; 6:2608-15. [PMID: 26266742 PMCID: PMC5568655 DOI: 10.1021/acs.jpclett.5b00918] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
TDP-43 can form pathological proteinaceous aggregates linked to ALS and FTLD. Within the putative aggregation domain, engineered repeats of residues 341-366 can recruit endogenous TDP-43 into aggregates inside cells; however, the nature of these aggregates is a debatable issue. Recently, we showed that a coil to β-hairpin transition in a short peptide corresponding to TDP-43 residues 341-357 enables oligomerization. Here we provide definitive structural evidence for amyloid formation upon extensive characterization of TDP-43(341-357) via chromophore and antibody binding, electron microscopy (EM), solid-state NMR, and X-ray diffraction. On the basis of these findings, structural models for TDP-43(341-357) oligomers were constructed, refined, verified, and analyzed using docking, molecular dynamics, and semiempirical quantum mechanics methods. Interestingly, TDP-43(341-357) β-hairpins assemble into a novel parallel β-turn configuration showing cross-β spine, cooperative H-bonding, and tight side-chain packing. These results expand the amyloid foldome and could guide the development of future therapeutics to prevent this structural conversion.
Collapse
Affiliation(s)
- Miguel Mompeán
- Instituto de Química Física Rocasolano, CSIC Serrano 119, 28006 Madrid, Spain
- Corresponding Authors: (M.M.) Tel: +34 91-745-9543. Fax: +34 91-564-2431. . (D.V.L.)
| | - Rubén Hervás
- Instituto Cajal, CSIC Avda, Doctor Arce 37, E-28002 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Crta. de Cantoblanco no. 8, E-28049 Cantoblanco, Madrid, Spain
| | - Yunyao Xu
- Department of Chemistry, Columbia University, 344 Havemeyer Hall, New York, New York 10027, United States
| | - Timothy H. Tran
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Corrado Guarnaccia
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Francisco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Mariano Carrión-Vázquez
- Instituto Cajal, CSIC Avda, Doctor Arce 37, E-28002 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Crta. de Cantoblanco no. 8, E-28049 Cantoblanco, Madrid, Spain
| | - Ann E. McDermott
- Department of Chemistry, Columbia University, 344 Havemeyer Hall, New York, New York 10027, United States
| | - Douglas V. Laurents
- Instituto de Química Física Rocasolano, CSIC Serrano 119, 28006 Madrid, Spain
- Corresponding Authors: (M.M.) Tel: +34 91-745-9543. Fax: +34 91-564-2431. . (D.V.L.)
| |
Collapse
|
9
|
The N-terminal residues 43 to 60 form the interface for dopamine mediated α-synuclein dimerisation. PLoS One 2015; 10:e0116497. [PMID: 25679387 PMCID: PMC4332483 DOI: 10.1371/journal.pone.0116497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022] Open
Abstract
α-synuclein (α-syn) is a major component of the intracellular inclusions called Lewy bodies, which are a key pathological feature in the brains of Parkinson's disease patients. The neurotransmitter dopamine (DA) inhibits the fibrillisation of α-syn into amyloid, and promotes α-syn aggregation into SDS-stable soluble oligomers. While this inhibition of amyloid formation requires the oxidation of both DA and the methionines in α-syn, the molecular basis for these processes is still unclear. This study sought to define the protein sequences required for the generation of oligomers. We tested N- (α-syn residues 43-140) and C-terminally (1-95) truncated α-syn, and found that similar to full-length protein both truncated species formed soluble DA:α-syn oligomers, albeit 1-95 had a different profile. Using nuclear magnetic resonance (NMR), and the N-terminally truncated α-syn 43-140 protein, we analysed the structural characteristics of the DA:α-syn 43-140 dimer and α-syn 43-140 monomer and found the dimerisation interface encompassed residues 43 to 60. Narrowing the interface to this small region will help define the mechanism by which DA mediates the formation of SDS-stable soluble DA:α-syn oligomers.
Collapse
|
10
|
Bongiovanni MN, Gras SL. Bioactive TTR105-115-based amyloid fibrils reduce the viability of mammalian cells. Biomaterials 2015; 46:105-16. [PMID: 25678120 DOI: 10.1016/j.biomaterials.2014.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/09/2014] [Accepted: 12/20/2014] [Indexed: 12/29/2022]
Abstract
A growing number of protein-based fibrous biomaterials have been produced with a cross-β amyloid core yet the long-term effect of these materials on cell viability and the influence of core and non-core protein sequences on viability is not well understood. Here, synthetic bioactive TTR1-RGD and control TTR1-RAD or TTR1 fibrils were used to test the response of mammalian cells. At high fibril concentrations cell viability was reduced, as assessed by mitochondrial reduction assays, lactate dehydrogenase membrane integrity assays and apoptotic biomarkers. This reduction occurred despite the high density of RGD cell adhesion ligands and use of cells displaying integrin receptors. Cell viability was affected by fibril size, maturity and whether fibrils were added to the cell media or as a pre-coated surface layer. These findings show that while cells initially interact well with synthetic fibrils, cellular integrity can be compromised over longer periods of time, suggesting a better understanding of the role of core and non-core residues in determining cellular interactions is required before TTR1-based fibrils are used as biomaterials.
Collapse
Affiliation(s)
- Marie N Bongiovanni
- The ARC Dairy Innovation Hub, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sally L Gras
- The ARC Dairy Innovation Hub, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
11
|
Yaseen Z, Rehman SU, Tabish M, Shalla AH, Kabir-ud-Din KUD. Modulation of bovine serum albumin fibrillation by ester bonded and conventional gemini surfactants. RSC Adv 2015. [DOI: 10.1039/c5ra08923a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modulation of bovine serum albumin fibrillation by gemini surfactants.
Collapse
Affiliation(s)
- Zahid Yaseen
- Department of Chemistry
- Islamic University of Science and Technology
- Pulwama 192122
- India
| | - Sayeed Ur Rehman
- Department of Biochemistry
- Faculty of Life Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Mohammad Tabish
- Department of Biochemistry
- Faculty of Life Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Aabid H. Shalla
- Department of Chemistry
- Islamic University of Science and Technology
- Pulwama 192122
- India
| | | |
Collapse
|
12
|
Kryndushkin D, Pripuzova N, Burnett BG, Shewmaker F. Non-targeted identification of prions and amyloid-forming proteins from yeast and mammalian cells. J Biol Chem 2013; 288:27100-27111. [PMID: 23926098 DOI: 10.1074/jbc.m113.485359] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of amyloid aggregates is implicated both as a primary cause of cellular degeneration in multiple human diseases and as a functional mechanism for providing extraordinary strength to large protein assemblies. The recent identification and characterization of several amyloid proteins from diverse organisms argues that the amyloid phenomenon is widespread in nature. Yet identifying new amyloid-forming proteins usually requires a priori knowledge of specific candidates. Amyloid fibers can resist heat, pressure, proteolysis, and denaturation by reagents such as urea or sodium dodecyl sulfate. Here we show that these properties can be exploited to identify naturally occurring amyloid-forming proteins directly from cell lysates. This proteomic-based approach utilizes a novel purification of amyloid aggregates followed by identification by mass spectrometry without the requirement for special genetic tools. We have validated this technique by blind identification of three amyloid-based yeast prions from laboratory and wild strains and disease-related polyglutamine proteins expressed in both yeast and mammalian cells. Furthermore, we found that polyglutamine aggregates specifically recruit some stress granule components, revealing a possible mechanism of toxicity. Therefore, core amyloid-forming proteins as well as strongly associated proteins can be identified directly from cells of diverse origin.
