1
|
Ranjit P, Varkey D, Shah BS, Paulsen IT. Substrate specificity and ecological significance of PstS homologs in phosphorus uptake in marine Synechococcus sp. WH8102. Microbiol Spectr 2024; 12:e0278623. [PMID: 38179917 PMCID: PMC10846223 DOI: 10.1128/spectrum.02786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Phosphorus, a vital macronutrient, often limits primary productivity in marine environments. Marine Synechococcus strains, including WH8102, rely on high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate in oligotrophic oceans. However, WH8102 possesses three distinct PstS homologs whose substrate specificity and ecological roles are unclear. The three PstS homologs were heterologously expressed and purified to investigate their substrate specificity and binding kinetics. Our study revealed that all three PstS homologs exhibited a high degree of specificity for phosphate but differed in phosphate binding affinities. Notably, PstS1b displayed nearly 10-fold higher binding affinity (KD = 0.44 µM) compared to PstS1a (KD = 3.3 μM) and PstS2 (KD = 4.3 μM). Structural modeling suggested a single amino acid variation in the binding pocket of PstS1b (threonine instead of serine in PstS1a and PstS2) likely contributed to its higher Pi affinity. Genome context data, together with the protein biophysical data, suggest distinct ecological roles for the three PstS homologs. We propose that PstS1b may be involved in scavenging inorganic phosphorus in oligotrophic conditions and that PstS1a may be involved in transporting recycled phosphate derived from organic phosphate cleavage. The role of PstS2 is less clear, but it may be involved in phosphate uptake when environmental phosphate concentrations are transiently higher. The conservation of three distinct PstS homologs in Synechococcus clade III strains likely reflects distinct adaptations for P acquisition under varying oligotrophic conditions.IMPORTANCEPhosphorus is an essential macronutrient that plays a key role in marine primary productivity and biogeochemistry. However, intense competition for bioavailable phosphorus in the marine environment limits growth and productivity of ecologically important cyanobacteria. In oligotrophic oceans, marine Synechococcus strains, like WH8102, utilize high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate. However, WH8102 possesses three distinct PstS homologs, with unclear substrate specificity and ecological roles, creating a knowledge gap in understanding phosphorus acquisition mechanisms in picocyanobacteria. Through genomic, functional, biophysical, and structural analysis, our study unravels the ecological functions of these homologs. Our findings enhance our understanding of cyanobacterial nutritional uptake strategies and shed light on the crucial role of these conserved nutrient uptake systems in adaptation to specific niches, which ultimately underpins the success of marine Synechococcus across a diverse array of marine ecosystems.
Collapse
Affiliation(s)
- Pramita Ranjit
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Deepa Varkey
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Bhumika S. Shah
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
2
|
Ramezanifard R, Golubeva YA, Palmer AD, Slauch JM. TamAB is regulated by PhoPQ and functions in outer membrane homeostasis during Salmonella pathogenesis. J Bacteriol 2023; 205:e0018323. [PMID: 37728604 PMCID: PMC10601761 DOI: 10.1128/jb.00183-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 09/21/2023] Open
Abstract
Salmonella survive and replicate in macrophages, which normally kill bacteria by exposing them to a variety of harsh conditions and antimicrobial effectors, many of which target the bacterial cell envelope. The PhoPQ two-component system responds to the phagosome environment and induces factors that protect the outer membrane, allowing adaptation and growth in the macrophage. We show that PhoPQ induces the transcription of the tamAB operon both in vitro and in macrophages. The TamA protein is structurally similar to BamA, an essential protein in the Bam complex that assembles β-barrel proteins in the outer membrane, while TamB is an AsmA-family protein implicated in lipid transport between the inner and outer membranes. We show that the Bam machinery is stressed in vitro under low Mg2+, low pH conditions that mimic the phagosome. Not surprisingly, mutations affecting Bam function confer significant virulence defects. Although loss of TamAB alone confers no virulence defect, a tamAB deletion confers a synthetic phenotype in bam mutant backgrounds in animals and macrophages, and in vitro upon treatment with vancomycin or sodium dodecyl sulfate. Mutations affecting YhdP, which functions in partial redundancy with TamB, also confer synthetic phenotypes with bam mutations in the animal, but this interaction is not evident in vitro. Thus, in the harsh phagocytic environment of the macrophage, the outer membrane Bam machinery is compromised, and the TamAB system, and perhaps other PhoPQ-regulated factors, is induced to compensate. It is most likely that TamAB and other systems assist the Bam complex indirectly by affecting outer membrane properties. IMPORTANCE The TamAB system has been implicated in both outer membrane protein localization and phospholipid transport between the inner and outer membranes. We show that the β-barrel protein assembly complex, Bam, is stressed under conditions thought to mimic the macrophage phagosome. TamAB expression is controlled by the PhoPQ two-component system and induced in macrophages. This system somehow compensates for the Bam complex as evidenced by the fact that mutations affecting the two systems confer synthetic phenotypes in animals, macrophages, and in vitro in the presence of vancomycin or SDS. This study has implications concerning the role of TamAB in outer membrane homeostasis. It also contributes to our understanding of the systems necessary for Salmonella to adapt and reproduce within the macrophage phagosome.
Collapse
Affiliation(s)
- Rouhallah Ramezanifard
- Department of Microbiology, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Yekaterina A. Golubeva
- Department of Microbiology, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Alexander D. Palmer
- Department of Microbiology, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - James M. Slauch
- Department of Microbiology, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Kitts G, Rogers A, Teschler JK, Park JH, Trebino MA, Chaudry I, Erill I, Yildiz FH. The Rvv two-component regulatory system regulates biofilm formation and colonization in Vibrio cholerae. PLoS Pathog 2023; 19:e1011415. [PMID: 37216386 PMCID: PMC10237652 DOI: 10.1371/journal.ppat.1011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/02/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
The facultative human pathogen, Vibrio cholerae, employs two-component signal transduction systems (TCS) to sense and respond to environmental signals encountered during its infection cycle. TCSs consist of a sensor histidine kinase (HK) and a response regulator (RR); the V. cholerae genome encodes 43 HKs and 49 RRs, of which 25 are predicted to be cognate pairs. Using deletion mutants of each HK gene, we analyzed the transcription of vpsL, a biofilm gene required for Vibrio polysaccharide and biofilm formation. We found that a V. cholerae TCS that had not been studied before, now termed Rvv, controls biofilm gene transcription. The Rvv TCS is part of a three-gene operon that is present in 30% of Vibrionales species. The rvv operon encodes RvvA, the HK; RvvB, the cognate RR; and RvvC, a protein of unknown function. Deletion of rvvA increased transcription of biofilm genes and altered biofilm formation, while deletion of rvvB or rvvC lead to no changes in biofilm gene transcription. The phenotypes observed in ΔrvvA depend on RvvB. Mutating RvvB to mimic constitutively active and inactive versions of the RR only impacted phenotypes in the ΔrvvA genetic background. Mutating the conserved residue required for kinase activity in RvvA did not affect phenotypes, whereas mutation of the conserved residue required for phosphatase activity mimicked the phenotype of the rvvA mutant. Furthermore, ΔrvvA displayed a significant colonization defect which was dependent on RvvB and RvvB phosphorylation state, but not on VPS production. We found that RvvA's phosphatase activity regulates biofilm gene transcription, biofilm formation, and colonization phenotypes. This is the first systematic analysis of the role of V. cholerae HKs in biofilm gene transcription and resulted in the identification of a new regulator of biofilm formation and virulence, advancing our understanding of the role TCSs play in regulating these critical cellular processes in V. cholerae.
Collapse
Affiliation(s)
- Giordan Kitts
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Andrew Rogers
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Jennifer K. Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Jin Hwan Park
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Michael A. Trebino
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Issac Chaudry
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
4
|
Bruna RE, Casal A, Bercovich B, Gramajo H, Rodríguez E, García Véscovi E. A natural product from Streptomyces targets PhoP and exerts antivirulence action against Salmonella enterica. J Antimicrob Chemother 2022; 77:3050-3063. [PMID: 35972206 DOI: 10.1093/jac/dkac278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The overprescription and misuse of classical antimicrobial compounds to treat gastrointestinal or systemic salmonellosis have been accelerating the surge of antibiotic-recalcitrant bacterial populations, posing a major public health challenge. Therefore, alternative therapeutic approaches to treat Salmonella infections are urgently required. OBJECTIVES To identify and characterize actinobacterial secreted compounds with inhibitory properties against the Salmonella enterica PhoP/PhoQ signal transduction system, crucial for virulence regulation. METHODS The methodology was based on a combination of the measurement of the activity of PhoP/PhoQ-dependent and -independent reporter genes and bioguided assays to screen for bioactive inhibitory metabolites present in culture supernatants obtained from a collection of actinobacterial isolates. Analogues of azomycin were used to analyse the functional groups required for the detected bioactivity and Salmonella mutants and complemented strains helped to dissect the azomycin mechanism of action. The tetrazolium dye colorimetric assay was used to investigate azomycin potential cytotoxicity on cultured macrophages. Salmonella intramacrophage replication capacity upon azomycin treatment was assessed using the gentamicin protection assay. RESULTS Sublethal concentrations of azomycin, a nitroheterocyclic compound naturally produced by Streptomyces eurocidicus, repressed the Salmonella PhoP/PhoQ system activity by targeting PhoP and inhibiting its transcriptional activity in a PhoQ- and aspartate phosphorylation-independent manner. Sublethal, non-cytotoxic concentrations of azomycin prevented Salmonella intramacrophage replication. CONCLUSIONS Azomycin selectively inhibits the activity of the Salmonella virulence regulator PhoP, a new activity described for this nitroheterocyclic compound that can be repurposed to develop novel anti-Salmonella therapeutic approaches.
