1
|
Asseck LY, Wallmeroth N, Grefen C. ER Membrane Protein Interactions Using the Split-Ubiquitin System (SUS). Methods Mol Biol 2024; 2772:207-219. [PMID: 38411816 DOI: 10.1007/978-1-0716-3710-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Protein-protein interactions (PPIs) play fundamental roles in all cellular processes. Especially membrane proteins facilitate a range of important biological functions in stimuli perception, signalling, and transport. Here we describe a detailed protocol for the yeast mating-based Split-Ubiquitin System (mbSUS) to study PPIs of ER membrane proteins in vivo. In contrast to the prominent yeast two hybrid, mbSUS enables analysis of full-length membrane proteins in their native cellular context. The system is based on the ubiquitin proteasome pathway leading to the release of an artificial transcription factor followed by activation of reporter genes to visualize PPIs. The mating-based approach is suitable for both small- and large-scale interaction studies. Additionally, we describe protocols to apply the recently established SUS Bridge assay (SUB), which is optimized for the detection of ternary protein interactions.
Collapse
Affiliation(s)
- Lisa Yasmin Asseck
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Niklas Wallmeroth
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
2
|
Quan N, Eguchi Y, Geiler-Samerotte K. Intra- FCY1: a novel system to identify mutations that cause protein misfolding. Front Genet 2023; 14:1198203. [PMID: 37745845 PMCID: PMC10512024 DOI: 10.3389/fgene.2023.1198203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Protein misfolding is a common intracellular occurrence. Most mutations to coding sequences increase the propensity of the encoded protein to misfold. These misfolded molecules can have devastating effects on cells. Despite the importance of protein misfolding in human disease and protein evolution, there are fundamental questions that remain unanswered, such as, which mutations cause the most misfolding? These questions are difficult to answer partially because we lack high-throughput methods to compare the destabilizing effects of different mutations. Commonly used systems to assess the stability of mutant proteins in vivo often rely upon essential proteins as sensors, but misfolded proteins can disrupt the function of the essential protein enough to kill the cell. This makes it difficult to identify and compare mutations that cause protein misfolding using these systems. Here, we present a novel in vivo system named Intra-FCY1 that we use to identify mutations that cause misfolding of a model protein [yellow fluorescent protein (YFP)] in Saccharomyces cerevisiae. The Intra-FCY1 system utilizes two complementary fragments of the yeast cytosine deaminase Fcy1, a toxic protein, into which YFP is inserted. When YFP folds, the Fcy1 fragments associate together to reconstitute their function, conferring toxicity in media containing 5-fluorocytosine and hindering growth. But mutations that make YFP misfold abrogate Fcy1 toxicity, thus strains possessing misfolded YFP variants rise to high frequency in growth competition experiments. This makes such strains easier to study. The Intra-FCY1 system cancels localization of the protein of interest, thus can be applied to study the relative stability of mutant versions of diverse cellular proteins. Here, we confirm this method can identify novel mutations that cause misfolding, highlighting the potential for Intra-FCY1 to illuminate the relationship between protein sequence and stability.
Collapse
Affiliation(s)
- N. Quan
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Y. Eguchi
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
| | - K. Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
3
|
Locascio A, Andrés-Colás N, Mulet JM, Yenush L. Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. Int J Mol Sci 2019; 20:E2133. [PMID: 31052176 PMCID: PMC6539216 DOI: 10.3390/ijms20092133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| |
Collapse
|
4
|
Abstract
The in vivo analysis of protein-protein interactions (PPIs) is a critical factor for gaining insights into cellular mechanisms and their biological functions. To that end, a constantly growing number of genetic tools has been established, some of which are using baker's yeast (Saccharomyces cerevisiae) as a model organism. Here, we provide a detailed protocol for the yeast mating-based split-ubiquitin system (mbSUS) to study binary interactions among or with full-length membrane proteins in their native subcellular environment. The system is based on the reassembly of two autonomously non-functional ubiquitin moieties attached to proteins of interest (POIs) into a native-like molecule followed by the release of a transcription factor. Upon its nuclear import, the activation of reporter gene expression gives a visual output via growth on interaction-selective media. Additionally, we apply a modification of the classical split-ubiquitin technique called CytoSUS that detects interactions of non-membrane/soluble proteins in their full-length form via translational fusion of an ER membrane anchor.
