1
|
Airas RK. Kinetic analysis of the isoleucyl-tRNA synthetase mechanism: the next reaction cycle can start before the previous one ends. FEBS Open Bio 2018; 8:244-255. [PMID: 29435414 PMCID: PMC5794461 DOI: 10.1002/2211-5463.12362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases join correct amino acids to their cognate tRNA at the start of the protein synthesis. Through the kinetic analysis, it is possible to estimate how their functional details correspond to the known structural features. Kinetic analysis of the isoleucyl-tRNA synthetase (IleRS) from Escherichia coli was accomplished. Sixteen different steady-state two-ligand experiments were statistically analysed simultaneously so that the same rate equations and same rate and dissociation constants applied to all experiments. The so-called rapid equilibrium segments procedure was used to derive the rate equations. The final best-fit mechanism included the normal activation and transfer steps, and reorganization of the steps between them and after the transfer step. In addition, the analysis strongly suggested an additional activation step, formation of a new isoleucyl-AMP before the isoleucyl-tRNA was freed from the enzyme. The removal of Ile-tRNA was possible without the formation of Ile-AMP if both isoleucine and ATP were bound to the E-Ile-tRNA complex, but this route covered only 11% of the total formation of Ile-tRNA. In addition to the Mg2+ in MgATP or MgPPi, only two tRNA-bound Mg2+ were required to explain the magnesium dependence in the best-fit mechanism. The first Mg2+ could be present in all steps before the second activation and was obligatory in the first reorganizing step and transfer step. The second Mg2+ was present only at the transfer step, whereas elsewhere it prevented the reaction, including the activation reactions. Chloride inhibited the IleRS reaction, while 100 mm KCl caused 50% inhibition if the ionic strength was kept constant with K-acetate. The Kmapp (tRNA) value was increased from 0.057 to 1.37 μm when the KCl concentration was increased from 0 to 200 mm. The total rate equation helps to understand the reaction route and how the simultaneous presence of Ile-tRNA and Ile-AMP can cause new possibilities to proofreading mechanisms of this enzyme. Enzyme Isoleucyl-tRNA synthetase (EC 6.1.1.5).
Collapse
|
2
|
Singh DD, Jain A. Multipurpose instantaneous microarray detection of acute encephalitis causing viruses and their expression profiles. Curr Microbiol 2012; 65:290-303. [PMID: 22674173 PMCID: PMC7080014 DOI: 10.1007/s00284-012-0154-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/14/2012] [Indexed: 01/15/2023]
Abstract
Detection of multiple viruses is important for global analysis of gene or protein content and expression, opening up new prospects in terms of molecular and physiological systems for pathogenic diagnosis. Early diagnosis is crucial for disease treatment and control as it reduces inappropriate use of antiviral therapy and focuses surveillance activity. This requires the ability to detect and accurately diagnose infection at or close to the source/outbreak with minimum delay and the need for specific, accessible point-of-care diagnosis able to distinguish causative viruses and their subtypes. None of the available viral diagnostic assays combine a point-of-care format with the complex capability to identify a large range of human and animal viruses. Microarray detection provides a useful, labor-saving tool for detection of multiple viruses with several advantages, such as convenience and prevention of cross-contamination of polymerase chain reaction (PCR) products, which is of foremost importance in such applications. Recently, real-time PCR assays with the ability to confirm the amplification product and quantitate the target concentration have been developed. Furthermore, nucleotide sequence analysis of amplification products has facilitated epidemiological studies of infectious disease outbreaks and monitoring of treatment outcomes for infections, in particular for viruses that mutate at high frequency. This review discusses applications of microarray technology as a potential new tool for detection and identification of acute encephalitis-causing viruses in human serum, plasma, and cell cultures.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Virology Laboratory, Department of Microbiology, C S M Medical University, Lucknow, UP 226003, India.
| | | |
Collapse
|
3
|
Andreev G, Budantseva N, Sokolova M, Tananaev I, Myasoedov B. Interaction of transuranium elements with biologically important ligands: structural and spectroscopic evidence for nucleotide coordination to plutonium. Inorg Chem 2010; 48:2343-5. [PMID: 19267495 DOI: 10.1021/ic802053s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first complex of a transuranium element (tetravalent plutonium) with nucleotide (deoxycytidinemonophosphate, dCMP) was synthesized and structurally characterized. The crystal structure of [Pu(4)(NO(3))(8)(HdCMP)(4)(H(2)O)(8)](NO(3))(4).2H(2)O consists of complex cations [Pu(4)(NO(3))(8)(HdCMP)(4)(H(2)O)(8)](4+), NO(3)(-) anions, and water molecules. There are two crystallographically independent Pu atoms in the structure, both having similar surroundings. Each of the Pu atoms is coordinated by three O atoms of phosphate groups belonging to three different (HdCMP)(-) anions, two bidentate nitrate anions, and two water molecules. The crystal structure is confirmed by IR and UV/vis/near-IR spectroscopic data.