Collapse
Affiliation(s)
- Roberto E Bruna
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Alejo Casal
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Bárbara Bercovich
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Eduardo Rodríguez
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| |
Collapse
|
5
|
Choi J, Salvail H, Groisman EA. RNA chaperone activates Salmonella virulence program during infection. Nucleic Acids Res 2021; 49:11614-11628. [PMID: 34751407 PMCID: PMC8599858 DOI: 10.1093/nar/gkab992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Organisms often harbor seemingly redundant proteins. In the bacterium Salmonella enterica serovar Typhimurium (S. Typhimurium), the RNA chaperones CspC and CspE appear to play redundant virulence roles because a mutant lacking both chaperones is attenuated, whereas mutants lacking only one exhibit wild-type virulence. We now report that CspC—but not CspE—is necessary to activate the master virulence regulator PhoP when S. Typhimurium experiences mildly acidic pH, such as inside macrophages. This CspC-dependent PhoP activation is specific to mildly acidic pH because a cspC mutant behaves like wild-type S. Typhimurium under other PhoP-activating conditions. Moreover, it is mediated by ugtL, a virulence gene required for PhoP activation inside macrophages. Purified CspC promotes ugtL translation by disrupting a secondary structure in the ugtL mRNA that occludes ugtL’s ribosome binding site. Our findings demonstrate that proteins that are seemingly redundant actually confer distinct and critical functions to the lifestyle of an organism.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Hubert Salvail
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
6
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Foster CA, Silversmith RE, Immormino RM, Vass LR, Kennedy EN, Pazy Y, Collins EJ, Bourret RB. Role of Position K+4 in the Phosphorylation and Dephosphorylation Reaction Kinetics of the CheY Response Regulator. Biochemistry 2021; 60:2130-2151. [PMID: 34167303 DOI: 10.1021/acs.biochem.1c00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-component signaling is a primary method by which microorganisms interact with their environments. A kinase detects stimuli and modulates autophosphorylation activity. The signal propagates by phosphotransfer from the kinase to a response regulator, eliciting a response. Response regulators operate over a range of time scales, corresponding to their related biological processes. Response regulator active site chemistry is highly conserved, but certain variable residues can influence phosphorylation kinetics. An Ala-to-Pro substitution (K+4, residue 113) in the Escherichia coli response regulator CheY triggers a constitutively active phenotype; however, the A113P substitution is too far from the active site to directly affect phosphochemistry. To better understand the activating mechanism(s) of the substitution, we analyzed receiver domain sequences to characterize the evolutionary role of the K+4 position. Although most featured Pro, Leu, Ile, and Val residues, chemotaxis-related proteins exhibited atypical Ala, Gly, Asp, and Glu residues at K+4. Structural and in silico analyses revealed that CheY A113P adopted a partially active configuration. Biochemical data showed that A113P shifted CheY toward a more activated state, enhancing autophosphorylation. By characterizing CheY variants, we determined that this functionality was transmitted through a hydrophobic network bounded by the β5α5 loop and the α1 helix of CheY. This region also interacts with the phosphodonor CheAP1, suggesting that binding generates an activating perturbation similar to the A113P substitution. Atypical residues like Ala at the K+4 position likely serve two purposes. First, restricting autophosphorylation may minimize background noise generated by intracellular phosphodonors such as acetyl phosphate. Second, optimizing interactions with upstream partners may help prime the receiver domain for phosphorylation.
Collapse
Affiliation(s)
- Clay A Foster
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ruth E Silversmith
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Robert M Immormino
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Luke R Vass
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily N Kennedy
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yael Pazy
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edward J Collins
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Robert B Bourret
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Low Cytoplasmic Magnesium Increases the Specificity of the Lon and ClpAP Proteases. J Bacteriol 2021; 203:e0014321. [PMID: 33941609 DOI: 10.1128/jb.00143-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteolysis is a fundamental property of all living cells. In the bacterium Salmonella enterica serovar Typhimurium, the HspQ protein controls the specificities of the Lon and ClpAP proteases. Upon acetylation, HspQ stops being a Lon substrate and no longer enhances proteolysis of the Lon substrate Hha. The accumulated HspQ protein binds to the protease adaptor ClpS, hindering proteolysis of ClpS-dependent substrates of ClpAP, such as Oat, a promoter of antibiotic persistence. HspQ is acetylated by the protein acetyltransferase Pat from acetyl coenzyme A (acetyl-CoA) bound to the acetyl-CoA binding protein Qad. We now report that low cytoplasmic Mg2+ promotes qad expression, which protects substrates of Lon and ClpSAP by increasing HspQ amounts. The qad promoter is activated by PhoP, a regulatory protein highly activated in low cytoplasmic Mg2+ that also represses clpS transcription. Both the qad gene and PhoP repression of the clpS promoter are necessary for antibiotic persistence. PhoP also promotes qad transcription in Escherichia coli, which shares a similar PhoP box in the qad promoter region with S. Typhimurium, Salmonella bongori, and Enterobacter cloacae. Our findings identify cytoplasmic Mg2+ and the PhoP protein as critical regulators of protease specificity in multiple enteric bacteria. IMPORTANCE The bacterium Salmonella enterica serovar Typhimurium narrows down the spectrum of substrates degraded by the proteases Lon and ClpAP in response to low cytoplasmic Mg2+, a condition that decreases protein synthesis. This control is exerted by PhoP, a transcriptional regulator activated in low cytoplasmic Mg2+ that governs proteostasis and is conserved in enteric bacteria. The uncovered mechanism enables bacteria to control the abundance of preexisting proteins.
Collapse
|
9
|
Choi J, Groisman EA. Horizontally acquired regulatory gene activates ancestral regulatory system to promote Salmonella virulence. Nucleic Acids Res 2020; 48:10832-10847. [PMID: 33045730 PMCID: PMC7641745 DOI: 10.1093/nar/gkaa813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Horizontally acquired genes are typically regulated by ancestral regulators. This regulation enables expression of horizontally acquired genes to be coordinated with that of preexisting genes. Here, we report a singular example of the opposite regulation: a horizontally acquired gene that controls an ancestral regulator, thereby promoting bacterial virulence. We establish that the horizontally acquired regulatory gene ssrB is necessary to activate the ancestral regulatory system PhoP/PhoQ of Salmonella enterica serovar Typhimurium (S. Typhimurium) in mildly acidic pH, which S. Typhimurium experiences inside macrophages. SsrB promotes phoP transcription by binding upstream of the phoP promoter. SsrB also increases ugtL transcription by binding to the ugtL promoter region, where it overcomes gene silencing by the heat-stable nucleoid structuring protein H-NS, enhancing virulence. The largely non-pathogenic species S. bongori failed to activate PhoP/PhoQ in mildly acidic pH because it lacks both the ssrB gene and the SsrB binding site in the target promoter. Low Mg2+ activated PhoP/PhoQ in both S. bongori and ssrB-lacking S. Typhimurium, indicating that the SsrB requirement for PhoP/PhoQ activation is signal-dependent. By controlling the ancestral genome, horizontally acquired genes are responsible for more crucial abilities, including virulence, than currently thought.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
10
|
Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics. PLoS Genet 2020; 16:e1008783. [PMID: 32813693 PMCID: PMC7480860 DOI: 10.1371/journal.pgen.1008783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/09/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens whose interactions involve the secreted products ethanol and phenazines. Here, we describe the role of ethanol in mixed-species co-cultures by dual-seq analyses. P. aeruginosa and C. albicans transcriptomes were assessed after growth in mono-culture or co-culture with either ethanol-producing C. albicans or a C. albicans mutant lacking the primary ethanol dehydrogenase, Adh1. Analysis of the RNA-Seq data using KEGG pathway enrichment and eADAGE methods revealed several P. aeruginosa responses to C. albicans-produced ethanol including the induction of a non-canonical low-phosphate response regulated by PhoB. C. albicans wild type, but not C. albicans adh1Δ/Δ, induces P. aeruginosa production of 5-methyl-phenazine-1-carboxylic acid (5-MPCA), which forms a red derivative within fungal cells and exhibits antifungal activity. Here, we show that C. albicans adh1Δ/Δ no longer activates P. aeruginosa PhoB and PhoB-regulated phosphatase activity, that exogenous ethanol complements this defect, and that ethanol is sufficient to activate PhoB in single-species P. aeruginosa cultures at permissive phosphate levels. The intersection of ethanol and phosphate in co-culture is inversely reflected in C. albicans; C. albicans adh1Δ/Δ had increased expression of genes regulated by Pho4, the C. albicans transcription factor that responds to low phosphate, and Pho4-dependent phosphatase activity. Together, these results show that C. albicans-produced ethanol stimulates P. aeruginosa PhoB activity and 5-MPCA-mediated antagonism, and that both responses are dependent on local phosphate concentrations. Further, our data suggest that phosphate scavenging by one species improves phosphate access for the other, thus highlighting the complex dynamics at play in microbial communities. Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens that are frequently isolated from co-infections. Using a combination of dual-seq transcriptomics and genetics approaches, we found that ethanol produced by C. albicans stimulates the PhoB regulon in P. aeruginosa asynchronously with activation of the Pho4 regulon in C. albicans. We validated our result by showing that PhoB plays multiple roles in co-culture including orchestrating the competition for phosphate and the production of 5-methyl-phenazine-1-carboxylic acid; the P. aeruginosa phenazine response to C. albicans-produced ethanol depends on phosphate availability. The conditional stimulation of antifungal production in response to sub-inhibitory concentrations of ethanol only under phosphate limitation highlights the importance of considering nutrient concentrations in the analysis of co-culture interactions and suggests that the low-phosphate response in one species influences phosphate availability for the other.