Collapse
Affiliation(s)
- Lisa Yasmin Asseck
- Centre for Plant Molecular Biology, ZMBP-Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Christopher Grefen
- Centre for Plant Molecular Biology, ZMBP-Developmental Genetics, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Asseck LY, Wallmeroth N, Grefen C. ER Membrane Protein Interactions Using the Split-Ubiquitin System (SUS). Methods Mol Biol 2018; 1691:191-203. [PMID: 29043679 DOI: 10.1007/978-1-4939-7389-7_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions (PPIs) play fundamental roles in all cellular processes. Especially membrane proteins facilitate a range of important biological functions in stimuli perception, signaling, and transport. Here we describe a detailed protocol for the yeast mating-based Split-Ubiquitin System (mbSUS) to study PPIs of ER membrane proteins in vivo. In contrast to the prominent Yeast Two-Hybrid, mbSUS enables analysis of full-length membrane proteins in their native cellular context. The system is based on the ubiquitin proteasome pathway leading to the release of an artificial transcription factor followed by activation of reporter genes to visualize PPIs. The mating-based approach is suitable for both small- and large-scale interaction studies. Additionally, we describe protocols to apply the recently established SUS Bridge assay (SUB) which is optimized for the detection of ternary protein interactions.
Collapse
Affiliation(s)
- Lisa Yasmin Asseck
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Niklas Wallmeroth
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Christopher Grefen
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| |
Collapse
|
6
|
Krogan, PhD NJ, Babu, PhD M. Mapping the Protein-Protein Interactome Networks Using Yeast Two-Hybrid Screens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:187-214. [PMID: 26621469 PMCID: PMC7120425 DOI: 10.1007/978-3-319-23603-2_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The yeast two-hybrid system (Y2H) is a powerful method to identify binary protein-protein interactions in vivo. Here we describe Y2H screening strategies that use defined libraries of open reading frames (ORFs) and cDNA libraries. The array-based Y2H system is well suited for interactome studies of small genomes with an existing ORFeome clones preferentially in a recombination based cloning system. For large genomes, pooled library screening followed by Y2H pairwise retests may be more efficient in terms of time and resources, but multiple sampling is necessary to ensure comprehensive screening. While the Y2H false positives can be efficiently reduced by using built-in controls, retesting, and evaluation of background activation; implementing the multiple variants of the Y2H vector systems is essential to reduce the false negatives and ensure comprehensive coverage of an interactome.
Collapse
Affiliation(s)
- Nevan J. Krogan, PhD
- grid.266102.10000000122976811Cellular and Molecular Pharmacology, Univ of California, San Francisco, SAN FRANCISCO, California USA
| | - Mohan Babu, PhD
- grid.57926.3f0000000419369131Department of Biochemistry, University of Regina, Regina, Saskatchewan Canada
| |
Collapse
|
7
|
Westermarck J, Ivaska J, Corthals GL. Identification of protein interactions involved in cellular signaling. Mol Cell Proteomics 2013; 12:1752-63. [PMID: 23481661 DOI: 10.1074/mcp.r113.027771] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein-protein interactions drive biological processes. They are critical for all intra- and extracellular functions, and the technologies to analyze them are widely applied throughout the various fields of biological sciences. This study takes an in-depth view of some common principles of cellular regulation and provides a detailed account of approaches required to comprehensively map signaling protein-protein interactions in any particular cellular system or condition. We provide a critical review of the benefits and disadvantages of the yeast two-hybrid method and affinity purification coupled with mass spectrometric procedures for identification of signaling protein-protein interactions. In particular, we emphasize the quantitative and qualitative differences between tandem affinity and one-step purification (such as FLAG and Strep tag) methods. Although applicable to all types of interaction studies, a special section is devoted in this review to aspects that should be considered when attempting to identify signaling protein interactions that often are transient and weak by nature. Finally, we discuss shotgun and quantitative information that can be gleaned by MS-coupled methods for analysis of multiprotein complexes.
Collapse
Affiliation(s)
- Jukka Westermarck
- Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| | | | | |
Collapse
|
8
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
9
|
Chen J, Lalonde S, Obrdlik P, Noorani Vatani A, Parsa SA, Vilarino C, Revuelta JL, Frommer WB, Rhee SY. Uncovering Arabidopsis membrane protein interactome enriched in transporters using mating-based split ubiquitin assays and classification models. FRONTIERS IN PLANT SCIENCE 2012; 3:124. [PMID: 22737156 PMCID: PMC3380418 DOI: 10.3389/fpls.2012.00124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/24/2012] [Indexed: 05/18/2023]
Abstract
High-throughput data are a double-edged sword; for the benefit of large amount of data, there is an associated cost of noise. To increase reliability and scalability of high-throughput protein interaction data generation, we tested the efficacy of classification to enrich potential protein-protein interactions. We applied this method to identify interactions among Arabidopsis membrane proteins enriched in transporters. We validated our method with multiple retests. Classification improved the quality of the ensuing interaction network and was effective in reducing the search space and increasing true positive rate. The final network of 541 interactions among 239 proteins (of which 179 are transporters) is the first protein interaction network enriched in membrane transporters reported for any organism. This network has similar topological attributes to other published protein interaction networks. It also extends and fills gaps in currently available biological networks in plants and allows building a number of hypotheses about processes and mechanisms involving signal-transduction and transport systems.