Collapse
Affiliation(s)
| | - Natalia Pripuzova
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | |
Collapse
|
13
|
Garvey M, Meehan S, Gras SL, Schirra HJ, Craik DJ, Van der Weerden NL, Anderson MA, Gerrard JA, Carver JA. A radish seed antifungal peptide with a high amyloid fibril-forming propensity. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1615-23. [PMID: 23665069 DOI: 10.1016/j.bbapap.2013.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022]
Abstract
The amyloid fibril-forming ability of two closely related antifungal and antimicrobial peptides derived from plant defensin proteins has been investigated. As assessed by sequence analysis, thioflavin T binding, transmission electron microscopy, atomic force microscopy and X-ray fiber diffraction, a 19 amino acid fragment from the C-terminal region of Raphanus sativus antifungal protein, known as RsAFP-19, is highly amyloidogenic. Further, its fibrillar morphology can be altered by externally controlled conditions. Freezing and thawing led to amyloid fibril formation which was accompanied by loss of RsAFP-19 antifungal activity. A second, closely related antifungal peptide displayed no fibril-forming capacity. It is concluded that while fibril formation is not associated with the antifungal properties of these peptides, the peptide RsAFP-19 is of potential use as a controllable, highly amyloidogenic small peptide for investigating the structure of amyloid fibrils and their mechanism of formation.
Collapse
Affiliation(s)
- Megan Garvey
- School of Chemistry and Physics, The University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rodríguez-Pérez JC, Hamley IW, Squires AM. Determination of orientations of aromatic groups in self-assembled peptide fibrils by polarised Raman spectroscopy. Phys Chem Chem Phys 2013; 15:13940-50. [PMID: 23852406 DOI: 10.1039/c3cp52595c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this paper we describe a novel combination of Raman spectroscopy, isotope editing and X-ray scattering as a powerful approach to give detailed structural information on aromatic side chains in peptide fibrils. The orientation of the tyrosine residues in fibrils of the peptide YTIAALLSPYS with respect to the fibril axis has been determined from a combination of polarised Raman spectroscopy and X-ray diffraction measurements. The Raman intensity of selected tyrosine bands collected at different polarisation geometries is related to the values and orientation of the Raman tensor for those specific vibrations. Using published Raman tensor values we solved the relevant expressions for both of the two tyrosine residues present in this peptide. Ring deuteration in one of the two tyrosine side chains allowed for the calculation to be performed individually for both, by virtue of the isotopic shift that eliminates band overlapping. Sample disorder was taken into account by obtaining the distribution of orientations of the samples from X-ray diffraction experiments. The results provide previously unavailable details about the molecular conformation of this peptide, and demonstrate the value of this approach for the study of amyloid fibrils.
Collapse
|
15
|
Cremades N, Cohen SIA, Deas E, Abramov AY, Chen AY, Orte A, Sandal M, Clarke RW, Dunne P, Aprile FA, Bertoncini CW, Wood NW, Knowles TPJ, Dobson CM, Klenerman D. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 2012. [PMID: 22632969 DOI: 10.1016/j.cell.2012.03.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Here, we use single-molecule techniques to study the aggregation of α-synuclein, the protein whose misfolding and deposition is associated with Parkinson's disease. We identify a conformational change from the initially formed oligomers to stable, more compact proteinase-K-resistant oligomers as the key step that leads ultimately to fibril formation. The oligomers formed as a result of the structural conversion generate much higher levels of oxidative stress in rat primary neurons than do the oligomers formed initially, showing that they are more damaging to cells. The structural conversion is remarkably slow, indicating a high kinetic barrier for the conversion and suggesting that there is a significant period of time for the cellular protective machinery to operate and potentially for therapeutic intervention, prior to the onset of cellular damage. In the absence of added soluble protein, the assembly process is reversed and fibrils disaggregate to form stable oligomers, hence acting as a source of cytotoxic species.
Collapse
Affiliation(s)
- Nunilo Cremades
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cremades N, Cohen S, Deas E, Abramov A, Chen A, Orte A, Sandal M, Clarke R, Dunne P, Aprile F, Bertoncini C, Wood N, Knowles T, Dobson C, Klenerman D. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 2012; 149:1048-59. [PMID: 22632969 PMCID: PMC3383996 DOI: 10.1016/j.cell.2012.03.037] [Citation(s) in RCA: 681] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/01/2011] [Accepted: 03/15/2012] [Indexed: 11/24/2022]
Abstract
Here, we use single-molecule techniques to study the aggregation of α-synuclein, the protein whose misfolding and deposition is associated with Parkinson's disease. We identify a conformational change from the initially formed oligomers to stable, more compact proteinase-K-resistant oligomers as the key step that leads ultimately to fibril formation. The oligomers formed as a result of the structural conversion generate much higher levels of oxidative stress in rat primary neurons than do the oligomers formed initially, showing that they are more damaging to cells. The structural conversion is remarkably slow, indicating a high kinetic barrier for the conversion and suggesting that there is a significant period of time for the cellular protective machinery to operate and potentially for therapeutic intervention, prior to the onset of cellular damage. In the absence of added soluble protein, the assembly process is reversed and fibrils disaggregate to form stable oligomers, hence acting as a source of cytotoxic species.
Collapse
Affiliation(s)
- Nunilo Cremades
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Samuel I.A. Cohen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Emma Deas
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrey Y. Abramov
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Allen Y. Chen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Angel Orte
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain
| | - Massimo Sandal
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Richard W. Clarke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Paul Dunne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Francesco A. Aprile
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Carlos W. Bertoncini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Institute for Research in Biomedicine, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Nicholas W. Wood
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Tuomas P.J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
17
|
Bomar MG, Samuelsson SJ, Kibler P, Kodukula K, Galande AK. Hemopressin forms self-assembled fibrillar nanostructures under physiologically relevant conditions. Biomacromolecules 2012; 13:579-83. [PMID: 22304720 DOI: 10.1021/bm201836f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nonapeptide hemopressin, which is derived from the α chain of hemoglobin, has been reported to exhibit inverse agonist activity against the CB1 receptor. Administration of this peptide in animal models led to decreased food intake and elicited hypotensive and antinociceptive effects. On the basis of hemopressin's potential in therapeutic applications and the lack of a structure-activity relationship study in literature, we aimed to determine the conformational features of hemopressin under physiological conditions. We conducted transmission electron microscopy experiments of hemopressin, revealing that it self-assembles into fibrils under aqueous conditions at pH 7.4. Circular dichroism and nuclear magnetic resonance experiments indicate that the peptide adopts a mostly extended β-like structure, which may contribute to its self-assembly and fibril formation.