Collapse
|
11
|
PhoP-Mediated Repression of the SPI1 Type 3 Secretion System in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00264-19. [PMID: 31182495 DOI: 10.1128/jb.00264-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Salmonella must rapidly adapt to various niches in the host during infection. Relevant virulence factors must be appropriately induced, and systems that are detrimental in a particular environment must be turned off. Salmonella infects intestinal epithelial cells using a type 3 secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). The system is controlled by three AraC-like regulators, HilD, HilC, and RtsA, which form a complex feed-forward loop to activate expression of hilA, encoding the main transcriptional regulator of T3SS structural genes. This system is tightly regulated, with many of the activating signals acting at the level of hilD translation or HilD protein activity. Once inside the phagosomes of epithelial cells, or in macrophages during systemic stages of disease, the SPI1 T3SS is no longer required or expressed. Here, we show that the PhoPQ two-component system, critical for intracellular survival, appears to be the primary mechanism by which Salmonella shuts down the SPI1 T3SS. PhoP negatively regulates hilA through multiple distinct mechanisms: direct transcriptional repression of the hilA promoter, indirect transcriptional repression of both the hilD and rtsA promoters, and activation of the small RNA (sRNA) PinT. Genetic analyses and electrophoretic mobility shift assays suggest that PhoP specifically binds the hilA promoter to block binding of activators HilD, HilC, and RtsA as a mechanism of repression.IMPORTANCE Salmonella is one of the most common foodborne pathogens, causing an estimated 1.2 million illnesses per year in the United States. A key step in infection is the activation of the bacterial invasion machinery, which induces uptake of the bacterium into epithelial cells and leads to induction of inflammatory diarrhea. Upon entering the vacuolar compartments of host cells, Salmonella senses an environmental transition and represses the invasion machinery with a two-component system relevant for survival within the vacuole. This adaptation to specific host niches is an important example of how signals are integrated for survival of the pathogen.
Collapse
|
12
|
Hu L, Kong W, Yang D, Han Q, Guo L, Shi Y. Threonine Phosphorylation Fine-Tunes the Regulatory Activity of Histone-Like Nucleoid Structuring Protein in Salmonella Transcription. Front Microbiol 2019; 10:1515. [PMID: 31333620 PMCID: PMC6616471 DOI: 10.3389/fmicb.2019.01515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Histone-like nucleoid structuring protein (H-NS) in enterobacteria plays an important role in facilitating chromosome organization and functions as a crucial transcriptional regulator for global gene regulation. Here, we presented an observation that H-NS of Salmonella enterica serovar Typhimurium could undergo protein phosphorylation at threonine 13 residue (T13). Analysis of the H-NS wild-type protein and its T13E phosphomimetic substitute suggested that T13 phosphorylation lead to alterations of H-NS structure, thus reducing its dimerization to weaken its DNA binding affinity. Proteomic analysis revealed that H-NS phosphorylation exerts regulatory effects on a wide range of genetic loci including the PhoP/PhoQ-regulated genes. In this study, we investigated an effect of T13 phosphorylation of H-NS that rendered transcription upregulation of the PhoP/PhoQ-activated genes. A lower promoter binding of the T13 phosphorylated H-NS protein was correlated with a stronger interaction of the PhoP protein, i.e., a transcription activator and also a competitor of H-NS, to the PhoP/PhoQ-dependent promoters. Unlike depletion of H-NS which dramatically activated the PhoP/PhoQ-dependent transcription even in a PhoP/PhoQ-repressing condition, mimicking of H-NS phosphorylation caused a moderate upregulation. Wild-type H-NS protein produced heterogeneously could rescue the phenotype of T13E mutant and fully restored the PhoP/PhoQ-dependent transcription enhanced by T13 phosphorylation of H-NS to wild-type levels. Therefore, our findings uncover a strategy in S. typhimurium to fine-tune the regulatory activity of H-NS through specific protein phosphorylation and highlight a regulatory mechanism for the PhoP/PhoQ-dependent transcription via this post-translational modification.
Collapse
Affiliation(s)
- Lizhi Hu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Wei Kong
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Dezhi Yang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Qiangqiang Han
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Guo
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yixin Shi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Ren J, Sang Y, Qin R, Su Y, Cui Z, Mang Z, Li H, Lu S, Zhang J, Cheng S, Liu X, Li J, Lu J, Wu W, Zhao GP, Shao F, Yao YF. Metabolic intermediate acetyl phosphate modulates bacterial virulence via acetylation. Emerg Microbes Infect 2019; 8:55-69. [PMID: 30866760 PMCID: PMC6455138 DOI: 10.1080/22221751.2018.1558963] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Accumulating evidence indicates that bacterial metabolism plays an important role in virulence. Acetyl phosphate (AcP), the high-energy intermediate of the phosphotransacetylase-acetate kinase pathway, is the major acetyl donor in E. coli. PhoP is an essential transcription factor for bacterial virulence. Here, we show in Salmonella typhimurium that PhoP is non-enzymatically acetylated by AcP, which modifies its transcriptional activity, demonstrating that the acetylation of Lysine 102 (K102) is dependent on the intracellular AcP. The acetylation level of K102 decreases under PhoP-activating conditions including low magnesium, acid stress or following phagocytosis. Notably, in vitro assays show that K102 acetylation affects PhoP phosphorylation and inhibits its transcriptional activity. Both cell and mouse models show that K102 is critical to Salmonella virulence, and suggest acetylation is involved in regulating PhoP activity. Together, the current study highlights the importance of the metabolism in bacterial virulence, and shows AcP might be a key mediator.
Collapse
Affiliation(s)
- Jie Ren
- a Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology , Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Yu Sang
- a Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology , Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Ran Qin
- b Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture , College of Life Sciences, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Yang Su
- a Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology , Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Zhongli Cui
- b Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture , College of Life Sciences, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Zhiguo Mang
- c Department of Pharmaceutical Science , School of Pharmacy, East China University of Science & Technology , Shanghai , People's Republic of China
| | - Hao Li
- c Department of Pharmaceutical Science , School of Pharmacy, East China University of Science & Technology , Shanghai , People's Republic of China
| | - Shaoyong Lu
- d Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Jian Zhang
- d Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Sen Cheng
- e Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center , College of Chemistry and Molecular Engineering, Peking University , Beijing , People's Republic of China
| | - Xiaoyun Liu
- e Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center , College of Chemistry and Molecular Engineering, Peking University , Beijing , People's Republic of China
| | - Jixi Li
- f State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Engineering Research Center of Industrial Microorganisms , School of Life Sciences, Fudan University , Shanghai , People's Republic of China
| | - Jie Lu
- g Department of Infectious Diseases , Shanghai Ruijin Hospital , Shanghai , People's Republic of China
| | - Wenjuan Wu
- h Department of Laboratory Medicine , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| | - Guo-Ping Zhao
- i Key Laboratory of Synthetic Biology , Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , People's Republic of China
| | - Feng Shao
- j National Institute of Biological Sciences , Beijing , People's Republic of China
| | - Yu-Feng Yao
- a Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology , Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China.,h Department of Laboratory Medicine , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| |
Collapse
|
14
|
Abstract
Signal transduction systems dictate various cellular behaviors in response to environmental changes. To operate cellular programs appropriately, organisms have sophisticated regulatory factors to optimize the signal response. The PhoP/PhoQ master virulence regulatory system of the intracellular pathogen Salmonella enterica is activated inside acidic macrophage phagosomes. Here we report that Salmonella delays the activation of this system inside macrophages using an inhibitory protein, EIIANtr (a component of the nitrogen-metabolic phosphotransferase system). We establish that EIIANtr directly restrains PhoP binding to its target promoter, thereby negatively controlling the expression of PhoP-activated genes. PhoP furthers its activation by promoting Lon-mediated degradation of EIIANtr at acidic pH. These results suggest that Salmonella ensures robust activation of its virulence system by suspending the activation of PhoP until a sufficient level of active PhoP is present to overcome the inhibitory effect of EIIANtr Our findings reveal how a pathogen precisely and efficiently operates its virulence program during infection.IMPORTANCE To accomplish successful infection, pathogens must operate their virulence programs in a precise, time-sensitive, and coordinated manner. A major question is how pathogens control the timing of virulence gene expression during infection. Here we report that the intracellular pathogen Salmonella controls the timing and level of virulence gene expression by using an inhibitory protein, EIIANtr A DNA binding master virulence regulator, PhoP, controls various virulence genes inside acidic phagosomes. Salmonella decreases EIIANtr amounts at acidic pH in a Lon- and PhoP-dependent manner. This, in turn, promotes expression of the PhoP-activated virulence program because EIIANtr hampers activation of PhoP-regulated genes by interfering with PhoP binding to DNA. EIIANtr enables Salmonella to impede the activation of PhoP-regulated gene expression inside macrophages. Our findings suggest that Salmonella achieves programmed delay of virulence gene activation by adjusting levels of an inhibitory factor.
Collapse
|
15
|
Hong X, Chen HD, Groisman EA. Gene expression kinetics governs stimulus-specific decoration of the Salmonella outer membrane. Sci Signal 2018; 11:11/529/eaar7921. [PMID: 29739882 DOI: 10.1126/scisignal.aar7921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipid A is the innermost component of the lipopolysaccharide (LPS) molecules that occupy the outer leaflet of the outer membrane in Gram-negative bacteria. Lipid A is recognized by the host immune system and targeted by cationic antimicrobial compounds. In Salmonella enterica serovar Typhimurium, the phosphates of lipid A are chemically modified by enzymes encoded by targets of the transcriptional regulator PmrA. These modifications increase resistance to the cationic peptide antibiotic polymyxin B by reducing the negative charge of the LPS. We report the mechanism by which Salmonella produces different lipid A profiles when PmrA is activated by low Mg2+ versus a mildly acidic pH. Low Mg2+ favored modification of the lipid A phosphates with 4-amino-4-deoxy-l-aminoarabinose (l-Ara4N) by activating the regulatory protein PhoP, which initially increased the LPS negative charge by promoting transcription of lpxT, encoding an enzyme that adds an additional phosphate group to lipid A. Later, PhoP activated PmrA posttranslationally, resulting in expression of PmrA-activated genes, including those encoding the LpxT inhibitor PmrR and enzymes responsible for the incorporation of l-Ara4N. By contrast, a mildly acidic pH favored modification of the lipid A phosphates with a mixture of l-Ara4N and phosphoethanolamine (pEtN) by simultaneously inducing the PhoP-activated lpxT and PmrA-activated pmrR genes. Although l-Ara4N reduces the LPS negative charge more than does pEtN, modification of lipid A phosphates solely with l-Ara4N required a prior transient increase in lipid A negative charge. Our findings demonstrate how bacteria tailor their cell surface to different stresses, such as those faced inside phagocytes.