Collapse
Affiliation(s)
- Jin Chen
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
- MSU-DOE Plant Research Laboratory, Computer Science and Engineering Department, Michigan State UniversityEast Lansing, MI, USA
| | - Sylvie Lalonde
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| | | | - Azam Noorani Vatani
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| | - Saman A. Parsa
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| | - Cristina Vilarino
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genomica, Universidad de Salamanca-Consejo Superior de Investigaciones CientíficasSalamanca, Spain
| | - Jose Luis Revuelta
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genomica, Universidad de Salamanca-Consejo Superior de Investigaciones CientíficasSalamanca, Spain
| | - Wolf B. Frommer
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| |
Collapse
|
10
|
Ho RH, Chen YH, Wang CM. Surface differentiation of ferritin and apoferritin with atomic force microscopic techniques. Colloids Surf B Biointerfaces 2012; 94:231-5. [PMID: 22377219 DOI: 10.1016/j.colsurfb.2012.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 11/17/2022]
Abstract
In the study reported herein, we differentiated the structure of ferritin from that of its demetalated counterpart, apoferritin, using field-effect-based atomic force microscopic (AFM) techniques. When ferritin was subjected to conductive-mode AFM analysis, the protein resembled a pancake with a diameter of 10 nm adsorbed on the indium-doped tin-oxide substrate with its fourfold channel perpendicular to the substrate, whereas a flat, empty cavity was revealed for apoferritin. We also attempted to verify the conformational difference with magnetic-mode AFM. However, the resulting phase images failed to differentiate the proteins due to interference from the fringe effect. Despite this, the ferritin analysis revealed a sound correlation between the surface conductivity profiles and the phase profiles. In contrast, apoferritin showed a chaotic relationship in this respect. These results not only suggest that the magnetic domain of ferritin is limited to the iron aggregate in the core, but also demonstrate that AFM is a useful tool for protein conformation analysis.
Collapse
Affiliation(s)
- Ru-Hung Ho
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | | | | |
Collapse
|
11
|
Rajagopala SV, Uetz P. Analysis of protein-protein interactions using high-throughput yeast two-hybrid screens. Methods Mol Biol 2012; 781:1-29. [PMID: 21877274 DOI: 10.1007/978-1-61779-276-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The yeast two-hybrid (Y2H) system is a powerful tool to identify binary protein-protein interactions. Here, we describe array-based two-hybrid methods that use defined libraries of open reading frames (ORFs) and pooled prey library screenings that use random genomic or cDNA libraries. The array-based Y2H system is well-suited for interactome studies of existing ORFeomes or subsets thereof, preferentially in a recombination-based cloning system. Array-based Y2H screens efficiently reduce false positives by using built-in controls, retesting, and evaluation of background activation. Hands-on time and the amount of used resources grow exponentially with the number of tested proteins; this is a disadvantage for large genome sizes. For large genomes, random library screen may be more efficient in terms of time and resources, but not as comprehensive as array screens, and it requires significant sequencing capacity. Furthermore, multiple variants of the Y2H vector systems detect markedly different subsets of interactions in the same interactome. Hence, only multiple variations of the Y2H systems ensure comprehensive coverage of an interactome.
Collapse
|
12
|
Häuser R, Stellberger T, Rajagopala SV, Uetz P. Matrix-based yeast two-hybrid screen strategies and comparison of systems. Methods Mol Biol 2012; 812:1-20. [PMID: 22218851 DOI: 10.1007/978-1-61779-455-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Today, matrix-based screens are used primarily for smaller and medium-size clone collections in combination with automation and cloning techniques that allow for reliable and fast interaction screening. Matrix-based yeast two-hybrid screens are an alternative to library-based screens. However, intermediary forms are possible too and we compare both strategies, including a detailed discussion of matrix-based screens. Recent improvement of matrix screens (also called array screens) uses various pooling strategies as well as novel vectors that increase their efficiency while decreasing false-negative rates and increasing reliability.