Collapse
Affiliation(s)
- Grigory Andreev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, 31 Leninskiy pr., Moscow 119991, Russia.
| | | | | | | | | |
Collapse
|
4
|
|
5
|
Airas RK. Magnesium dependence of the measured equilibrium constants of aminoacyl-tRNA synthetases. Biophys Chem 2007; 131:29-35. [PMID: 17889423 DOI: 10.1016/j.bpc.2007.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 11/26/2022]
Abstract
The apparent equilibrium constants (K') for six reactions catalyzed by aminoacyl-tRNA synthetases from Escherichia coli were measured, the equations for the magnesium dependence of the equilibrium constants were derived, and best-fit analyses between the measured and calculated values were used. The K' values at 1 mM Mg(2+) ranged from 0.49 to 1.13. The apparent equilibrium constants increased with increasing Mg(2+) concentrations. The values were 2-3 times higher at 20 mM Mg(2+) than at 1 mM Mg(2+), and the dependence was similar in the class I and class II synthetases. The main reason for the Mg(2+) dependence is the existence of PP(i) as two magnesium complexes, but only one of them is the real product. AMP exists either as free AMP or as MgAMP, and therefore also has some effect on the measured equilibrium constant. However, these dependences alone cannot explain the measured results. The measured dependence of the K' on the Mg(2+) concentration is weaker than that caused by PP(i) and AMP. Different bindings of the Mg(2+) ions to the substrate tRNA and product aminoacyl-tRNA can explain this observation. The best-fit analysis suggests that tRNA reacts as a magnesium complex in the forward aminoacylation direction but this given Mg(2+) ion is not bound to aminoacyl-tRNA at the start of the reverse reaction. Thus Mg(2+) ions seem to have an active catalytic role, not only in the activation of the amino acid, but in the posttransfer steps of the aminoacyl-tRNA synthetase reaction, too.
Collapse
Affiliation(s)
- R Kalervo Airas
- Department of Biochemistry, University of Turku, FIN-20014, Turku, Finland.
| |
Collapse
|
6
|
Cahill CL, de Lill DT, Frisch M. Homo- and heterometallic coordination polymers from the f elements. CrystEngComm 2007. [DOI: 10.1039/b615696g] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Townsend MB, Dawson ED, Mehlmann M, Smagala JA, Dankbar DM, Moore CL, Smith CB, Cox NJ, Kuchta RD, Rowlen KL. Experimental evaluation of the FluChip diagnostic microarray for influenza virus surveillance. J Clin Microbiol 2006; 44:2863-71. [PMID: 16891504 PMCID: PMC1594652 DOI: 10.1128/jcm.00134-06] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Global surveillance of influenza is critical for improvements in disease management and is especially important for early detection, rapid intervention, and a possible reduction of the impact of an influenza pandemic. Enhanced surveillance requires rapid, robust, and inexpensive analytical techniques capable of providing a detailed analysis of influenza virus strains. Low-density oligonucleotide microarrays with highly multiplexed "signatures" for influenza viruses offer many of the desired characteristics. However, the high mutability of the influenza virus represents a design challenge. In order for an influenza virus microarray to be of utility, it must provide information for a wide range of viral strains and lineages. The design and characterization of an influenza microarray, the FluChip-55 microarray, for the relatively rapid identification of influenza A virus subtypes H1N1, H3N2, and H5N1 are described here. In this work, a small set of sequences was carefully selected to exhibit broad coverage for the influenza A and B viruses currently circulating in the human population as well as the avian A/H5N1 virus that has become enzootic in poultry in Southeast Asia and that has recently spread to Europe. A complete assay involving extraction and amplification of the viral RNA was developed and tested. In a blind study of 72 influenza virus isolates, RNA from a wide range of influenza A and B viruses was amplified, hybridized, labeled with a fluorophore, and imaged. The entire analysis time was less than 12 h. The combined results for two assays provided the absolutely correct types and subtypes for an average of 72% of the isolates, the correct type and partially correct subtype information for 13% of the isolates, the correct type only for 10% of the isolates, false-negative signals for 4% of the isolates, and false-positive signals for 1% of the isolates. In the overwhelming majority of cases in which incomplete subtyping was observed, the failure was due to the nucleic acid amplification step rather than limitations in the microarray.