Collapse
Affiliation(s)
- Xinyu Hong
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06536, USA
| | - H Deborah Chen
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA. .,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
16
|
Yeom J, Wayne KJ, Groisman EA. Sequestration from Protease Adaptor Confers Differential Stability to Protease Substrate. Mol Cell 2017; 66:234-246.e5. [PMID: 28431231 DOI: 10.1016/j.molcel.2017.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/23/2017] [Accepted: 03/14/2017] [Indexed: 12/24/2022]
Abstract
According to the N-end rule, the N-terminal residue of a protein determines its stability. In bacteria, the adaptor ClpS mediates proteolysis by delivering substrates bearing specific N-terminal residues to the protease ClpAP. We now report that the Salmonella adaptor ClpS binds to the N terminus of the regulatory protein PhoP, resulting in PhoP degradation by ClpAP. We establish that the PhoP-activated protein MgtC protects PhoP from degradation by outcompeting ClpS for binding to PhoP. MgtC appears to act exclusively on PhoP, as it did not alter the stability of a different ClpS-dependent ClpAP substrate. Removal of five N-terminal residues rendered PhoP stability independent of both the clpS and mgtC genes. By preserving PhoP protein levels, MgtC enables normal temporal transcription of PhoP-activated genes. The identified mechanism provides a simple means to spare specific substrates from an adaptor-dependent protease.
Collapse
Affiliation(s)
- Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Kyle J Wayne
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA; Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA.
| |
Collapse
|
17
|
Choi J, Groisman EA. Activation of master virulence regulator PhoP in acidic pH requires the Salmonella-specific protein UgtL. Sci Signal 2017; 10:10/494/eaan6284. [PMID: 28851823 DOI: 10.1126/scisignal.aan6284] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acidic conditions, such as those inside phagosomes, stimulate the intracellular pathogen Salmonella enterica to activate virulence genes. The sensor PhoQ responds to a mildly acidic pH by phosphorylating, and thereby activating, the virulence regulator PhoP. This PhoP/PhoQ two-component system is conserved in a subset of Gram-negative bacteria. PhoQ is thought to be sufficient to activate PhoP in mildly acidic pH. However, we found that the Salmonella-specific protein UgtL, which was horizontally acquired by Salmonella before the divergence of S. enterica and Salmonella bongori, was also necessary for PhoQ to activate PhoP under mildly acidic pH conditions but not for PhoQ to activate PhoP in response to low Mg2+ or the antimicrobial peptide C18G. UgtL increased the abundance of phosphorylated PhoP by stimulating autophosphorylation of PhoQ, thereby increasing the amount of the phosphodonor for PhoP. Deletion of ugtL attenuated Salmonella virulence and further reduced PhoP activation in a strain bearing a form of PhoQ that is not responsive to acidic pH. These data suggest that when Salmonella experiences mildly acidic pH, PhoP activation requires PhoQ to detect pH and UgtL to amplify the PhoQ response. Our findings reveal how acquisition of a foreign gene can strengthen signal responsiveness in an ancestral regulatory system.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA. .,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
18
|
Pontes MH, Yeom J, Groisman EA. Reducing Ribosome Biosynthesis Promotes Translation during Low Mg 2+ Stress. Mol Cell 2016; 64:480-492. [PMID: 27746019 DOI: 10.1016/j.molcel.2016.05.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/31/2016] [Accepted: 05/05/2016] [Indexed: 12/30/2022]
Abstract
The synthesis of ribosomes is regulated by both amino acid abundance and the availability of ATP, which regenerates guanosine triphosphate (GTP), powers ribosomes, and promotes transcription of rRNA genes. We now report that bacteria supersede both of these controls when experiencing low cytosolic magnesium (Mg2+), a divalent cation essential for ribosome stabilization and for neutralization of ATP's negative charge. We uncover a regulatory circuit that responds to low cytosolic Mg2+ by promoting expression of proteins that import Mg2+ and lower ATP amounts. This response reduces the levels of ATP and ribosomes, making Mg2+ ions available for translation. Mutants defective in Mg2+ uptake and unable to reduce ATP levels accumulate non-functional ribosomal components and undergo translational arrest. Our findings establish a paradigm whereby cells reduce the amounts of translating ribosomes to carry out protein synthesis.
Collapse
Affiliation(s)
- Mauricio H Pontes
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA; Yale Microbial Sciences Institute, PO Box 27389, West Haven, CT 06516, USA
| | - Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA; Yale Microbial Sciences Institute, PO Box 27389, West Haven, CT 06516, USA.
| |
Collapse
|
19
|
Agrawal R, Sahoo BK, Saini DK. Cross-talk and specificity in two-component signal transduction pathways. Future Microbiol 2016; 11:685-97. [PMID: 27159035 DOI: 10.2217/fmb-2016-0001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two-component signaling systems (TCSs) are composed of two proteins, sensor kinases and response regulators, which can cross-talk and integrate information between them by virtue of high-sequence conservation and modular nature, to generate concerted and diversified responses. However, TCSs have been shown to be insulated, to facilitate linear signal transmission and response generation. Here, we discuss various mechanisms that confer specificity or cross-talk among TCSs. The presented models are supported with evidence that indicate the physiological significance of the observed TCS signaling architecture. Overall, we propose that the signaling topology of any TCSs cannot be predicted using obvious sequence or structural rules, as TCS signaling is regulated by multiple factors, including spatial and temporal distribution of the participating proteins.
Collapse
Affiliation(s)
- Ruchi Agrawal
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Bikash Kumar Sahoo
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
20
|
Abstract
This review reviews the properties and regulation of the Salmonella enterica serovar Typhimurium and Escherichia coli transporters that mediate Mg2+ influx: CorA and the Mgt P-type ATPases. In addition, potential Mg2+ regulation of transcription and translation, largely via the PhoPQ two component system, is discussed. CorA proteins are a unique class of transporters and are widespread in the Bacteria and Archaea, with rather distant but functional homologs in eukaryotes. The Mgt transporters are highly homologous to other P-type ATPases but are more closely related to the eukaryotic H+ and Ca2+ ATPases than to most prokaryotic ATPases. Hundreds of homologs of CorA are currently known from genomic sequencing. In contrast, only when extracellular and possibly intracellular Mg2+ levels fall significantly is the expression of mgtA and mgtB induced. Topology studies using blaM and lacZ fusions initially indicated that the Salmonella serovar Typhimurium CorA contained three transmembrane (TM) segments; however, subsequent data obtained using a variety of approaches showed that the CorA superfamily of proteins have only two TMs at the extreme C terminus. PhoP-PhoQ is a two-component system consisting of PhoQ, the sensor/receptor histidine kinase, and PhoP, the response regulator/transcriptional activator. The expression of both mgtA and mgtCB in either E. coli or Salmonella serovar Typhimurium is markedly induced in a PhoPQ-dependent manner by low concentrations of Mg2+ in the medium. phoP and phoQ form an operon with two promoters in both E. coli and Salmonella serovar Typhimurium.
Collapse
|
21
|
Abstract
Pyruvate and acetyl-CoA form the backbone of central metabolism. The nonoxidative cleavage of pyruvate to acetyl-CoA and formate by the glycyl radical enzyme pyruvate formate lyase is one of the signature reactions of mixed-acid fermentation in enterobacteria. Under these conditions, formic acid accounts for up to one-third of the carbon derived from glucose. The further metabolism of acetyl-CoA to acetate via acetyl-phosphate catalyzed by phosphotransacetylase and acetate kinase is an exemplar of substrate-level phosphorylation. Acetyl-CoA can also be used as an acceptor of the reducing equivalents generated during glycolysis, whereby ethanol is formed by the polymeric acetaldehyde/alcohol dehydrogenase (AdhE) enzyme. The metabolism of acetyl-CoA via either the acetate or the ethanol branches is governed by the cellular demand for ATP and the necessity to reoxidize NADH. Consequently, in the absence of an electron acceptor mutants lacking either branch of acetyl-CoA metabolism fail to cleave pyruvate, despite the presence of PFL, and instead reduce it to D-lactate by the D-lactate dehydrogenase. The conversion of PFL to the active, radical-bearing species is controlled by a radical-SAM enzyme, PFL-activase. All of these reactions are regulated in response to the prevalent cellular NADH:NAD+ ratio. In contrast to Escherichia coli and Salmonella species, some genera of enterobacteria, e.g., Klebsiella and Enterobacter, produce the more neutral product 2,3-butanediol and considerable amounts of CO2 as fermentation products. In these bacteria, two molecules of pyruvate are converted to α-acetolactate (AL) by α-acetolactate synthase (ALS). AL is then decarboxylated and subsequently reduced to the product 2,3-butandiol.
Collapse
|
22
|
Regulation and function of the Salmonella MgtC virulence protein. J Microbiol 2015; 53:667-72. [DOI: 10.1007/s12275-015-5283-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
|
23
|
The Vibrio cholerae VprA-VprB two-component system controls virulence through endotoxin modification. mBio 2014; 5:mBio.02283-14. [PMID: 25538196 PMCID: PMC4278540 DOI: 10.1128/mbio.02283-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The bacterial cell surface is the first structure the host immune system targets to prevent infection. Cationic antimicrobial peptides of the innate immune system bind to the membrane of Gram-negative pathogens via conserved, surface-exposed lipopolysaccharide (LPS) molecules. We recently reported that modern strains of the global intestinal pathogen Vibrio cholerae modify the anionic lipid A domain of LPS with a novel moiety, amino acids. Remarkably, glycine or diglycine addition to lipid A alters the surface charge of the bacteria to help evade the cationic antimicrobial peptide polymyxin. However, the regulatory mechanisms of lipid A modification in V. cholerae are unknown. Here, we identify a novel two-component system that regulates lipid A glycine modification by responding to important biological cues associated with pathogenesis, including bile, mildly acidic pH, and cationic antimicrobial peptides. The histidine kinase Vc1319 (VprB) and the response regulator Vc1320 (VprA) respond to these signals and are required for the expression of the almEFG operon that encodes the genes essential for glycine modification of lipid A. Importantly, both the newly identified two-component system and the lipid A modification machinery are required for colonization of the mammalian host. This study demonstrates how V. cholerae uses a previously unknown regulatory network, independent of well-studied V. cholerae virulence factors and regulators, to respond to the host environment and cause infection. Vibrio cholerae, the etiological agent of cholera disease, infects millions of people every year. V. cholerae El Tor and classical biotypes have been responsible for all cholera pandemics. The El Tor biotype responsible for the current seventh pandemic has displaced the classical biotype worldwide and is highly resistant to cationic antimicrobial peptides, like polymyxin B. This resistance arises from the attachment of one or two glycine residues to the lipid A domain of lipopolysaccharide, a major surface component of Gram-negative bacteria. Here, we identify the VprAB two-component system that regulates the charge of the bacterial surface by directly controlling the expression of genes required for glycine addition to lipid A. The VprAB-dependent lipid A modification confers polymyxin B resistance and contributes significantly to pathogenesis. This finding is relevant for understanding how Vibrio cholerae has evolved mechanisms to facilitate the evasion of the host immune system and increase bacterial fitness.