Collapse
Affiliation(s)
- Roman Häuser
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | | | |
Collapse
|
13
|
Graff L, Obrdlik P, Yuan L, Loqué D, Frommer WB, von Wirén N. N-terminal cysteines affect oligomer stability of the allosterically regulated ammonium transporter LeAMT1;1. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1361-73. [PMID: 21127027 DOI: 10.1093/jxb/erq379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
AMMONIUM TRANSPORTER (AMT) proteins are conserved in all domains of life and mediate the transport of ammonium or ammonia across cell membranes. AMTs form trimers and use intermolecular interaction between subunits to regulate activity. So far, binding forces that stabilize AMT protein complexes are not well characterized. High temperature or reducing agents released mono- and dimeric forms from trimeric complexes formed by AMT1;1 from Arabidopsis and tomato. However, in the paralogue LeAMT1;3, trimeric complexes were not detected. LeAMT1;3 differs from the other AMTs by an unusually short N-terminus, suggesting a role for the N-terminus in oligomer stability. Truncation of the N-terminus in LeAMT1;1 destabilized the trimer and led to loss of functionality when expressed in yeast. Swapping of the N-terminus between LeAMT1;1 and LeAMT1;3 showed that sequences in the N-terminus of LeAMT1;1 are necessary and sufficient for stabilization of the interaction among the subunits. Two N-terminal cysteine residues are highly conserved among AMT1 transporters in plants but are lacking in LeAMT1;3. C3S or C27S variants of LeAMT1;1 showed reduced complex stability, which coincided with lower transport capacity for the substrate analogue methylammonium. Both cysteine-substituted LeAMT1;1 variants showed weaker interactions with the wildtype as determined by a quantitative analysis of the complex stability using the mating-based split-ubiquitin assay. These data indicate that the binding affinity of AMT1 subunits is stabilized by cysteines in the N-terminus and suggest a role for disulphide bridge formation via apoplastic N-terminal cysteine residues.
Collapse
Affiliation(s)
- Lucile Graff
- Institute for Plant Nutrition, University of Hohenheim, D-70593 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Hruby A, Zapatka M, Heucke S, Rieger L, Wu Y, Nussbaumer U, Timmermann S, Dünkler A, Johnsson N. A constraint network of interactions: protein-protein interaction analysis of the yeast type II phosphatase Ptc1p and its adaptor protein Nbp2p. J Cell Sci 2010; 124:35-46. [PMID: 21118957 DOI: 10.1242/jcs.077065] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We used a generally applicable strategy to collect and structure the protein interactions of the yeast type II protein phosphatase Ptc1p and its binding partner Nbp2p. The procedure transformed primary unstructured protein interaction data into an ensemble of alternative interaction states. Certain combinations of proteins are allowed in different network configurations. Nbp2p serves as the network hub and brings seven kinases in close contact to Ptc1p. As a consequence, the deletion of NBP2 affects several cellular processes including organelle inheritance and the responses to mating hormone, cell wall stress and high osmolarity; it also impairs the proper execution of the morphogenetic program. Our constraint interaction map provides a basis for understanding a subset of the observed phenotypes and assigns the Ptc1p-Nbp2p module a role in synchronizing the associated kinases during the cell cycle.
Collapse
Affiliation(s)
- Andrea Hruby
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Müller MM, Kries H, Csuhai E, Kast P, Hilvert D. Design, selection, and characterization of a split chorismate mutase. Protein Sci 2010; 19:1000-10. [PMID: 20306491 DOI: 10.1002/pro.377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Split proteins are versatile tools for detecting protein-protein interactions and studying protein folding. Here, we report a new, particularly small split enzyme, engineered from a thermostable chorismate mutase (CM). Upon dissecting the helical-bundle CM from Methanococcus jannaschii into a short N-terminal helix and a 3-helix segment and attaching an antiparallel leucine zipper dimerization domain to the individual fragments, we obtained a weakly active heterodimeric mutase. Using combinatorial mutagenesis and in vivo selection, we optimized the short linker sequences connecting the leucine zipper to the enzyme domain. One of the selected CMs was characterized in detail. It spontaneously assembles from the separately inactive fragments and exhibits wild-type like CM activity. Owing to the availability of a well characterized selection system, the simple 4-helix bundle topology, and the small size of the N-terminal helix, the heterodimeric CM could be a valuable scaffold for enzyme engineering efforts and as a split sensor for specifically oriented protein-protein interactions.