Collapse
Affiliation(s)
- Martha G Bomar
- Center for Advanced Drug Research (CADRE), SRI International , 140 Research Drive, Harrisonburg, Virginia 22802, United States
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Jozef Adamcik
- Food & Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zürich, LFO23, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Raffaele Mezzenga
- Food & Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zürich, LFO23, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
19
|
Mankar S, Anoop A, Sen S, Maji SK. Nanomaterials: amyloids reflect their brighter side. NANO REVIEWS 2011; 2:NANO-2-6032. [PMID: 22110868 PMCID: PMC3215191 DOI: 10.3402/nano.v2i0.6032] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/20/2011] [Accepted: 04/26/2011] [Indexed: 12/31/2022]
Abstract
Amyloid fibrils belong to the group of ordered nanostructures that are self-assembled from a wide range of polypeptides/proteins. Amyloids are highly rigid structures possessing a high mechanical strength. Although amyloids have been implicated in the pathogenesis of several human diseases, growing evidence indicates that amyloids may also perform native functions in host organisms. Discovery of such amyloids, referred to as functional amyloids, highlight their possible use in designing novel nanostructure materials. This review summarizes recent advances in the application of amyloids for the development of nanomaterials and prospective applications of such materials in nanotechnology and biomedicine.
Collapse
Affiliation(s)
- Shruti Mankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay
| | | | | | | |
Collapse
|
20
|
El Moustaine D, Perrier V, Van Ba IAT, Meersman F, Ostapchenko VG, Baskakov IV, Lange R, Torrent J. Amyloid features and neuronal toxicity of mature prion fibrils are highly sensitive to high pressure. J Biol Chem 2011; 286:13448-59. [PMID: 21357423 PMCID: PMC3075691 DOI: 10.1074/jbc.m110.192872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 02/24/2011] [Indexed: 12/22/2022] Open
Abstract
Prion proteins (PrP) can aggregate into toxic and possibly infectious amyloid fibrils. This particular macrostructure confers on them an extreme and still unexplained stability. To provide mechanistic insights into this self-assembly process, we used high pressure as a thermodynamic tool for perturbing the structure of mature amyloid fibrils that were prepared from recombinant full-length mouse PrP. Application of high pressure led to irreversible loss of several specific amyloid features, such as thioflavin T and 8-anilino-1-naphthalene sulfonate binding, alteration of the characteristic proteinase K digestion pattern, and a significant decrease in the β-sheet structure and cytotoxicity of amyloid fibrils. Partial disaggregation of the mature fibrils into monomeric soluble PrP was observed. The remaining amyloid fibrils underwent a change in secondary structure that led to morphologically different fibrils composed of a reduced number of proto-filaments. The kinetics of these reactions was studied by recording the pressure-induced dissociation of thioflavin T from the amyloid fibrils. Analysis of the pressure and temperature dependence of the relaxation rates revealed partly unstructured and hydrated kinetic transition states and highlighted the importance of collapsing and hydrating inter- and intramolecular cavities to overcome the high free energy barrier that stabilizes amyloid fibrils.
Collapse
Affiliation(s)
- Driss El Moustaine
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| | - Veronique Perrier
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| | - Isabelle Acquatella-Tran Van Ba
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| | - Filip Meersman
- the Department of Chemistry, Katholieke Universiteit Leuven, Leuven B-3001, Belgium, and
| | - Valeriy G. Ostapchenko
- the Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ilia V. Baskakov
- the Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Reinhard Lange
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| | - Joan Torrent
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| |
Collapse
|
21
|
Liang Y, Jasbi SZ, Morin S, Wilson DJ. Rational Manipulation of Amyloidogenesis Using an Atomic Level Map of Peptide−Fibril Interactions. Biochemistry 2010; 49:5829-31. [DOI: 10.1021/bi1007436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanfang Liang
- Department of Chemistry, York University, Toronto, Ontario M3J 1P6, Canada
| | | | - Sylvie Morin
- Department of Chemistry, York University, Toronto, Ontario M3J 1P6, Canada
| | - Derek J. Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P6, Canada
- Center for Research in Biomolecular Interactions, Toronto, Ontario M3J 1P6, Canada
| |
Collapse
|
22
|
Xu Z, Paparcone R, Buehler MJ. Alzheimer's abeta(1-40) amyloid fibrils feature size-dependent mechanical properties. Biophys J 2010; 98:2053-62. [PMID: 20483312 PMCID: PMC2872369 DOI: 10.1016/j.bpj.2009.12.4317] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 10/19/2022] Open
Abstract
Amyloid fibrils are highly ordered protein aggregates that are associated with several pathological processes, including prion propagation and Alzheimer's disease. A key issue in amyloid science is the need to understand the mechanical properties of amyloid fibrils and fibers to quantify biomechanical interactions with surrounding tissues, and to identify mechanobiological mechanisms associated with changes of material properties as amyloid fibrils grow from nanoscale to microscale structures. Here we report a series of computational studies in which atomistic simulation, elastic network modeling, and finite element simulation are utilized to elucidate the mechanical properties of Alzheimer's Abeta(1-40) amyloid fibrils as a function of the length of the protein filament for both twofold and threefold symmetric amyloid fibrils. We calculate the elastic constants associated with torsional, bending, and tensile deformation as a function of the size of the amyloid fibril, covering fibril lengths ranging from nanometers to micrometers. The resulting Young's moduli are found to be consistent with available experimental measurements obtained from long amyloid fibrils, and predicted to be in the range of 20-31 GPa. Our results show that Abeta(1-40) amyloid fibrils feature a remarkable structural stability and mechanical rigidity for fibrils longer than approximately 100 nm. However, local instabilities that emerge at the ends of short fibrils (on the order of tens of nanometers) reduce their stability and contribute to their disassociation under extreme mechanical or chemical conditions, suggesting that longer amyloid fibrils are more stable. Moreover, we find that amyloids with lengths shorter than the periodicity of their helical pitch, typically between 90 and 130 nm, feature significant size effects of their bending stiffness due the anisotropy in the fibril's cross section. At even smaller lengths (50 nm), shear effects dominate lateral deformation of amyloid fibrils, suggesting that simple Euler-Bernoulli beam models fail to describe the mechanics of amyloid fibrils appropriately. Our studies reveal the importance of size effects in elucidating the mechanical properties of amyloid fibrils. This issue is of great importance for comparing experimental and simulation results, and gaining a general understanding of the biological mechanisms underlying the growth of ectopic amyloid materials.
Collapse
Affiliation(s)
- Zhiping Xu
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Raffaella Paparcone
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
23
|
Loksztejn A, Dzwolak W. Noncooperative dimethyl sulfoxide-induced dissection of insulin fibrils: toward soluble building blocks of amyloid. Biochemistry 2009; 48:4846-51. [PMID: 19385641 DOI: 10.1021/bi900394b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enormous molecular weight complicates detailed structural studies of amyloid fibrils and obscures identification of biologically active forms of protein aggregates in amyloid-related diseases. Here we show that aqueous solutions of dimethyl sulfoxide (DMSO) solubilize insulin fibrils while maintaining their beta-pleated structure. This is accompanied by a marked decrease in the fluorescence of thioflavin T. According to atomic force microscopy images and dynamic light scattering measurements, the partial DMSO-induced dissection of insulin fibrils favors formation of smaller soluble oligomers, which retain a limited capacity to induce daughter generation of fibrils through seeding to the native insulin, as well as the ability to reassemble into fibrils upon removal of DMSO through dialysis against water. These findings suggest that the DMSO-induced ensembles of insulin molecules are closely related to elementary building blocks of amyloid fibrils.