Collapse
MESH Headings
- Animals
- Birds
- Conserved Sequence
- False Negative Reactions
- False Positive Reactions
- Genome, Viral
- Genotype
- Humans
- Influenza A Virus, H1N1 Subtype/classification
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/classification
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/classification
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A virus/classification
- Influenza A virus/genetics
- Influenza B virus/classification
- Influenza B virus/genetics
- Influenza in Birds/diagnosis
- Influenza in Birds/virology
- Influenza, Human/diagnosis
- Influenza, Human/virology
- Molecular Diagnostic Techniques
- Oligonucleotide Array Sequence Analysis/methods
- Orthomyxoviridae Infections/diagnosis
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/virology
- RNA, Viral/genetics
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Michael B Townsend
- Department of Chemistry and Biochemistry, UCB 215, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Szabó Z, Furó I, Csöregh I. Combinatorial multinuclear NMR and X-ray diffraction studies of uranium(VI)-nucleotide complexes. J Am Chem Soc 2006; 127:15236-47. [PMID: 16248666 DOI: 10.1021/ja0550273] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complex formation of uranium(VI) with four nucleotides, adenosine- (AMP), guanosine- (GMP), uridine- (UMP), and cytidine-monophosphate (CMP), has been studied in the alkaline pH range (8.5-12) by (1)H, (31)P, (13)C, and (17)O NMR spectroscopy, providing spectral integral, chemical shift, homo- and heteronuclear coupling, and diffusion coefficient data. We find that two and only two complexes are formed with all ligands in the investigated pH region independently of the total uranium(VI) and ligand concentrations. Although the coordination of the 5'-phosphate group and the 2'- and 3'-hydroxyl groups of the sugar unit to the uranyl ions is similar to that proposed earlier ("Feldman complex"), the number and the structures of the complexes are different. The uranium-to-nucleotide ratio is 6:4 in one of the complexes and 3:3 in the other one, as unambiguously determined by a combinatorial approach using a systematic variation of the ratio of two ligands in ternary uranium(VI)-nucleotide systems. The structure of the 3:3 complex has been determined by single-crystal diffraction as well, and the results confirm the structure proposed by NMR in aqueous solution. The results have important implications on the synthesis of oligonucleotides.
Collapse
Affiliation(s)
- Zoltán Szabó
- Inorganic Chemistry and Physical Chemistry, Department of Chemistry, Royal Institute of Technology (KTH), S-10044 Stockholm, Sweden.
| | | | | |
Collapse
|
9
|
|
10
|
|
11
|
Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G. Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev 2005; 105:2647-94. [PMID: 15941225 DOI: 10.1021/cr030707e] [Citation(s) in RCA: 561] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM. RNA structure analysis at single nucleotide resolution by selective 2'-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 2005; 127:4223-31. [PMID: 15783204 DOI: 10.1021/ja043822v] [Citation(s) in RCA: 589] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactivity of an RNA ribose hydroxyl is shown to be exquisitely sensitive to local nucleotide flexibility because a conformationally constrained adjacent 3'-phosphodiester inhibits formation of the deprotonated, nucleophilic oxyanion form of the 2'-hydroxyl group. Reaction with an appropriate electrophile, N-methylisatoic anhydride, to form a 2'-O-adduct thus can be used to monitor local structure at every nucleotide in an RNA. We develop a quantitative approach involving Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) to map the structure of and to distinguish fine differences in structure for tRNAAsp transcripts at single nucleotide resolution. Modest extensions of the SHAPE approach will allow RNA structure to be monitored comprehensively and at single nucleotide resolution for RNAs of arbitrary sequence and structural complexity and under diverse solution environments.