Collapse
Affiliation(s)
- Manuel M Müller
- Laboratory of Organic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Ishii J, Fukuda N, Tanaka T, Ogino C, Kondo A. Protein-protein interactions and selection: yeast-based approaches that exploit guanine nucleotide-binding protein signaling. FEBS J 2010; 277:1982-95. [DOI: 10.1111/j.1742-4658.2010.07625.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Müller J, Johnsson N. Split-ubiquitin and the split-protein sensors: chessman for the endgame. Chembiochem 2009; 9:2029-38. [PMID: 18677736 DOI: 10.1002/cbic.200800190] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Judith Müller
- Institute of Medical Biochemistry, Cellular Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany
| | | |
Collapse
|
18
|
Rajagopala SV, Uetz P. Analysis of protein-protein interactions using array-based yeast two-hybrid screens. Methods Mol Biol 2009; 548:223-45. [PMID: 19521828 DOI: 10.1007/978-1-59745-540-4_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The yeast two-hybrid system (Y2H) is a powerful tool to identify protein-protein interactions. Here we describe array-based two-hybrid methods that use defined libraries of open reading frames (ORFs) as opposed to random genomic or cDNA libraries. The array-based Y2H system is well suited for interactome studies of existing ORFeomes or subsets thereof, preferentially in a recombination-based cloning system. Array-based Y2H screens efficiently reduce false positives by using built-in controls, retesting, and evaluation of background activation. Hands-on time and the amount of used resources grow exponentially with the number of tested proteins; this is a disadvantage for large genome sizes. For large genomes, random library screen may be more efficient in terms of time and resources, but not as comprehensive as array screens, and they require an efficient sequencing facility. However, large array screens require some extent of automation although they can be carried out manually on smaller scales. Future-generation Y2H plasmid constructs including tightly regulated expression systems and features that facilitate biochemical characterization will provide more efficient and powerful tools to identify interacting proteins.
Collapse
|
19
|
Grefen C, Obrdlik P, Harter K. The determination of protein-protein interactions by the mating-based split-ubiquitin system (mbSUS). Methods Mol Biol 2009; 479:217-33. [PMID: 19083185 DOI: 10.1007/978-1-59745-289-2_14] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dynamic and reversible protein-protein interactions have a pivotal function in all living cells. For instance, protein-protein interactions are involved in the assembly and regulation of multimeric enzymes and transcription factors, various signal response pathways, intracellular sorting and movement of proteins and membrane vesicles, cell-to-cell protein transport, and many others. Here we provide a detailed protocol for the mating-based split-ubiquitin system (mbSUS), which is a sensitive and user-friendly alternative to the classical yeast two-hybrid system in particular. mbSUS relies on the ubiquitin-degradation pathway as a sensor for protein-protein interactions. Thus, mbSUS is predominantly suitable for the determination of full-length proteins localized in the cytoplasm and in or at membrane compartments, without the need for their truncation and nuclear mislocation. In addition, we present a set of Gateway compatible mbSUS vectors that allow the rapid generation of constructs for fast and efficient interaction studies. An additional vector is introduced that allows the extension of mbSUS for the analysis of oligomeric protein complex formation and competition assays in vivo. In summary, mbSUS provides an additional versatile tool for protein-protein interaction studies, which is complementary to in planta assays such as BiFC and FRET.
Collapse
|
20
|
Grefen C, Lalonde S, Obrdlik P. Split-ubiquitin system for identifying protein-protein interactions in membrane and full-length proteins. ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.27. [PMID: 18428659 DOI: 10.1002/0471142301.ns0527s41] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Protein-protein interactions play a fundamental role in the regulation of almost all cellular processes. Thus, the identification of interacting proteins can help to elucidate their function. The mating-based split-ubiquitin system (mbSUS) uses yeast as a test organism to identify potential interactions between full-length membrane proteins or between a full-length membrane protein and a soluble protein. The mbSUS can also be used to provide further evidence for protein-protein interactions detected with other methods and to map the interaction domains of selected proteins. The mbSUS is optimized for systematic screening approaches employing a mating-based approach, as typically used to determine protein interactions on a genomic scale. Construction of bait and prey fusions is simplified by adapting two different cloning procedures: (i) in vivo cloning in yeast, and (ii) Gateway cloning in E. coli. Protocols for small-scale interaction tests, as well as systematic approaches using sorted bait and prey arrays, are described.
Collapse
|
21
|
Lalonde S, Ehrhardt DW, Loqué D, Chen J, Rhee SY, Frommer WB. Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:610-635. [PMID: 18269572 DOI: 10.1111/j.1365-313x.2007.03332.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Homotypic and heterotypic protein interactions are crucial for all levels of cellular function, including architecture, regulation, metabolism, and signaling. Therefore, protein interaction maps represent essential components of post-genomic toolkits needed for understanding biological processes at a systems level. Over the past decade, a wide variety of methods have been developed to detect, analyze, and quantify protein interactions, including surface plasmon resonance spectroscopy, NMR, yeast two-hybrid screens, peptide tagging combined with mass spectrometry and fluorescence-based technologies. Fluorescence techniques range from co-localization of tags, which may be limited by the optical resolution of the microscope, to fluorescence resonance energy transfer-based methods that have molecular resolution and can also report on the dynamics and localization of the interactions within a cell. Proteins interact via highly evolved complementary surfaces with affinities that can vary over many orders of magnitude. Some of the techniques described in this review, such as surface plasmon resonance, provide detailed information on physical properties of these interactions, while others, such as two-hybrid techniques and mass spectrometry, are amenable to high-throughput analysis using robotics. In addition to providing an overview of these methods, this review emphasizes techniques that can be applied to determine interactions involving membrane proteins, including the split ubiquitin system and fluorescence-based technologies for characterizing hits obtained with high-throughput approaches. Mass spectrometry-based methods are covered by a review by Miernyk and Thelen (2008; this issue, pp. 597-609). In addition, we discuss the use of interaction data to construct interaction networks and as the basis for the exciting possibility of using to predict interaction surfaces.