Collapse
Affiliation(s)
- Anna Loksztejn
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | |
Collapse
|
24
|
Greer AM, Huang Z, Oriakhi A, Lu Y, Lou J, Matthews KS, Bondos SE. The Drosophila Transcription Factor Ultrabithorax Self-Assembles into Protein-Based Biomaterials with Multiple Morphologies. Biomacromolecules 2009; 10:829-37. [DOI: 10.1021/bm801315v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Alexandra M. Greer
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Zhao Huang
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Ashley Oriakhi
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Yang Lu
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Jun Lou
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Kathleen S. Matthews
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Sarah E. Bondos
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| |
Collapse
|
25
|
Galzitskaya OV. Are the same or different amino acid residues responsible for correct and incorrect protein folding? BIOCHEMISTRY (MOSCOW) 2009; 74:186-93. [DOI: 10.1134/s0006297909020096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Gras SL. Surface- and Solution-Based Assembly of Amyloid Fibrils for Biomedical and Nanotechnology Applications. ENGINEERING ASPECTS OF SELF-ORGANIZING MATERIALS 2009. [DOI: 10.1016/s0065-2377(08)00206-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Wetzler DE, Castaño EM, de Prat-Gay G. A quasi-spontaneous amyloid route in a DNA binding gene regulatory domain: The papillomavirus HPV16 E2 protein. Protein Sci 2007; 16:744-54. [PMID: 17384235 PMCID: PMC2203337 DOI: 10.1110/ps.062594007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The DNA binding domain of papillomavirus E2 proteins is at the center of the regulation of gene transcription and replication of the virus. Its unique fold consists of a beta-barrel domain that combines an eight-stranded dimeric beta-barrel core interface with two symmetrical DNA binding alpha-helices and other two helices, packed against the central barrel. Treatment with low amounts of trifluoroethanol readily leads to a mostly beta-sheet oligomeric species, with a loss of near-UV circular dichroism signal and increase in its ANS binding capacity, indicating that buried hydrophobic surfaces become accessible to the solvent. This species subsequently undergoes a slow transition into amyloid aggregates as determined by light scattering and Congo red and thioflavin T binding. Electron microscopy shows short amyloid fibers with a curly aspect as the end product. The amyloid route is completely prevented by addition of stoichiometrical amounts of specific DNA, strongly suggesting that unfolding of the DNA binding alpha-helix is required for the formation of the intermediate. The slow nature of this expanded beta-oligomeric species and the availability of several different conformational probes make it an excellent model for investigating amyloid mechanisms. The mild perturbation required for entering an amyloid route is indicative of a preexisting equilibrium. Oligomerization processes are required for the assembly of transcription initiation and DNA replication machineries, where proteins from different viruses must come together with host cell proteins. The E2 protein is a virus-encoded multifunctional master regulator that may exert one of its multiple functions through its ability to oligomerize.
Collapse
|
28
|
Galzitskaya OV, Garbuzynskiy SO, Lobanov MY. Prediction of amyloidogenic and disordered regions in protein chains. PLoS Comput Biol 2006; 2:e177. [PMID: 17196033 PMCID: PMC1761655 DOI: 10.1371/journal.pcbi.0020177] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 11/06/2006] [Indexed: 11/19/2022] Open
Abstract
The determination of factors that influence protein conformational changes is very important for the identification of potentially amyloidogenic and disordered regions in polypeptide chains. In our work we introduce a new parameter, mean packing density, to detect both amyloidogenic and disordered regions in a protein sequence. It has been shown that regions with strong expected packing density are responsible for amyloid formation. Our predictions are consistent with known disease-related amyloidogenic regions for eight of 12 amyloid-forming proteins and peptides in which the positions of amyloidogenic regions have been revealed experimentally. Our findings support the concept that the mechanism of amyloid fibril formation is similar for different peptides and proteins. Moreover, we have demonstrated that regions with weak expected packing density are responsible for the appearance of disordered regions. Our method has been tested on datasets of globular proteins and long disordered protein segments, and it shows improved performance over other widely used methods. Thus, we demonstrate that the expected packing density is a useful value with which one can predict both intrinsically disordered and amyloidogenic regions of a protein based on sequence alone. Our results are important for understanding the structural characteristics of protein folding and misfolding.
Collapse
Affiliation(s)
- Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
29
|
Galzitskaya OV, Garbuzynskiy SO, Lobanov MY. A search for amyloidogenic regions in protein chains. Mol Biol 2006. [DOI: 10.1134/s0026893306050189] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Galzitskaya OV, Garbuzynskiy SO, Lobanov MY. Is it possible to predict amyloidogenic regions from sequence alone? J Bioinform Comput Biol 2006; 4:373-88. [PMID: 16819789 DOI: 10.1142/s0219720006002004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Accepted: 11/02/2005] [Indexed: 11/18/2022]
Abstract
Identification of potentially amyloidogenic regions in polypeptide chains is very important because the amyloid fibril formation can be induced in most normal proteins. In our work we suggest a new method to detect amyloidogenic regions in protein sequence. It is based on the assumption that packing is tight inside an amyloid and therefore regions which could potentially pack well would have a tendency to form amyloids. This means that the regions with strong expected packing of residues would be responsible for the amyloid formation. We use this property to identify potentially amyloidogenic regions in proteins basing on their amino acid sequences only. Our predictions are consistent with known disease-related amyloidogenic regions for 8 of 11 amyloid-forming proteins and peptides in which the positions of amyloidogenic regions have been revealed experimentally. Predictions of the regions which are responsible for the formation of amyloid fibrils in proteins unrelated to disease have been also done.
Collapse
Affiliation(s)
- Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya str., 4, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
31
|
Ban T, Yamaguchi K, Goto Y. Direct observation of amyloid fibril growth, propagation, and adaptation. Acc Chem Res 2006; 39:663-70. [PMID: 16981683 DOI: 10.1021/ar050074l] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid fibrils form through nucleation and growth. To clarify the mechanism involved, direct observations of both processes are important. First, seed-dependent fibril growth of beta2-microglobulin (beta2-m) and amyloid beta peptide was visualized in real time at the single fibril level using total internal reflection fluorescence microscopy combined with the binding of thioflavin T, an amyloid-specific fluorescence dye. Second, using atomic force microscopy, ultrasonication-induced formation of beta2-m fibrils was shown, indicating that ultrasonication is useful to accelerate the nucleation process. Third, with the proteolytic fragment of beta2-m, propagation and a transformation of fibril morphology was demonstrated. These direct observations indicate that template-dependent growth and structural diversity are key factors determining the structure and function of amyloid fibrils.