Collapse
|
24
|
Identification and characterization of a bacitracin resistance network in Enterococcus faecalis. Antimicrob Agents Chemother 2013; 58:1425-33. [PMID: 24342648 DOI: 10.1128/aac.02111-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance of Enterococcus faecalis against antimicrobial peptides, both of host origin and produced by other bacteria of the gut microflora, is likely to be an important factor in the bacterium's success as an intestinal commensal. The aim of this study was to identify proteins with a role in resistance against the model antimicrobial peptide bacitracin. Proteome analysis of bacitracin-treated and untreated cells showed that bacitracin stress induced the expression of cell wall-biosynthetic proteins and caused metabolic rearrangements. Among the proteins with increased production, an ATP-binding cassette (ABC) transporter with similarity to known peptide antibiotic resistance systems was identified and shown to mediate resistance against bacitracin. Expression of the transporter was dependent on a two-component regulatory system and a second ABC transporter, which were identified by genome analysis. Both resistance and the regulatory pathway could be functionally transferred to Bacillus subtilis, proving the function and sufficiency of these components for bacitracin resistance. Our data therefore show that the two ABC transporters and the two-component system form a resistance network against antimicrobial peptides in E. faecalis, where one transporter acts as the sensor that activates the TCS to induce production of the second transporter, which mediates the actual resistance.
Collapse
|
25
|
Park SY, Groisman EA. Signal-specific temporal response by the Salmonella PhoP/PhoQ regulatory system. Mol Microbiol 2013; 91:135-44. [PMID: 24256574 DOI: 10.1111/mmi.12449] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2013] [Indexed: 01/02/2023]
Abstract
The two-component system PhoP/PhoQ controls a large number of genes responsible for a variety of physiological and virulence functions in Salmonella enterica serovar Typhimurium. Here we describe a mechanism whereby the transcriptional activator PhoP elicits expression of dissimilar gene sets when its cognate sensor PhoQ is activated by different signals in the periplasm. We determine that full transcription of over half of the genes directly activated by PhoP requires the Mg(2+) transporter MgtA when the PhoQ inducing signal is low Mg(2+) , but not when PhoQ is activated by mildly acidic pH or the antimicrobial peptide C18G. MgtA promotes the active (i.e. phosphorylated) form of PhoP by removing Mg(2+) from the periplasm, where it functions as a repressing signal for PhoQ. MgtA-dependent expression enhances resistance to the cationic antibiotic polymyxin B. Production of the MgtA protein requires cytoplasmic Mg(2+) levels to drop below a certain threshold, thereby creating a two-tiered temporal response among PhoP-dependent genes.
Collapse
Affiliation(s)
- Sun-Yang Park
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT, 06536-0812, USA; Howard Hughes Medical Institute, New Haven, CT, USA; Yale Microbial Diversity Institute, PO Box 27389, West Haven, CT, 06516, USA
| | | |
Collapse
|
26
|
Farizano JV, Pescaretti MDLM, López FE, Hsu FF, Delgado MA. The PmrAB system-inducing conditions control both lipid A remodeling and O-antigen length distribution, influencing the Salmonella Typhimurium-host interactions. J Biol Chem 2012; 287:38778-89. [PMID: 23019341 DOI: 10.1074/jbc.m112.397414] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Salmonella enterica serovar Typhimurium lipopolysaccharide consisting of covalently linked lipid A, non-repeating core oligosaccharide, and the O-antigen polysaccharide is the most exposed component of the cell envelope. Previous studies demonstrated that all of these regions act against the host immunity barrier. The aim of this study was to define the role and interaction of PmrAB-dependent gene products required for the lipopolysaccharide component synthesis or modification mainly during the Salmonella infection. The PmrAB two-component system activation promotes a remodeling of lipid A and the core region by addition of 4-aminoarabinose and/or phosphoethanolamine. These PmrA-dependent activities are produced by activation of ugd, pbgPE, pmrC, cpta, and pmrG transcription. In addition, under PmrA regulator activation, the expression of wzz(fepE) and wzz(st) genes is induced, and their products are required to determine the O-antigen chain length. Here we report for the first time that Wzz(st) protein is necessary to maintain the balance of 4-aminoarabinose and phosphoethanolamine lipid A modifications. Moreover, we demonstrate that the interaction of the PmrA-dependent pbgE(2) and pbgE(3) gene products is important for the formation of the short O-antigen region. Our results establish that PmrAB is the global regulatory system that controls lipopolysaccharide modification, leading to a coordinate regulation of 4-aminoarabinose incorporation and O-antigen chain length to respond against the host defense mechanisms.
Collapse
Affiliation(s)
- Juan V Farizano
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | | | | | | | | |
Collapse
|
27
|
Lee EJ, Groisman EA. Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA. Nature 2012; 486:271-5. [PMID: 22699622 DOI: 10.1038/nature11090] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/26/2012] [Indexed: 11/09/2022]
Abstract
The facultative intracellular pathogen Salmonella enterica resides within a membrane-bound compartment inside macrophages. This compartment must be acidified for Salmonella to survive within macrophages, possibly because acidic pH promotes expression of Salmonella virulence proteins. We reasoned that Salmonella might sense its surroundings have turned acidic not only upon protonation of the extracytoplasmic domain of a protein sensor but also by an increase in cytosolic ATP levels, because conditions that enhance the proton gradient across the bacterial inner membrane stimulate ATP synthesis. Here we report that an increase in cytosolic ATP promotes transcription of the coding region for the virulence gene mgtC, which is the most highly induced horizontally acquired gene when Salmonella is inside macrophages. This transcript is induced both upon media acidification and by physiological conditions that increase ATP levels independently of acidification. ATP is sensed by the coupling/uncoupling of transcription of the unusually long mgtC leader messenger RNA and translation of a short open reading frame located in this region. A mutation in the mgtC leader messenger RNA that eliminates the response to ATP hinders mgtC expression inside macrophages and attenuates Salmonella virulence in mice. Our results define a singular example of an ATP-sensing leader messenger RNA. Moreover, they indicate that pathogens can interpret extracellular cues by the impact they have on cellular metabolites.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Howard Hughes Medical Institute, Yale School of Medicine, Section of Microbial Pathogenesis, New Haven, Connecticut 06536-0812, USA
| | | |
Collapse
|
28
|
Yeo WS, Zwir I, Huang HV, Shin D, Kato A, Groisman EA. Intrinsic negative feedback governs activation surge in two-component regulatory systems. Mol Cell 2012; 45:409-21. [PMID: 22325356 DOI: 10.1016/j.molcel.2011.12.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/26/2011] [Accepted: 12/13/2011] [Indexed: 12/18/2022]
Abstract
PhoP and PhoQ comprise a two-component system in the bacterium Salmonella enterica. PhoQ is the sensor kinase/phosphatase that modifies the phosphorylation state of the regulator PhoP in response to stimuli. The amount of phosphorylated PhoP surges after activation, then declines to reach a steady-state level. We now recapitulate this surge in vitro by incubating PhoP and PhoQ with ATP and ADP. Mathematical modeling identified PhoQ's affinity for ADP as the key parameter dictating phosphorylated PhoP levels, as ADP promotes PhoQ's phosphatase activity toward phosphorylated PhoP. The lid covering the nucleotide-binding pocket of PhoQ governs the kinase to phosphatase switch because a lid mutation that decreased ADP binding compromised PhoQ's phosphatase activity in vitro and resulted in sustained expression of PhoP-dependent mRNAs in vivo. This feedback mechanism may curtail futile ATP consumption because ADP not only stimulates PhoQ's phosphatase activity but also inhibits ATP binding necessary for the kinase reaction.
Collapse
Affiliation(s)
- Won-Sik Yeo
- Section of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, 354D, New Haven, CT 06536, USA
| | | | | | | | | | | |
Collapse
|
29
|
Singh V, Ekka MK, Kumaran S. Second monomer binding is the rate-limiting step in the formation of the dimeric PhoP-DNA complex. Biochemistry 2012; 51:1346-56. [PMID: 22268791 DOI: 10.1021/bi201257d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PhoP, the response regulator of the PhoP/PhoQ system, regulates Mg(2+) homeostasis in Salmonella typhimurium. Dimerization of PhoP on the DNA is necessary for its regulatory function, and PhoP regulates the expression of genes in a phosphorylation-dependent manner. Higher PhoP concentrations, however, can activate PhoP and substitute for phosphorylation-dependent gene regulation. Activation of PhoP by phosphorylation is explained by self-assembly of phosphorylated PhoP (PhoP-p) in solution and binding of the PhoP-p dimer to the promoter. To understand the mechanism of PhoP dimerization on the DNA, we examined the interactions of PhoP with double-stranded DNAs containing the canonical PhoP box (PB). We present results from multiple biophysical methods, demonstrating that PhoP is a monomer in solution over a range of concentrations and binds to PB in a stepwise manner with a second PhoP molecule binding weakly. The affinity for the binding of the first PhoP molecule to PB is more than ∼17-fold higher than the affinity of the second PhoP monomer for PB. Kinetic analyses of PhoP binding reveal that the on rate of the second PhoP monomer binding is the rate-limiting step during the formation of the (PhoP)(2)-DNA complex. Results show that a moderate increase in PhoP concentration can promote dimerization of PhoP on the DNA, which otherwise could be achieved by PhoP-p at much lower protein concentrations. Detailed analyses of PhoP-DNA interactions have revealed the existence of a kinetic barrier that is the key for specificity in the formation of the productive (PhoP)(2)-DNA complex.