Collapse
Affiliation(s)
- Sylvie Lalonde
- Carnegie Institution, 260 Panama Street, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Ozawa T. Designing split reporter proteins for analytical tools. Anal Chim Acta 2006; 556:58-68. [PMID: 17723331 DOI: 10.1016/j.aca.2005.06.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/01/2005] [Accepted: 06/08/2005] [Indexed: 11/25/2022]
Abstract
A current focus of biological research is to quantify and image cellular processes in living cells and animals. To detect such cellular processes, genetically-encoded reporters have been extensively used. The most common reporters include firefly luciferase, renilla luciferase, green fluorescent protein (GFP) and its variants with various spectral properties. This review describes novel design of split-GFP and luciferase reporters based on protein splicing, and highlights some potential applications with the reporters to study protein-protein interactions, protein localization, intracellular protein dynamics, and protein activity in living cells and animals.
Collapse
Affiliation(s)
- Takeaki Ozawa
- Department of Molecular Structure, Institute for Molecular Science, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
23
|
Abstract
Reduced protein stability in vivo is a prerequisite to aggregation. While this is merely a nuisance factor in recombinant protein production, it holds a serious impact for man. This review focuses on specific approaches to selectively determine the solubility and/or stability of a target protein within the complex cellular environment using different detection techniques. Noninvasive techniques mapping folding/misfolding events on a fast time scale can be used to unravel the complexity and dynamics of the protein aggregation process and factors altering protein solubility in vivo. The development of approaches to screen for folding and solubility in vivo should facilitate the identification of potential components that improve protein solubility and/or modulate misfolding and aggregation and may provide a therapeutic benefit.
Collapse
Affiliation(s)
- Zoya Ignatova
- Biotechnologie II, Technische Universität Hamburg-Harburg, Denickestr. 15, 21073 Hamburg, Germany.
| |
Collapse
|
24
|
Reichel C, Johnsson N. The Split‐Ubiquitin Sensor: Measuring Interactions and Conformational Alterations of Proteins In Vivo. Methods Enzymol 2005; 399:757-76. [PMID: 16338394 DOI: 10.1016/s0076-6879(05)99050-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The split-ubiquitin technique can monitor alterations in the conformation of proteins and can be used to detect the interaction between two proteins in living cells. The technique is based on unique features of ubiquitin, the enzymes of the ubiquitin pathway, and the reconstitution of a native-like ubiquitin from its N- and C-terminal fragments. By exploiting the reassociation of a protein from its defined fragments to monitor protein interactions, the split-ubiquitin assay served as the prototype of a still growing number of split-protein sensors to analyze protein function within living cells.
Collapse
Affiliation(s)
- Christoph Reichel
- Forschungszentrum Karlsruhe, Institut für Toxikologie und Genetik, Eggenstein-Leopoldshafen, Germany
| | | |
Collapse
|
25
|
Abstract
The ubiquitin fusion technique, developed in 1986, is still the method of choice for producing a desired N-terminal residue in a protein of interest in vivo. This technique is also used as a tool for protein expression. Over the past two decades, several otherwise unrelated methods were invented that have in common the use of ubiquitin fusions as a component of design. I describe the original ubiquitin fusion technique, its current applications, and other methods that use the properties of ubiquitin fusions.
Collapse
Affiliation(s)
- Alexander Varshavsky
- Division of Biology, California, Institute of Technology, Pasadena, California, USA
| |
Collapse
|
26
|
Obrdlik P, El-Bakkoury M, Hamacher T, Cappellaro C, Vilarino C, Fleischer C, Ellerbrok H, Kamuzinzi R, Ledent V, Blaudez D, Sanders D, Revuelta JL, Boles E, André B, Frommer WB. K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proc Natl Acad Sci U S A 2004; 101:12242-7. [PMID: 15299147 PMCID: PMC514463 DOI: 10.1073/pnas.0404467101] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Organization of proteins into complexes is crucial for many cellular functions. However, most proteomic approaches primarily detect protein interactions for soluble proteins but are less suitable for membrane-associated complexes. Here we describe a mating-based split ubiquitin system (mbSUS) for systematic identification of interactions between membrane proteins as well as between membrane and soluble proteins. mbSUS allows in vivo cloning of PCR products into a vector set, detection of interactions via mating, regulated expression of baits, and improved selection of interacting proteins. Cloning is simplified by introduction of lambda attachment sites for GATEWAY. Homo- and heteromeric interactions between Arabidopsis K(+) channels KAT1, AKT1, and AKT2 were identified. Tests with deletion mutants demonstrate that the C terminus of KAT1 and AKT1 is necessary for physical assembly of complexes. Screening of a sorted collection of 84 plant proteins with K(+) channels as bait revealed differences in oligomerization between KAT1, AKT1, and AtKC1, and allowed detection of putative interacting partners of KAT1 and AtKC1. These results show that mbSUS is suited for systematic analysis of membrane protein interactions.