Collapse
Affiliation(s)
- Tadato Ban
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
32
|
Abstract
Human insulin, which consists of disulfide cross-linked A and B polypeptide chains, readily forms amyloid fibrils under slightly destabilizing conditions. We examined whether the isolated A and B chain peptides of human insulin would form fibrils at neutral and acidic pH. Although insulin exhibits a pH-dependent lag phase in fibrillation, the A chain formed fibrils without a lag at both pHs. In contrast, the B chain exhibited complex concentration-dependent fibrillation behavior at acidic pH. At higher concentrations, e.g., >0.2 mg/mL, the B chains preferentially and rapidly formed stable protofilaments rather than mature fibrils upon incubation at 37 degrees C. Surprisingly, these protofilaments did not convert into mature fibrils. At lower B chain concentrations, however, mature fibrils were formed. The explanation for the concentration dependence of B chain fibrillation is as follows. The B chains exist as soluble oligomers at acidic pH, have a beta-sheet rich conformation as determined by CD, and bind ANS strongly, and these oligomers rapidly form dead-end protofilaments. However, under conditions in which the B chain monomer is present, such as low B chain concentration (<0.2 mg/mL) or in the presence of low concentrations of GuHCl, which dissociates the soluble oligomers, mature fibrils were formed. Thus, both A and B chain peptides can form amyloid fibrils, and both are likely to be involved in the interactions leading to the fibrillation of intact insulin.
Collapse
Affiliation(s)
- Dong-Pyo Hong
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
33
|
Schuh MD, Baldwin MC. Alpha-helix formation in melittin and beta-lactoglobulin A induced by fluorinated dialcohols. J Phys Chem B 2006; 110:10903-9. [PMID: 16771343 PMCID: PMC2579965 DOI: 10.1021/jp056124l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extensive study of the effect of fluorinated alcohols on protein conformations, notably the induction of alpha-helix formation, is important because of its wide range of applications. Circular dichroism (CD) was used to show that the enhancement of helix induction in beta-lactoglobulin A and melittin by the fluorinated diols 2,2,3,3-tetrafluoro-1,4-butanediol (TFBD), 2,2,3,3,4,4-hexafluoro-1,6-pentanediol (HFPD), and 2,2,3,3,4,4,5,5-octafluoro-1,6-hexanediol (OFHD) increases in the order TFBD < HFPD < OFHD. For fluorinated diols and monoalcohols the effectiveness of helix induction was found to increase exponentially with increasing number of fluorine atoms per alcohol molecule, and OFHD was found to be more effective than any previously reported fluorinated alcohol. Formation of standard micelles was ruled out as the cause of the enhanced helix induction by the fluorinated diols. The negligible red-edge excitation shift in the fluorescence of melittin indicated that the fluorinated diol/water solvent shell surrounding the tryptophan chromophore is less immobilized than are molecules in a lamellar vesicle.
Collapse
Affiliation(s)
- Merlyn D Schuh
- Department of Chemistry, P.O. Box 7120, Davidson College, Davidson, North Carolina 28035-7120, USA.
| | | |
Collapse
|
34
|
Dzwolak W, Loksztejn A, Smirnovas V. New Insights into the Self-Assembly of Insulin Amyloid Fibrils: An H−D Exchange FT-IR Study. Biochemistry 2006; 45:8143-51. [PMID: 16800639 DOI: 10.1021/bi060341a] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solvent protection of the amide backbone in bovine insulin fibrils was studied by FT-IR spectroscopy. In the mature fibrils, approximately 85 +/- 2% of amide protons are protected. Of those "trapped" protons, a further 25 +/- 2 or 35 +/- 2% is H-D exchanged after incubation for 1 h at 1 GPa and 25 degrees C or 0.1 MPa and 100 degrees C, respectively. In contrast to the native or unfolded protein, fibrils do not H-D exchange upon incubation at 65 degrees C. A complete deuteration of H(2)O-grown fibrils occurs when the beta-sheet structure is reassembled in a 75 wt % DMSO/D(2)O solution. Our findings suggest a densely packed environment around the amide protons involved in the intermolecular beta-sheet motive. In disagreement with the concept of "amyloid fibers as water-filled nanotubes" [Perutz, M. F., et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 5591-5595], elution of D(2)O-grown fibrils with H(2)O is complete, which is reflected by the vanishing of D(2)O bending vibrations at 1214 cm(-)(1). This implies the absence of "trapped water" within insulin fibrils. The rigid conformations of the native and fibrillar insulin contrast with transient intermediate states docking at the fibrils' ends. Room-temperature seeding is accompanied by an accelerated H-D exchange in insulin molecules in the act of docking and integrating with the seeds, proving that the profound structural disruption is the sine qua non of forming an aggregation-competent conformation.
Collapse
Affiliation(s)
- Wojciech Dzwolak
- Institute of High-Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland.
| | | | | |
Collapse
|
35
|
Rojas Quijano FA, Morrow D, Wise BM, Brancia FL, Goux WJ. Prediction of nucleating sequences from amyloidogenic propensities of tau-related peptides. Biochemistry 2006; 45:4638-52. [PMID: 16584199 DOI: 10.1021/bi052226q] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Physical properties, including amyloid morphology, FTIR and CD spectra, enhancement of Congo red absorbance, polymerization rate, critical monomer concentration, free energy of stabilization, hydrophobicity, and the partition coefficient between soluble and amyloid states, were measured for the tau-related peptide Ac-VQIVYK amide (AcPHF6) and its single site mutants Ac-VQIVXK amide (X not equal Cys). Transmission electron microscopy showed that 15 out of the 19 peptides formed amyloid in buffer, with morphologies ranging from straight and twisted filaments to sheets and rolled sheets. Using principal component analysis (PCA), measured properties were treated in a comprehensive manner, and scores along the most significant principal components were used to define individual amino acid amyloidogenic propensities. Quantitative structure-activity modeling (QSAM) showed that residues with greater size and hydrophobicity made the largest contributions to the propensity of peptides to form amyloid. Using individual amino acid propensities, sequences within tau with high amyloid-forming potential were estimated and found to include 226VAVVR230 in the proline-rich region, 275VQIINK280 (PHF6) and 306VQIVYK311 (PHF6) within the microtubule binding region, and 392IVYK395 in the C-tail region of the protein. The results suggest that regions outside the microtubule-binding region may play important roles in tau aggregation kinetics or paired helical filament structure.
Collapse
Affiliation(s)
- Federico A Rojas Quijano
- Department of Chemistry, The University of Texas at Dallas, P.O. Box 830688 Richardson, Texas 75083-0688, USA
| | | | | | | | | |
Collapse
|
36
|
Solovyov KV, Gasteva AA, Egorov VV, Aleinikova TD, Sirotkin AK, Shvartsman AL, Shavlovsky MM. Role of the C-terminal fragment of human transthyretin in abnormal fibrillogenesis. BIOCHEMISTRY (MOSCOW) 2006; 71:543-9. [PMID: 16732734 DOI: 10.1134/s0006297906050129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polypeptide chain fragments of recombinant transthyretin (TTR) with leucine-55 substituted by proline (L55P), which are involved in abnormal fibrillogenesis of this protein, were studied. No fibrils were produced in purified preparations of TTR(L55P) under the optimum conditions for fibrillogenesis but in absence of protease inhibitors. The ability of TTR for fibrillogenesis was lost because of a limited proteolysis resulting in detachment of the TTR polypeptide chain C-terminal fragment of approximately 18 amino acid residues in length. This proteolysis seemed to occur with involvement of a bacterial serine endopeptidase sohB (EC 3.4.21), which was identified in TTR preparations by the MALDI-TOF method. The presence of the C-terminal fragment of the TTR polypeptide chain seems to be crucial for production of abnormal fibrils.