Collapse
Affiliation(s)
- Vijay Singh
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | | | | |
Collapse
|
30
|
Pontes MH, Smith KL, De Vooght L, Van Den Abbeele J, Dale C. Attenuation of the sensing capabilities of PhoQ in transition to obligate insect-bacterial association. PLoS Genet 2011; 7:e1002349. [PMID: 22072980 PMCID: PMC3207850 DOI: 10.1371/journal.pgen.1002349] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/30/2011] [Indexed: 01/10/2023] Open
Abstract
Sodalis glossinidius, a maternally inherited endosymbiont of the tsetse fly, maintains genes encoding homologues of the PhoP-PhoQ two-component regulatory system. This two-component system has been extensively studied in facultative bacterial pathogens and is known to serve as an environmental magnesium sensor and a regulator of key virulence determinants. In the current study, we show that the inactivation of the response regulator, phoP, renders S. glossinidius sensitive to insect derived cationic antimicrobial peptides (AMPs). The resulting mutant strain displays reduced expression of genes involved in the structural modification of lipid A that facilitates resistance to AMPs. In addition, the inactivation of phoP alters the expression of type-III secretion system (TTSS) genes encoded within three distinct chromosomal regions, indicating that PhoP-PhoQ also serves as a master regulator of TTSS gene expression. In the absence of phoP, S. glossinidius is unable to superinfect either its natural tsetse fly host or a closely related hippoboscid louse fly. Furthermore, we show that the S. glossinidius PhoQ sensor kinase has undergone functional adaptations that result in a substantially diminished ability to sense ancestral signals. The loss of PhoQ's sensory capability is predicted to represent a novel adaptation to the static symbiotic lifestyle, allowing S. glossinidius to constitutively express genes that facilitate resistance to host derived AMPs.
Collapse
Affiliation(s)
| | - Kari Lyn Smith
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Linda De Vooght
- Department of Biological Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biological Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Colin Dale
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
31
|
Nam D, Choi E, Kweon DH, Shin D. The RstB sensor acts on the PhoQ sensor to control expression of PhoP-regulated genes. Mol Cells 2010; 30:363-8. [PMID: 20811812 DOI: 10.1007/s10059-010-0126-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022] Open
Abstract
The PhoP response regulator and PhoQ sensor, which are encoded by the phoPQ operon, constitute the PhoP/PhoQ two-component system. Genome-wide transcription analysis revealed that heterologous expression of the RstB protein, a sensor of the RstA/RstB two-component system, leads to enhanced transcription of PhoP-activated genes in wild-type Salmonella. We determined that RstB-induction increases the levels of phoP mRNA as well as PhoP protein, while lack of the phoPQ genes abolishes RstB-promoted transcription of the PhoP-regulated genes. This regulatory function of RstB did not require its enzymatic activities, and thus the truncated RstB protein containing only periplasmic and transmembrane regions was able to promote PhoP-activated transcription. The RstB protein appeared to target the PhoQ sensor rather than the PhoP response regulator because RstB-induction failed to enhance transcription of the PhoP-regulated genes in a strain maintaining the normal PhoP function, even without PhoQ.
Collapse
Affiliation(s)
- Daesil Nam
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746, Korea
| | | | | | | |
Collapse
|
32
|
Scharf BE. Summary of useful methods for two-component system research. Curr Opin Microbiol 2010; 13:246-52. [DOI: 10.1016/j.mib.2010.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/10/2010] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
|
33
|
Evidence against the physiological role of acetyl phosphate in the phosphorylation of the ArcA response regulator in Escherichia coli. J Microbiol 2009; 47:657-62. [PMID: 19851741 DOI: 10.1007/s12275-009-0087-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 06/24/2009] [Indexed: 01/25/2023]
Abstract
The Arc two-component signal transduction system of Escherichia coli comprises the ArcB sensor kinase and the ArcA response regulator. Under anoxic growth conditions, ArcB autophosphorylates and transphos-phorylates ArcA, which, in turn, represses or activates its target operons. ArcA has been shown to be able to autophosphorylate in vitro at the expense of acetyl-P. Here, the in vivo effect of acetyl phosphate on the redox signal transduction by the Arc system was assessed. Our results indicate that acetyl phosphate can modulate the expression of ArcA-P target genes only in the absence of ArcB. Therefore, the acetyl phosphate dependent ArcA phosphorylation route does not seem to play a significant role under physiological conditions.
Collapse
|
34
|
Activated by different signals, the PhoP/PhoQ two-component system differentially regulates metal uptake. J Bacteriol 2009; 191:7174-81. [PMID: 19801407 DOI: 10.1128/jb.00958-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PhoP/PhoQ two-component system controls several physiological and virulence functions in Salmonella enterica. This system is activated by low Mg(2+), acidic pH, and antimicrobial peptides, but the biological consequences resulting from sensing multiple signals are presently unclear. Here, we report that the PhoP/PhoQ system regulates different Salmonella genes depending on whether the inducing signal is acidic pH or low Mg(2+). When Salmonella experiences acidic pH, the PhoP/PhoQ system promotes Fe(2+) uptake in a process that requires the response regulator RstA, activating transcription of the Fe(2+) transporter gene feoB. In contrast, the PhoP-induced RstA protein did not promote feoB expression at neutral pH with low Mg(2+). The PhoP/PhoQ system promotes the expression of the Mg(2+) transporter mgtA gene only when activated in bacteria starved for Mg(2+). This is because mgtA transcription promoted at high Mg(2+) concentrations by the acidic-pH-activated PhoP protein failed to reach the mgtA coding region due to the mgtA leader region functioning as a Mg(2+) sensor. Our results show that a single two-component regulatory system can regulate distinct sets of genes in response to different input signals.
Collapse
|
35
|
The PhoQ/PhoP Regulatory Network of Salmonella enterica. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:7-21. [DOI: 10.1007/978-0-387-78885-2_2] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Mitrophanov AY, Jewett MW, Hadley TJ, Groisman EA. Evolution and dynamics of regulatory architectures controlling polymyxin B resistance in enteric bacteria. PLoS Genet 2008; 4:e1000233. [PMID: 18949034 PMCID: PMC2565834 DOI: 10.1371/journal.pgen.1000233] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/18/2008] [Indexed: 01/13/2023] Open
Abstract
Complex genetic networks consist of structural modules that determine the levels and timing of a cellular response. While the functional properties of the regulatory architectures that make up these modules have been extensively studied, the evolutionary history of regulatory architectures has remained largely unexplored. Here, we investigate the transition between direct and indirect regulatory pathways governing inducible resistance to the antibiotic polymyxin B in enteric bacteria. We identify a novel regulatory architecture—designated feedforward connector loop—that relies on a regulatory protein that connects signal transduction systems post-translationally, allowing one system to respond to a signal activating another system. The feedforward connector loop is characterized by rapid activation, slow deactivation, and elevated mRNA expression levels in comparison with the direct regulation circuit. Our results suggest that, both functionally and evolutionarily, the feedforward connector loop is the transitional stage between direct transcriptional control and indirect regulation. A regulatory protein can activate the expression of a target gene either directly, i.e., by binding to the gene's promoter, or indirectly, i.e., by altering the expression of regulators, which, in turn, bind to the target gene's promoter and induce or inhibit its transcription. Indirect regulatory circuits can contain multiple components and functional elements, such as feedforward and feedback loops. The complex structure of indirect regulation raises the question of its evolutionary origins. Here, we study the dynamic and evolutionary properties of regulatory architectures that involve members of the recently emerged class of bacterial proteins termed connectors. Such proteins post-translationally modulate the activity of two-component systems and phosphorelays, which constitute the prevalent form of bacterial signal transduction. We describe a novel connector-mediated regulatory circuit that combines the structural and functional properties of direct and indirect regulation. Our results indicate that this architecture is the evolutionary link between direct and connector-dependent regulatory designs.
Collapse
Affiliation(s)
- Alexander Y. Mitrophanov
- Howard Hughes Medical Institute, Washington University, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America
| | - Mollie W. Jewett
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America
| | - Tricia J. Hadley
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America
| | - Eduardo A. Groisman
- Howard Hughes Medical Institute, Washington University, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
37
|
Perez JC, Latifi T, Groisman EA. Overcoming H-NS-mediated transcriptional silencing of horizontally acquired genes by the PhoP and SlyA proteins in Salmonella enterica. J Biol Chem 2008; 283:10773-83. [PMID: 18270203 PMCID: PMC2447644 DOI: 10.1074/jbc.m709843200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acquisition of new traits through horizontal gene transfer depends on the ability of the recipient organism to express the incorporated genes. However, foreign DNA appears to be silenced by the histone-like nucleoid-structuring protein (H-NS) in several enteric pathogens, raising the question of how this silencing is overcome and the acquired genes are expressed at the right time and place. To address this question, we investigated transcription of the horizontally acquired ugtL and pagC genes from Salmonella enterica, which is dependent on the regulatory DNA-binding proteins PhoP and SlyA. We reconstituted transcription of the ugtL and pagC genes in vitro and determined occupancy of their respective promoters by PhoP, H-NS, and RNA polymerase in vivo. The SlyA protein counteracted H-NS-promoted repression in vitro but could not promote gene transcription by itself. PhoP-promoted transcription required SlyA when H-NS was present but not in its absence. In vivo, H-NS remained bound to the ugtL and pagC promoters under inducing conditions that promoted RNA polymerase recruitment and transcription of the ugtL and pagC genes. Our results indicate that relief of H-NS repression and recruitment of RNA polymerase are controlled by different regulatory proteins that act in concert to express horizontally acquired genes.