Collapse
Affiliation(s)
- Petr Obrdlik
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Johnsson N, Johnsson K. A fusion of disciplines: chemical approaches to exploit fusion proteins for functional genomics. Chembiochem 2003; 4:803-10. [PMID: 12964152 DOI: 10.1002/cbic.200200603] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nils Johnsson
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany.
| | | |
Collapse
|
28
|
Schulze WX, Reinders A, Ward J, Lalonde S, Frommer WB. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system. BMC BIOCHEMISTRY 2003; 4:3. [PMID: 12689351 PMCID: PMC153512 DOI: 10.1186/1471-2091-4-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Accepted: 03/18/2003] [Indexed: 11/13/2022]
Abstract
BACKGROUND The Arabidopsis genome contains nine sucrose transporter paralogs falling into three clades: SUT1-like, SUT2 and SUT4. The carriers differ in their kinetic properties. Many transport proteins are known to exist as oligomers. The yeast-based split ubiquitin system can be used to analyze the ability of membrane proteins to interact. RESULTS Promoter-GUS fusions were used to analyze the cellular expression of the three transporter genes in transgenic Arabidopsis plants. All three fusion genes are co-expressed in companion cells. Protein-protein interactions between Arabidopsis sucrose transporters were tested using the split ubiquitin system. Three paralogous sucrose transporters are capable of interacting as either homo- or heteromers. The interactions are specific, since a potassium channel and a glucose transporter did not show interaction with sucrose transporters. Also the biosynthetic and metabolizing enzymes, sucrose phosphate phosphatase and sucrose synthase, which were found to be at least in part bound to the plasma membrane, did not specifically interact with sucrose transporters. CONCLUSIONS The split-ubiquitin system provides a powerful tool to detect potential interactions between plant membrane proteins by heterologous expression in yeast, and can be used to screen for interactions with membrane proteins as baits. Like other membrane proteins, the Arabidopsis sucrose transporters are able to form oligomers. The biochemical approaches are required to confirm the in planta interaction.
Collapse
Affiliation(s)
- Waltraud X Schulze
- Plant Physiology, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Auf der Morgenstelle1, D-72076 Tübingen, Germany
| | - Anke Reinders
- Current address: Protein Interaction laboratory, Dept. Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - John Ward
- Current address: Protein Interaction laboratory, Dept. Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Sylvie Lalonde
- Plant Physiology, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Auf der Morgenstelle1, D-72076 Tübingen, Germany
| | - Wolf B Frommer
- Plant Biology, University of Minnesota, 220 Biological Sciences Center, 1445 Gortner Ave., St. Paul, MN 55108-1095, USA
- Carnegie Institution, 260 Panama Street, Stanford CA 94305, USA
| |
Collapse
|
29
|
Johnsson N. A split-ubiquitin-based assay detects the influence of mutations on the conformational stability of the p53 DNA binding domain in vivo. FEBS Lett 2002; 531:259-64. [PMID: 12417323 DOI: 10.1016/s0014-5793(02)03533-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many mutations in the human tumor suppressor p53 affect the function of the protein by destabilizing the structure of its DNA binding domain. To monitor the effects of those mutations in vivo the stability of the DNA binding domain of p53 and some of its mutants was investigated with the split-ubiquitin (split-Ub) method. The split-Ub-derived in vivo data on the relative stability of the mutants roughly correlate with the quantitative data from in vitro denaturation experiments as reported in the literature. A variation of this assay allows visualizing the difference in stability between the wild-type p53 core and the mutant p53(V143A) by a simple growth assay.
Collapse
Affiliation(s)
- Nils Johnsson
- Institut für Toxikologie und Genetik, Forschungszentrum Karlsruhe, Karlsruhe, Germany.
| |
Collapse
|
30
|
Abstract
Proteins associated with membranes total approximately a third of all proteins in a typical eukaryotic cell. However, the analysis of interactions between membrane proteins is difficult because of the hydrophobic nature of these proteins, and conventional biochemical and genetic assays are often of limited use. We summarize here recent yeast-based interaction technologies that can be applied to membrane proteins.