Collapse
Affiliation(s)
- K V Solovyov
- Department of Molecular Genetics, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Hong DP, Fink AL. Independent heterologous fibrillation of insulin and its B-chain peptide. Biochemistry 2006; 44:16701-9. [PMID: 16342960 DOI: 10.1021/bi051658y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insulin is very prone to form amyloid fibrils under slightly destabilizing conditions, and the B-chain region plays a critical role in the fibrillation. We show here that the isolated B-chain peptide of bovine insulin also forms fibrils at both acidic and neutral pH. When a mixture of insulin and the B-chain peptide was incubated at either acidic or neutral pH, the formation of fibrils was clearly separated into two phases, with the faster phase corresponding to the formation of homogeneous fibrils from the B-chain and the slower phase corresponding to homogeneous fibrillation of insulin. To further investigate the interaction (or lack thereof) between the two polypeptides, we examined the effects of cross-seeding. The results indicate that seeds of B-chain fibrils accelerate the fibrillation of insulin at pH 1.6 and inhibit the fibrillation at pH 7.5, but seeds of insulin fibrils have little effect on the fibrillation of the B-chain. We conclude that at pH 7.5 simultaneous independent homologous fibrillation occurs, but at low pH, heterologous fibrillation takes place, and with B-chain seeding of insulin, a unique conformation of fibrils is formed. Our results demonstrate that in the co-aggregation of closely related peptides each peptide species may undergo concurrent homogeneous or heterologous polymerization and that fibrils of one species may or may not seed fibrillation of the other. The results demonstrate the significant "species" barrier in amyloid fibril formation between fibrillation induced by different fibrils. A model for the fibrillation of the heterogeneous system of insulin and B-chain insulin is proposed.
Collapse
Affiliation(s)
- Dong-Pyo Hong
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
38
|
Ivanova MI, Thompson MJ, Eisenberg D. A systematic screen of beta(2)-microglobulin and insulin for amyloid-like segments. Proc Natl Acad Sci U S A 2006; 103:4079-82. [PMID: 16537488 PMCID: PMC1449649 DOI: 10.1073/pnas.0511298103] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying sequence determinants of fibril-forming proteins is crucial for understanding the processes causing >20 proteins to form pathological amyloid depositions. Our approach to identifying which sequences form amyloid-like fibrils is to screen the amyloid-forming proteins human insulin and beta(2)-microglobulin for segments that form fibrils. Our screen is of 60 sequentially overlapping peptides, 59 being six residues in length and 1 being five residues, covering every noncysteine-containing segment in these two proteins. Each peptide was characterized as amyloid-like or nonfibril-forming. Amyloid-like peptides formed fibrils visible in electron micrographs or needle-like microcrystals showing a cross-beta diffraction pattern. Eight of the 60 peptides (three from insulin and five from beta(2)-microglobulin) were identified as amyloid-like. The results of the screen were used to assess the computational method, and good agreement between prediction and experiments was found. This agreement suggests that the pair-of-sheets, zipper spine model on which the computational method is based is at least approximately correct for the structure of the fibrils and suggests the nature of the sequence signal for formation of amyloid-like fibrils.
Collapse
Affiliation(s)
- Magdalena I. Ivanova
- Howard Hughes Medical Institute and University of California–Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Michael J. Thompson
- Howard Hughes Medical Institute and University of California–Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - David Eisenberg
- Howard Hughes Medical Institute and University of California–Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Lee BK, Shimanouchi T, Umakoshi H, Kuboi R. Evaluation of carboxylic acid-induced conformational transitions of β-lactoglobulin: Comparison of the alcohol effects on β-lactoglobulin. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2005.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Abedini A, Singh G, Raleigh DP. Recovery and purification of highly aggregation-prone disulfide-containing peptides: application to islet amyloid polypeptide. Anal Biochem 2005; 351:181-6. [PMID: 16406209 DOI: 10.1016/j.ab.2005.11.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 11/21/2005] [Accepted: 11/21/2005] [Indexed: 11/25/2022]
Abstract
Islet amyloid polypeptide (IAPP) is a 37-residue pancreatic hormone. It is responsible for the formation of islet amyloid in vivo and is very insoluble and aggregation-prone in vitro, particularly at basic pH. The peptide contains a disulfide bridge between residues two and seven and an amidated C terminus. There is no reported expression system for the production of amidated IAPP. The peptide is difficult to synthesize and formation of the disulfide by traditional methods is problematic. We have found that the use of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) or dimethyl sulfoxide (DMSO) significantly improves disulfide formation and purification of highly aggregation-prone IAPP sequences. The use of these organic solvents increases the solubility of the hydrophobic peptides, avoids the use of aqueous basic solutions, and eliminates the need for continuous stirring during oxidation to form the Cys-2 to Cys-7 disulfide bridge. Elimination of the stirring step and basic solution helps to reduce aggregation and allows for more consistent high-performance liquid chromatography (HPLC) retention times. Formation of the intramolecular disulfide using DMSO was found to be the most effective method for IAPP oxidation, reducing the reaction time from 24 to 5 h. Aggregated IAPP can be resolubilized by HFIP or DMSO and recovered by HPLC with very good yield.
Collapse
Affiliation(s)
- Andisheh Abedini
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA.
| | | | | |
Collapse
|
41
|
Meersman F, Dobson CM. Probing the pressure-temperature stability of amyloid fibrils provides new insights into their molecular properties. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1764:452-60. [PMID: 16337233 DOI: 10.1016/j.bbapap.2005.10.021] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 10/27/2005] [Indexed: 10/25/2022]
Abstract
A number of medical disorders, including Alzheimer's disease and type II diabetes, is characterised by the deposition of amyloid fibrils in tissue. The insolubility and size of the fibrils has largely precluded the determination of their structures at high resolution. Studies probing the stability of amyloid fibrils can reveal which non-covalent interactions are important in the formation and maintenance of the fibril structure. In particular, we review here the use of high hydrostatic pressure and high temperature as perturbation techniques. In general, small aggregates formed early in the assembly process can be dissociated by high pressure, but mature amyloid fibrils are highly pressure stable. This finding suggests that a temporal transition occurs during which side chain packing and hydrogen bond formation are optimised, whereas the hydrophobic effect and electrostatic interactions play a dominant role in the early stages of the aggregation. High temperatures, however, can disrupt most aggregates. Though the observed stability of amyloid fibrils is not unique to these structures, the notion that amyloid fibrils can represent the global minimum in free energy is supported by this type of investigations. Some implications regarding the nature of toxic species, associated with at least many of the amyloid disorders, and recently proposed structural models are discussed.