Collapse
Affiliation(s)
- J Christian Perez
- Program in Molecular Genetics and Genomics and Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
38
|
Groisman EA, Cromie MJ, Shi Y, Latifi T. A Mg2+-responding RNA that controls the expression of a Mg2+ transporter. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:251-8. [PMID: 17381304 DOI: 10.1101/sqb.2006.71.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mg2+ is the most abundant divalent cation in biological systems. It is required for ATP-mediated enzymatic reactions and as a stabilizer of ribosomes and membranes. The enteric bacterium Salmonella enterica serovar Typhimurium harbors three Mg2+ transporters and a regulatory system-termed PhoP/PhoQ-whose activity is regulated by the extracytoplasmic levels of Mg2+. We have determined that expression of the PhoP-activated Mg2+ transporter MgtA is also controlled by its 5'-untranslated region (5'UTR). The 5'UTR of the mgtA gene can adopt different stem-loop structures depending on the Mg2+ levels, which determine whether transcription reads through into the mgtA-coding region or stops within the 5'UTR. This makes the mgtA 5'UTR the first example of a cation-responding riboswitch. The initiation of mgtA transcription responds to extracytoplasmic Mg2+, and its elongation into the coding region to cytoplasmic Mg2+, which provides a singular example where the same ligand is sensed in different cellular compartments to regulate disparate steps in gene transcription. The PhoP-activated Mg2+ transporter mgtB is also regulated by Mg2+ in a strain lacking the Mg2+ sensor PhoQ, suggesting the presence of additional Mg2+-responding devices.
Collapse
Affiliation(s)
- E A Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, Howard Hughes Medical Institute, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
39
|
Terry K, Go AC, Ottemann KM. Proteomic mapping of a suppressor of non-chemotactic cheW mutants reveals that Helicobacter pylori contains a new chemotaxis protein. Mol Microbiol 2006; 61:871-82. [PMID: 16879644 DOI: 10.1111/j.1365-2958.2006.05283.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacterial chemotaxis is a colonization factor for the ulcer-causing pathogen Helicobacter pylori. H. pylori contains genes encoding the chemotaxis signalling proteins CheW, CheA and CheY; CheW couples chemoreceptors to the CheA kinase and is essential for chemotaxis. While characterizing a cheW mutant, we isolated a spontaneous, chemotactic variant (Che+). We determined that this phenotype was caused by a genetic change unlinked to the original cheW mutation. To locate the underlying Che+ mutation, we compared total protein profiles of the non-chemotactic mutant (cheW) with those from the cheW Che+ variant by two-dimensional differential in-gel electrophoresis. One protein was found only in the cheW Che+ variant. This protein was identified by MS/MS as HP0170, a hypothetical protein with no known function. DNA sequencing verified that hp0170 was mutated in the cheW Che+ suppressor, and deletion of this open reading frame in the cheW background nearly recapitulated the Che+ suppressor phenotype. Using hidden Markov models, we found that HP0170 is a remote homologue of E. coli CheZ. CheZ interacts with phosphorylated CheY and stimulates its autodephosphorylation. CheZ was not predicted to be present in epsilon-proteobacteria. We found that chemotaxis in the cheW Che+ suppressor depended on both cheY and cheA. We hypothesize that a small amount of phosphorylated CheY is generated via CheA in the cheW mutant, and this amount is sufficient to affect flagellar rotation when HP0170 is removed. Our results suggest that HP0170 is a remote homologue of CheZ, and that CheZ homologues are found in a broader range of bacteria than previously supposed.
Collapse
Affiliation(s)
- Karianne Terry
- Department of Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
40
|
Tu X, Latifi T, Bougdour A, Gottesman S, Groisman EA. The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc Natl Acad Sci U S A 2006; 103:13503-8. [PMID: 16938894 PMCID: PMC1557385 DOI: 10.1073/pnas.0606026103] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The sigma factor RpoS regulates the expression of many stress response genes and is required for virulence in several bacterial species. We now report that RpoS accumulates when Salmonella enterica serovar Typhimurium is growing logarithmically in media with low Mg(2+) concentrations. This process requires the two-component regulatory system PhoP/PhoQ, which is specifically activated in low Mg(2+). We show that PhoP controls RpoS protein turnover by serving as a transcriptional activator of the iraP (yaiB) gene, which encodes a product that enhances RpoS stability by interacting with RssB, the protein that normally delivers RpoS to the ClpXP protease for degradation. Mutation of the phoP gene rendered Salmonella as sensitive to hydrogen peroxide as an rpoS mutant after growth in low Mg(2+). In Escherichia coli, low Mg(2+) leads to only modest RpoS stabilization, and iraP is not regulated by PhoP/PhoQ. These findings add the sigma factor RpoS to the regulatory proteins and two-component systems that are elevated in a PhoP/PhoQ-dependent fashion when Salmonella face low Mg(2+) environments. Our data also exemplify the critical differences in regulatory circuits that exist between the closely related enteric bacteria Salmonella and E. coli.
Collapse
Affiliation(s)
- Xuanlin Tu
- Department of Molecular Microbiology and
| | - Tammy Latifi
- Department of Molecular Microbiology and
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Alexandre Bougdour
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence may be addressed. E-mail:
or
| | - Eduardo A. Groisman
- Department of Molecular Microbiology and
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
41
|
Gao R, Mukhopadhyay A, Fang F, Lynn DG. Constitutive activation of two-component response regulators: characterization of VirG activation in Agrobacterium tumefaciens. J Bacteriol 2006; 188:5204-11. [PMID: 16816192 PMCID: PMC1539974 DOI: 10.1128/jb.00387-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Response regulators are the ultimate modulators in two-component signal transduction pathways. The N-terminal receiver domains generally accept phosphates from cognate histidine kinases to control output. VirG for example, the response regulator of the VirA/VirG two-component system in Agrobacterium tumefaciens, mediates the expression of virulence genes in response to plant host signals. Response regulators have a highly conserved structure and share a similar conformational activation upon phosphorylation, yet the sequence and structural features that determine or perturb the cooperative activation events are ill defined. Here we use VirG and the unique features of the Agrobacterium system to extend our understanding of the response regulator activation. Two previously isolated constitutive VirG mutants, VirGN54D and VirGI77V/D52E, provide the foundation for our studies. In vivo phosphorylation patterns establish that VirGN54D is able to accumulate phosphates from small-molecule phosphate donors, such as acetyl phosphate, while the VirGI77V/D52E allele carries conformational changes mimicking the active conformation. Further structural alterations on these two alleles begin to reveal the changes necessary for response regulator activation.
Collapse
Affiliation(s)
- Rong Gao
- Center for Fundamental and Applied Molecular Evolution, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
42
|
Cromie MJ, Shi Y, Latifi T, Groisman EA. An RNA sensor for intracellular Mg(2+). Cell 2006; 125:71-84. [PMID: 16615891 DOI: 10.1016/j.cell.2006.01.043] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 11/23/2005] [Accepted: 01/05/2006] [Indexed: 01/17/2023]
Abstract
Most RNA molecules require Mg(2+) for their structure and enzymatic properties. Here we report the first example of an RNA serving as sensor for cytoplasmic Mg(2+). We establish that expression of the Mg(2+) transporter MgtA of Salmonella enterica serovar Typhimurium is controlled by its 5' untranslated region (5'UTR). We show that the 5'UTR of the mgtA gene can adopt different stem-loop structures depending on the Mg(2+) levels, which determine whether transcription reads through into the mgtA coding region or stops within the 5'UTR. We could recapitulate the Mg(2+)-regulated transcription using a defined in vitro transcription system with RNA polymerase as the only protein component. The initiation of mgtA transcription responds to extracytoplasmic Mg(2+) and its elongation into the coding region to cytoplasmic Mg(2+), providing a singular example in which the same ligand is sensed in different cellular compartments to regulate disparate steps in gene transcription.
Collapse
MESH Headings
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/metabolism
- Adenosine Triphosphatases/genetics
- Bacterial Proteins/genetics
- Biosensing Techniques/methods
- Conserved Sequence/genetics
- Cytoplasm/chemistry
- Gene Expression Regulation, Bacterial
- Magnesium/analysis
- Magnesium/metabolism
- Magnesium/pharmacology
- Membrane Transport Proteins/genetics
- Models, Genetic
- Mutation/genetics
- Nucleic Acid Conformation/drug effects
- Open Reading Frames/genetics
- Phylogeny
- Promoter Regions, Genetic/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleases/metabolism
- Terminator Regions, Genetic/genetics
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Michael J Cromie
- Howard Hughes Medical Institute, Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8230, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
43
|
Kim YR, Brinsmade SR, Yang Z, Escalante-Semerena J, Fierer J. Mutation of phosphotransacetylase but not isocitrate lyase reduces the virulence of Salmonella enterica serovar Typhimurium in mice. Infect Immun 2006; 74:2498-502. [PMID: 16552088 PMCID: PMC1418904 DOI: 10.1128/iai.74.4.2498-2502.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A phosphotransacetylase (pta) mutant of Salmonella enterica serovar Typhimurium was attenuated in mice but survived normally in macrophages. Complementation of the pta mutation in trans restored virulence. An isocitrate lyase (aceA) mutant was virulent, so the inability to use acetate as a sole carbon source does not explain the phenotype.
Collapse
Affiliation(s)
- Yang Re Kim
- VA Healthcare San Diego, 3350 La Jolla Village Dr., San Diego, CA 92161, USA
| | | | | | | | | |
Collapse
|
44
|
Goymer P, Kahn SG, Malone JG, Gehrig SM, Spiers AJ, Rainey PB. Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype. Genetics 2006; 173:515-26. [PMID: 16624907 PMCID: PMC1526540 DOI: 10.1534/genetics.106.055863] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wrinkly spreader (WS) genotypes evolve repeatedly in model Pseudomonas populations undergoing adaptive radiation. Previous work identified genes contributing to the evolutionary success of WS. Here we scrutinize the GGDEF response regulator protein WspR and show that it is both necessary and sufficient for WS. Activation of WspR occurs by phosphorylation and different levels of activation generate phenotypic differences among WS genotypes. Five alleles of wspR, each encoding a protein with a single amino acid substitution, were generated by mutagenesis. Two alleles are constitutively active and cause the ancestral genotype to develop a WS phenotype; the phenotypic effects are allele specific and independent of phosphorylation. Three alleles contain changes in the GGDEF domain and when overexpressed in WS cause reversion to the ancestral phenotype. Ability to mimic this effect by overexpression of a liberated N-terminal domain shows that in WS, regulatory components upstream of WspR are overactive. To connect changes at the nucleotide level with fitness, the effects of variant alleles were examined in both structured and unstructured environments: alleles had adaptive and deleterious effects with trade-offs evident across environments. Despite the proclivity of mutations within wspR to generate WS, sequence analysis of wspR from 53 independently obtained WS showed no evidence of sequence change in this gene.