Collapse
Affiliation(s)
- Edward J Merino
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
13
|
Summers JS, Shimko J, Freedman FL, Badger CT, Sturgess M. Displacement of Mn2+ from RNA by K+, Mg2+, neomycin B, and an arginine-rich peptide: indirect detection of nucleic acid/ligand interactions using phosphorus relaxation enhancement. J Am Chem Soc 2002; 124:14934-9. [PMID: 12475335 DOI: 10.1021/ja027829t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a novel method to study the interactions of nucleic acids with cationic species. The method, called phosphorus relaxation enhancement (PhoRE), uses (1)H-detected (31)P NMR of exogenous probe ions to monitor changes in the equilibrium between free Mn(2+) and Mn(2+) bound to the RNA. To demonstrate the technique, we describe the interactions of four RNA molecules with metal ions (K(+) and Mg(2+)), a small molecule drug (neomycin b), and a cationic peptide (RSG1.2). In each case, cationic ligand binding caused Mn(2+) to be displaced from the RNA. Free Mn(2+) was determined from its effect on the T(2) NMR relaxation rate of either phosphite (HPO(3)(2-)) or methyl phosphite (MeOPH, CH(3)OP(H)O(2-)). Using this method, the effects of [RNA] as low as 1 microM could be measured in 20 min of accumulation using a low field (200 MHz) instrument without pulsed field gradients. Cation association behavior was sequence and [RNA] dependent. At low [K(+)], Mn(2+) association with each of the RNAs decreased with increasing [K(+)] until approximately 40 mM, where saturation was reached. While saturating K(+) displaced all the bound Mn(2+) from a 31-nucleotide poly-uridine (U(31)), Mn(2+) remained bound to each of three hairpin-forming sequences (A-site, RRE1, and RRE2), even at 150 mM K(+). Bound Mn(2+) was displaced from each of the hairpins by Mg(2+), allowing determination of Mg(2+) dissociation constants (K(d,Mg)) ranging from 50 to 500 microM, depending on the RNA sequence and [K(+)]. Both neomycin b and RSG1.2 displaced Mn(2+) upon binding the hairpins. At [RNA] approximately 3 microM, RRE1 bound a single equivalent of RSG1.2, whereas neither RRE2 nor A-site bound the peptide. These behaviors were confirmed by fluorescence polarization using TAMRA-labeled peptide. At 2.7 microM RNA, the A-site hairpin bound a single neomycin b molecule. The selectivity of RSG1.2 binding was greatly diminished at higher [RNA]. Similarly, each hairpin bound multiple equivalents of neomycin at the higher [RNA]. These results demonstrate the utility of the PhoRE method for characterizing metal binding behaviors of nucleic acids and for studying RNA/ligand interactions.
Collapse
Affiliation(s)
- Jack S Summers
- Message Pharmaceuticals, Inc., 30 Spring Mill Road, Malvern, PA 19355, USA.
| | | | | | | | | |
Collapse
|
14
|
Abstract
AIM: To explore whether HDV ribozymes have the ability to trans-cleave HCV RNA.
METHODS: Three HDV genomic ribozymes were designed and named RzC1, RzC2 and RzC3. The substrate RNA contained HCV RNA 5’-noncoding region and 5'-fragment of C region (5'-NCR-C). All the ribozymes and HCV RNA 5'-NCR-C were obtained by transcription in vitro from their DNA templates, and HCV RNA 5'-NCR-C was radiolabelled at its 5’-end. Under certain pH, temperature, appropriate concentration of Mg2+ and deionized formamide, these ribozymes were respectively or simultaneously mixed with HCV RNA 5'-NCR-C and reacted for a certain time. The trans-cleavage reaction was stopped at different time points, and the products were separated with polyacrylamide gel electrophoresis (PAGE), displayed by autoradiography. Percentage of trans-cleaved products was measured to indicate the activity of HDV ribozymes.
RESULTS: RzC1 and RzC2 could trans-cleave 26% and 21.8% of HCV RNA 5'-NCR-C under our reaction conditions with 2.5 mol•L-1 deionized formamide respectively. The percentage of HCV RNA 5'-NCR-C trans-cleaved by RzC1, RzC2 or combined usage of the three ribozymes increased with time, up to 24.9%, 20.3% and 37.3% respectively at 90 min point. Almost no product from RzC3 was observed.
CONCLUSION: HDV ribozymes are able to trans-cleave specifically HCV RNA at certain sites under appropriate conditions, and combination of several ribozymes aiming at different target sites can trans-cleave the substrate more efficiently than using only one of them.
Collapse
Affiliation(s)
- Yue-Cheng Yu
- Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038,China.
| | | | | | | | | |
Collapse
|
15
|
Madhavaiah C, Srivatsan S, Verma S. Kinetic and mechanistic investigations of phosphodiester cleavage catalyzed by uranyl ion impregnated adenylated homopolymer. CATAL COMMUN 2002. [DOI: 10.1016/s1566-7367(02)00134-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|