Collapse
Affiliation(s)
- Filip Meersman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | |
Collapse
|
42
|
Yamaguchi KI, Takahashi S, Kawai T, Naiki H, Goto Y. Seeding-dependent propagation and maturation of amyloid fibril conformation. J Mol Biol 2005; 352:952-60. [PMID: 16126222 DOI: 10.1016/j.jmb.2005.07.061] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 07/15/2005] [Accepted: 07/25/2005] [Indexed: 11/17/2022]
Abstract
Recent studies of amyloid fibrils have focused on the presence of multiple amyloid forms even with one protein and their propagation by seeding, leading to conformational memory. To establish the structural basis of these critical features of amyloid fibrils, we used the amyloidogenic fragment Ser20-Lys41 (K3) of beta2-microglobulin, a protein responsible for dialysis-related amyloidosis. In 20% (v/v) 2,2,2-trifluoroethanol and 10 mM HCl (pH approximately 2), K3 peptide formed two types of amyloid-like fibrils, f218 and f210, differing in the amount of beta-sheet as measured by circular dichroism spectroscopy and Fourier transform infrared spectroscopy. Atomic force microscopy showed that the fibril with a larger amount of beta-sheet (f210) is thinner and longer. Both fibrils were reproduced by seeding, showing the template-dependent propagation of a fibril's conformation. However, upon repeated self-seeding, f218 fibrils were gradually transformed into f210 fibrils, revealing the conformational maturation. The observed maturation can be explained fully by a competitive propagation of two fibrils. The maturation of amyloid fibrils might play a role during the development of amyloidosis.
Collapse
Affiliation(s)
- Kei-Ichi Yamaguchi
- Institute for Protein Research, Osaka University, and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
43
|
Murali J, Jayakumar R. Spectroscopic studies on native and protofibrillar insulin. J Struct Biol 2005; 150:180-9. [PMID: 15866741 DOI: 10.1016/j.jsb.2005.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 02/18/2005] [Indexed: 11/16/2022]
Abstract
The structure of insulin in amyloid fibrillar form has been recently shown as a well folded conformation using cryoelectron microscopy [Jimenez, J.L., Nettleton, E.J., Bouchard, M., Robinson, C.V., Dobson, C.M., Saibil H.R., 2002. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA. 99 9196-9201.]. Most of the amyloid aggregates elicit maximum toxicity in the protofibrillar (PF) intermediate state. Here, we describe PF intermediates of insulin are made-up monomers with flexible conformers. We also show protofibrils have three-dimensionally extended hydrophobic cavity to bind with 1-anilinonaphthalene-8-sulphonate (ANS) molecules. Energy transfer measurement revealed that ANS dye binding site of PF is within the range of FRET distance of insulin tyrosine residues. Significant proportion of beta-sheet, helical, and turn structures in the PF form indicate conformational dynamics in the folded chain of insulin in the PF assembled form. Though the conformational flexibility is noticeably present in the assembly, addition of GdnHCl could completely unfold PF into disordered structure suggesting structural "zipping" in the PF form. We have also shown that helical conformer inducing solvent 2,2,2-trifluoroethanol (TFE) could dissociate the PF aggregate indicating possible involvement of beta-sheets in contributing to PF stability.
Collapse
Affiliation(s)
- J Murali
- Bioorganic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | |
Collapse
|
44
|
Wadai H, Yamaguchi KI, Takahashi S, Kanno T, Kawai T, Naiki H, Goto Y. Stereospecific amyloid-like fibril formation by a peptide fragment of beta2-microglobulin. Biochemistry 2005; 44:157-64. [PMID: 15628856 DOI: 10.1021/bi0485880] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the role of the L/D-stereospecificity of amino acids is important in obtaining further insight into the mechanism of the formation of amyloid fibrils. Beta(2)-microglobulin is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. A 22-residue peptide of beta(2)-microglobulin, Ser20-Lys41 (L-K3 peptide), obtained by digestion with Acromobacter protease I, formed amyloid-like fibrils in 50% (v/v) 2,2,2-trifluoroethanol and 10 mM HCl at 25 degrees C, as confirmed by thioflavin T fluorescence, circular dichroism spectra, and atomic force microscopy images. A synthetic K3 peptide composed of D-amino acids (D-K3 peptide) formed similar fibrils but with opposite chirality as indicated by circular dichroism spectra. A mixture of L-K3 and D-K3 peptides also formed fibrils, although the L- and D-amino acid composition of each fibril is unknown. To examine the possible cross-reactivity between L- and D-enantiomers, we carried out seeding experiments in which preformed seeds were extended by monomers. The results revealed that only the homologous extensions proceed smoothly, i.e., the growth of L-seeds by L-monomers or D-seeds by D-monomers. The results suggest that, while the fibrils derived from L- and D-peptides form in a similar manner but with opposite stereochemistry, a cross-reaction between them is prevented because the geometry of the mixed sheet cannot satisfy dominant factors for beta-sheet stabilization.
Collapse
Affiliation(s)
- Hiromasa Wadai
- Institute for Protein Research, Osaka University, and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Liu W, Prausnitz JM, Blanch HW. Amyloid fibril formation by peptide LYS (11-36) in aqueous trifluoroethanol. Biomacromolecules 2005; 5:1818-23. [PMID: 15360293 DOI: 10.1021/bm049841e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide LYS (11-36), derived from the beta-sheet region of T4 lysozyme, forms an amyloid fibril in aqueous trifluoroethanol (TFE) at elevated temperature. The peptide has a moderate alpha-helix content in 20 and 50% (v/v) TFE solution; large quantities of fibrils were formed after incubation at 55 degrees C for 2 weeks as monitored by a thioflavin T fluorescence assay. No fibrils were observed when the peptide initially existed predominantly as a random coil or as a complete alpha helix. Our results suggest that a moderate amount of alpha helix and random coil present in the peptide initially facilitates the fibril-formation process, but a high alpha-helix content inhibits fibril formation. Transmission electron microscopy revealed several types of fibril morphologies at different TFE concentrations. The fibrils were highly twisted and consisted of interleaved protofilaments in 50% TFE, while smooth and flat ribbonlike fibrils were found in 20% TFE. In 50% TFE, the fibril growth rate of LYS (11-36) was found to depend strongly on peptide concentration and seeding but was insensitive to solution pH and ionic strength.
Collapse
Affiliation(s)
- Wei Liu
- Chemical Engineering Department, University of California, Berkeley, 94720, USA
| | | | | |
Collapse
|
46
|
Calamai M, Canale C, Relini A, Stefani M, Chiti F, Dobson CM. Reversal of protein aggregation provides evidence for multiple aggregated States. J Mol Biol 2005; 346:603-16. [PMID: 15670608 DOI: 10.1016/j.jmb.2004.11.067] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 10/13/2004] [Accepted: 11/22/2004] [Indexed: 11/22/2022]
Abstract
Observations that prefibrillar aggregates from different amyloidogenic proteins can be solubilised under some conditions have raised questions as to the generality of this phenomenon and the nature of the factors that influence it. By studying aggregates formed from human muscle acylphosphatase (AcP) under mild denaturing conditions, and by using a battery of techniques, we demonstrate that disaggregation is possible under conditions close to physiological where the protein is stable in its native state. In the presence of 25% (v/v) trifluoroethanol (TFE) AcP undergoes partial unfolding and globular aggregates (60-200 nm in diameter) that can assemble further into clusters (400-800 nm in diameter) develop progressively. Yet larger superstructures (>5 microm) are formed when the concentration of the globular aggregates exceeds a critical concentration. After diluting the sample to give a solution containing 5% TFE, the fraction of partially unfolded monomeric protein refolds very rapidly, with a rate constant of approximately 1s(-1). The 60-200 nm globular aggregates disaggregate with an apparent rate constant of approximately 2.5 x 10(-3)s(-1) while the 400-800 nm clusters disassembly more slowly with a rate constant of approximately 3.1 x 10(-4)s(-1). The larger (>5 microm) superstructures are not disrupted under the conditions used here. These results suggest that amyloid formation occurs in discrete steps whose reversibility is increasingly difficult, and dependent on the size of the aggregates, and that disaggregation experiments can provide a powerful method of detecting different types of species within the complex process of aggregation. In addition, our work suggests that destabilization of amyloid aggregates resulting in the conversion of misfolded proteins back to their native states could be an important factor in both the onset and treatment of diseases associated with protein aggregation.