Collapse
|
45
|
Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 59:126-41. [PMID: 16359323 DOI: 10.1111/j.1365-2958.2005.04940.x] [Citation(s) in RCA: 291] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug efflux systems play a major role in resistance to a wide range of noxious compounds in several Gram negative species. Here, we report the drug resistance and virulence phenotypes of Salmonella mutants defective in either resistance-nodulation-division (RND)-type systems and/or in drug efflux systems belonging to the major facilitator (MFS), multidrug and toxic compound extrusion (MATE), and ATP-binding cassette (ABC) superfamilies. We determined that nine potential drug transporters contribute to drug resistance of Salmonella and found that the Salmonella-specific MdsABC system conferred resistance to a variety of toxic compounds. The RND-type MdsAB system could function with either MdsC, which is encoded in the same operon, or TolC as the outer membrane component. Although the Salmonella EmrAB, MdfA and MdtK are 90% identical in their amino acid sequences to their Escherichia coli homologues, the drug specificity of Salmonella transporters was different from that reported for equivalent E. coli transporters. Deletion of the macAB genes attenuated Salmonella virulence and a strain lacking all drug efflux systems was avirulent when mice were inoculated by the oral route. The promoter region of the macAB drug efflux system genes harbours a binding site for the response regulator PhoP, which functions to repress macAB transcription. The PhoP/PhoQ two-component system is a major regulator of Salmonella virulence, which underscores the connection between drug efflux systems and virulence.
Collapse
Affiliation(s)
- Kunihiko Nishino
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
46
|
Morrison SS, Mullineaux CW, Ashby MK. The influence of acetyl phosphate on DspA signalling in the Cyanobacterium Synechocystis sp. PCC6803. BMC Microbiol 2005; 5:47. [PMID: 16076400 PMCID: PMC1192802 DOI: 10.1186/1471-2180-5-47] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 08/02/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The dspA (hik33) gene, coding for a putative sensory histidine kinase, is conserved in plastids (ycf26) and cyanobacteria. It has been linked with a number of different stress responses in cyanobacteria. RESULTS We constructed an insertional mutant of dspA (ycf26) in Synechocystis 6803. We found little phenotypic effect during nitrogen starvation. However, when the mutation was combined with deletion of the pta gene coding for phosphotransacetylase, a more significant phenotype was observed. Under nitrogen starvation, the pta/dspA double mutant degrades its phycobilisomes less than the wild type and still has about half of its chlorophyll-protein complexes. CONCLUSION Our data indicates that acetyl-phosphate-dependent phosphorylation of response regulator(s) overlaps with DspA-dependent signalling of the degradation of chlorophyll-protein complexes (and to a lesser extent phycobilisomes) in Synechocystis 6803.
Collapse
Affiliation(s)
- S Shawn Morrison
- Department of Basic Medical Sciences, Biochemistry Section, the University of the West Indies, Mona Campus, Kingston 7, Jamaica
| | - Conrad W Mullineaux
- Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Mark K Ashby
- Department of Basic Medical Sciences, Biochemistry Section, the University of the West Indies, Mona Campus, Kingston 7, Jamaica
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
47
|
Abstract
To succeed, many cells must alternate between life-styles that permit rapid growth in the presence of abundant nutrients and ones that enhance survival in the absence of those nutrients. One such change in life-style, the "acetate switch," occurs as cells deplete their environment of acetate-producing carbon sources and begin to rely on their ability to scavenge for acetate. This review explains why, when, and how cells excrete or dissimilate acetate. The central components of the "switch" (phosphotransacetylase [PTA], acetate kinase [ACK], and AMP-forming acetyl coenzyme A synthetase [AMP-ACS]) and the behavior of cells that lack these components are introduced. Acetyl phosphate (acetyl approximately P), the high-energy intermediate of acetate dissimilation, is discussed, and conditions that influence its intracellular concentration are described. Evidence is provided that acetyl approximately P influences cellular processes from organelle biogenesis to cell cycle regulation and from biofilm development to pathogenesis. The merits of each mechanism proposed to explain the interaction of acetyl approximately P with two-component signal transduction pathways are addressed. A short list of enzymes that generate acetyl approximately P by PTA-ACKA-independent mechanisms is introduced and discussed briefly. Attention is then directed to the mechanisms used by cells to "flip the switch," the induction and activation of the acetate-scavenging AMP-ACS. First, evidence is presented that nucleoid proteins orchestrate a progression of distinct nucleoprotein complexes to ensure proper transcription of its gene. Next, the way in which cells regulate AMP-ACS activity through reversible acetylation is described. Finally, the "acetate switch" as it exists in selected eubacteria, archaea, and eukaryotes, including humans, is described.
Collapse
Affiliation(s)
- Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
48
|
Bergman MA, Cummings LA, Barrett SLR, Smith KD, Lara JC, Aderem A, Cookson BT. CD4+ T cells and toll-like receptors recognize Salmonella antigens expressed in bacterial surface organelles. Infect Immun 2005; 73:1350-6. [PMID: 15731032 PMCID: PMC1064935 DOI: 10.1128/iai.73.3.1350-1356.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A better understanding of immunity to infection is revealed from the characteristics of microbial ligands recognized by host immune responses. Murine infection with the intracellular bacterium Salmonella generates CD4+ T cells that specifically recognize Salmonella proteins expressed in bacterial surface organelles such as flagella and membrane vesicles. These natural Salmonella antigens are also ligands for Toll-like receptors (TLRs) or avidly associated with TLR ligands such as lipopolysaccharide (LPS). PhoP/PhoQ, a regulon controlling Salmonella virulence and remodeling of LPS to resist innate immunity, coordinately represses production of surface-exposed antigens recognized by CD4+ T cells and TLRs. These data suggest that genetically coordinated surface modifications may provide a growth advantage for Salmonella in host tissues by limiting both innate and adaptive immune recognition.
Collapse
Affiliation(s)
- Molly A Bergman
- Department of Laboratory Medicine and Microbiology, University of Washington Medical Center, Mailstop 357110, 1959 NE Pacific Ave., Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhao Y, Tomas CA, Rudolph FB, Papoutsakis ET, Bennett GN. Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl Environ Microbiol 2005; 71:530-7. [PMID: 15640230 PMCID: PMC544202 DOI: 10.1128/aem.71.1.530-537.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been suggested (L. H. Harris, R. P. Desai, N. E. Welker, and E. T. Papoutsakis, Biotechnol. Bioeng. 67:1-11, 2000) that butyryl phosphate (BuP) is a regulator of solventogenesis in Clostridium acetobutylicum. Here, we determined BuP and acetyl phosphate (AcP) levels in fermentations of C. acetobutylicum wild type (WT), degenerate strain M5, a butyrate kinase (buk) mutant, and a phosphotransacetylase (pta) mutant. A sensitive method was developed to measure BuP and AcP in the same sample. Compared to the WT, the buk mutant had higher levels of BuP and AcP; the BuP levels were high during the early exponential phase, and there was a peak corresponding to solvent production. Consistent with this, solvent formation was initiated significantly earlier and was much stronger in the buk mutant than in all other strains. For all strains, initiation of butanol formation corresponded to a BuP peak concentration that was more than 60 to 70 pmol/g (dry weight), and higher and sustained levels corresponded to higher butanol formation fluxes. The BuP levels never exceeded 40 to 50 pmol/g (dry weight) in strain M5, which produces no solvents. The BuP profiles were bimodal, and there was a second peak midway through solventogenesis that corresponded to carboxylic acid reutilization. AcP showed a delayed single peak during late solventogenesis corresponding to acetate reutilization. As expected, in the pta mutant the AcP levels were very low, yet this strain exhibited strong butanol production. These data suggest that BuP is a regulatory molecule that may act as a phosphodonor of transcriptional factors. DNA array-based transcriptional analysis of the buk and M5 mutants demonstrated that high BuP levels corresponded to downregulation of flagellar genes and upregulation of solvent formation and stress genes.
Collapse
Affiliation(s)
- Yinsuo Zhao
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | | | | | |
Collapse
|
50
|
Winfield MD, Latifi T, Groisman EA. Transcriptional regulation of the 4-amino-4-deoxy-L-arabinose biosynthetic genes in Yersinia pestis. J Biol Chem 2005; 280:14765-72. [PMID: 15710615 DOI: 10.1074/jbc.m413900200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inducible membrane remodeling is an adaptive mechanism that enables Gram-negative bacteria to resist killing by cationic antimicrobial peptides and to avoid eliciting an immune response. Addition of 4-amino-4-deoxy-l -arabinose (4-aminoarabinose) moieties to the phosphate residues of the lipid A portion of the lipopolysaccharide decreases the net negative charge of the bacterial membrane resulting in protection from the cationic antimicrobial peptide polymyxin B. In Salmonella enterica serovar Typhimurium, the PmrA/PmrB two-component regulatory system governs resistance to polymyxin B by controlling transcription of the 4-aminoarabinose biosynthetic genes. Transcription of PmrA-activated genes is induced by Fe(3+), which is sensed by PmrA cognate sensor PmrB, and by low Mg(2+), in a mechanism that requires not only the PmrA and PmrB proteins but also the Mg(2+)-responding PhoP/PhoQ system and the PhoP-activated PmrD protein, a post-translational activator of the PmrA protein. Surprisingly, Yersinia pestis can promote PhoP-dependent modification of its lipid A with 4-aminoarabinose despite lacking a PmrD protein. Here we report that Yersinia uses different promoters to transcribe the 4-aminoarabinose biosynthetic genes pbgP and ugd depending on the inducing signal. This is accomplished by the presence of distinct binding sites for the PmrA and PhoP proteins in the promoters of the pbgP and ugd genes. Our results demonstrate that closely related bacterial species may use disparate regulatory pathways to control genes encoding conserved proteins.
Collapse
Affiliation(s)
- Mollie D Winfield
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|