Collapse
Affiliation(s)
- Martino Calamai
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | | | | | |
Collapse
|
47
|
Hwang W, Zhang S, Kamm RD, Karplus M. Kinetic control of dimer structure formation in amyloid fibrillogenesis. Proc Natl Acad Sci U S A 2004; 101:12916-21. [PMID: 15326301 PMCID: PMC516495 DOI: 10.1073/pnas.0402634101] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyloid fibril formation involves nonfibrillar oligomeric intermediates, which are important as possible cytotoxic species in neurodegenerative diseases. However, their transient nature and polydispersity have made it difficult to identify their formation mechanism or structure. We have investigated the dimerization process, the first step in aggregate formation, by multiple molecular dynamics simulations of five beta-sheet-forming peptides. Contrary to the regular beta-sheet structure of the amyloid fibril, the dimers exhibit all possible combinations of beta-sheets, with an overall preference for antiparallel arrangements. Through statistical analysis of 1,000 dimerization trajectories, each 1 ns in length, we have demonstrated that the observed distribution of dimer configurations is kinetically determined; hydrophobic interactions orient the peptides so as to minimize the solvent accessible surface area, and the dimer structures become trapped in energetically unfavorable conformations. Once the hydrophobic contacts are present, the backbone hydrogen bonds form rapidly by a zipper-like mechanism. The initial nonequilibrium structures formed are stable during the 1-ns simulation time for all five peptides at room temperature. In contrast, at higher temperatures, where rapid equilibration among different configurations occurs, the distribution follows the global energies. The relaxation time of dimers at room temperature was estimated to be longer than the time for diffusional encounters with other oligomers at typical concentrations. These results suggest that kinetic trapping could play a role in the structural evolution of early aggregates in amyloid fibrillogenesis.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
48
|
Armen RS, DeMarco ML, Alonso DOV, Daggett V. Pauling and Corey's alpha-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease. Proc Natl Acad Sci U S A 2004; 101:11622-7. [PMID: 15280548 PMCID: PMC511030 DOI: 10.1073/pnas.0401781101] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Indexed: 11/18/2022] Open
Abstract
Transthyretin, beta(2)-microglobulin, lysozyme, and the prion protein are four of the best-characterized proteins implicated in amyloid disease. Upon partial acid denaturation, these proteins undergo conformational change into an amyloidogenic intermediate that can self-assemble into amyloid fibrils. Many experiments have shown that pH-mediated changes in structure are required for the formation of the amyloidogeneic intermediate, but it has proved impossible to characterize these conformational changes at high resolution using experimental means. To probe these conformational changes at atomic resolution, we have performed molecular dynamics simulations of these proteins at neutral and low pH. In low-pH simulations of all four proteins, we observe the formation of alpha-pleated sheet secondary structure, which was first proposed by L. Pauling and R. B. Corey [(1951) Proc. Natl. Acad. Sci. USA 37, 251-256]. In all beta-sheet proteins, transthyretin and beta(2)-microglobulin, alpha-pleated sheet structure formed over the strands that are highly protected in hydrogen-exchange experiments probing amyloidogenic conditions. In lysozyme and the prion protein, alpha-sheets formed in the specific regions of the protein implicated in the amyloidogenic conversion. We propose that the formation of alpha-pleated sheet structure may be a common conformational transition in amyloidosis.
Collapse
Affiliation(s)
- Roger S Armen
- Department of Medicinal Chemistry and Biomolecular Structure and Design Program, University of Washington, Seattle, WA 98195-7610, USA
| | | | | | | |
Collapse
|
49
|
Schmitt-Bernard CF, Pouliquen Y, Argilès A. [BIG-H3 protein: mutation of codon 124 and corneal amyloidosis]. J Fr Ophtalmol 2004; 27:510-22. [PMID: 15179309 DOI: 10.1016/s0181-5512(04)96173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In 1997, a group of hereditary corneal dystrophies was related to mutations in the TGFBI (BIGH3) gene. Within this group, some corneal dystrophies present particular biochemical features in that they are characterized by corneal amyloid deposition. Contrary to clinical and genetic knowledge, the biochemical characteristics of the encoded protein (Big-h3) and the mechanisms of its amyloid conversion remain unclear. We review the current knowledge on the Big-h3 protein and focus on the behavior of the codon 124 region. We discuss this protein's mechanisms of amyloid conversion from our results and previous reports as well as from other types of amyloidosis. These data provide a better understanding of the putative processes leading to the phenotypic variations linked with their respective codon 124 mutation.
Collapse
|
50
|
Goux WJ, Kopplin L, Nguyen AD, Leak K, Rutkofsky M, Shanmuganandam VD, Sharma D, Inouye H, Kirschner DA. The Formation of Straight and Twisted Filaments from Short Tau Peptides. J Biol Chem 2004; 279:26868-75. [PMID: 15100221 DOI: 10.1074/jbc.m402379200] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We studied fibril formation in a family of peptides based on PHF6 (VQIVYK), a short peptide segment found in the microtubule binding region of tau protein. N-Acetylated peptides AcVYK-amide (AcVYK), AcIVYK-amide (AcPHF4), AcQIVYK-amide (AcPHF5), and AcV-QIVYK-amide (AcPHF6) rapidly formed straight filaments in the presence of 0.15 m NaCl, each composed of two laterally aligned protofilaments approximately 5 nm in width. X-ray fiber diffraction showed the omnipresent sharp 4.7-A reflection indicating that the scattering objects are likely elongated along the hydrogen-bonding direction in a cross-beta conformation, and Fourier transform IR suggested the peptide chains were in a parallel (AcVYK, AcPHF6) or antiparallel (AcPHF4, AcPHF5) beta-sheet configuration. The dipeptide N-acetyl-YK-amide (AcYK) formed globular structures approximately 200 nm to 1 microm in diameter. The polymerization rate, as measured by thioflavin S binding, increased with the length of the peptide going from AcYK --> AcPHF6, and peptides that aggregated most rapidly displayed CD spectra consistent with beta-sheet structure. There was a 3-fold decrease in rate when Val was substituted for Ile or Gln, nearly a 10-fold decrease when Ala was substituted for Tyr, and an increase in polymerization rate when Glu was substituted for Lys. Twisted filaments, composed of four laterally aligned protofilaments (9-19 nm width, approximately 90 nm half-periodicity), were formed by mixing AcPHF6 with AcVYK. Taken together these results suggest that the core of PHF6 is localized at VYK, and the interaction between small amphiphilic segments of tau may initiate nucleation and lead to filaments displaying paired helical filament morphology.
Collapse
Affiliation(s)
- Warren J Goux
- Department of Chemistry, the University of Texas at Dallas, Richardson, Texas 75083-0688, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|