Collapse
Affiliation(s)
- Igor Stagljar
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich-Irchel, Winterthurerstrasse 190, Switzerland.
| | | |
Collapse
|
31
|
Abstract
The availability of completed genome sequences of several eukaryotic and prokaryotic species has shifted the focus towards the identification and characterization of all gene products that are expressed in a given organism. In order to cope with the huge amounts of data that have been provided by large-scale sequencing projects, high-throughout methodologies also need to be applied in the emerging field of proteomics. In this review, we discuss methods that have been recently developed in order to characterize protein interactions and their functional relevance on a large scale. We then focus on those methodologies that are suitable for the identification and characterization of protein-protein interactions, namely the yeast two-hybrid system and related methods. Several recent studies have demonstrated the power of automated approaches involving the yeast two-hybrid system in building so-called "interaction networks", which hold the promise of identifying the entirety of all interactions that take place between proteins expressed in a certain cell type or organism. We compare the yeast two-hybrid system with several other screening methods that have been developed to investigate interactions between proteins that are not amenable to conventional yeast two-hybrid screenings, such as transcriptional activators and integral membrane proteins. The eventual adaptation of such methods to a high-throughput format and their use in combination with automated yeast two-hybrid screenings will help in elucidating protein-protein interactions on a scale that would have been unthinkable just a few years ago.
Collapse
|
32
|
Abstract
With the rapid accumulation of genetic information, development of general experimental approach suitable for large scale annotation and profiling of the whole proteome have become one of the major challenges in postgenomic era. Biomolecular display technologies, which allow expressing of a large pool of modularly coded biomolecules, are extremely useful for accessing and analyzing protein diversity and interaction profile on a large scale. Recent advances in protein display technologies and their applications to proteomic analyses have been discussed.
Collapse
Affiliation(s)
- D Ma
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
33
|
Koide A, Abbatiello S, Rothgery L, Koide S. Probing protein conformational changes in living cells by using designer binding proteins: application to the estrogen receptor. Proc Natl Acad Sci U S A 2002; 99:1253-8. [PMID: 11818562 PMCID: PMC122176 DOI: 10.1073/pnas.032665299] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A challenge in understanding the mechanism of protein function in biology is to establish the correlation between functional form in the intracellular environment and high-resolution structures obtained with in vitro techniques. Here we present a strategy to probe conformational changes of proteins inside cells. Our method involves: (i) engineering binding proteins to different conformations of a target protein, and (ii) using them to sense changes in the surface property of the target in cells. We probed ligand-induced conformational changes of the estrogen receptor alpha (ER alpha) ligand-binding domain (LBD). By using yeast two-hybrid techniques, we first performed combinatorial library screening of "monobodies" (small antibody mimics using the scaffold of a fibronectin type III domain) for clones that bind to ER alpha and then characterized their interactions with ER alpha in the nucleus, the native environment of ER alpha, in the presence of various ligands. A library using a highly flexible loop yielded monobodies that specifically recognize a particular ligand complex of ER alpha, and the pattern of monobody specificity was consistent with the structural differences found in known crystal structures of ER alpha-LBD. A more restrained loop library yielded clones that bind both agonist- and antagonist-bound ER alpha. Furthermore, we found that a deletion of the ER alpha F domain that is C-terminally adjacent to the LBD increased the crossreactivity of monobodies to the apo-ER alpha-LBD, suggesting a dynamic nature of the ER alpha-LBD conformation and a role of the F domain in restraining the LBD in an inactive conformation.
Collapse
Affiliation(s)
- Akiko Koide
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
34
|
Auerbach D, Galeuchet-Schenk B, Hottiger MO, Stagljar I. Genetic approaches to the identification of interactions between membrane proteins in yeast. J Recept Signal Transduct Res 2002; 22:471-81. [PMID: 12503635 DOI: 10.1081/rrs-120014615] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The recent sequencing of entire eukaryotic genomes has renewed the interest in identifying and characterizing all gene products that are expressed in a given organism. The characterization of unknown gene products is facilitated by the knowledge of its binding partners. Thus, a novel protein may be classified by identifying previously characterized proteins that interact with it. If such an approach is carried out on a large scale, it may allow the rapid characterization of the thousands of predicted open reading frames identified by recent sequencing projects. Currently, the yeast two-hybrid system is the most widely used genetic assay for the detection of protein-protein interactions. The yeast two-hybrid system has become popular because it requires little individual optimization and because, as compared to conventional biochemical methods, the identification and characterization of protein-protein interactions can be completed in a relatively short time span. In this review, we briefly discuss the yeast two-hybrid system and its application to large scale screening studies that aim at deciphering all protein-protein interactions taking place in a given cell type or organism. We then focus on a class of proteins that is unsuitable for conventional yeast two-hybrid systems, namely integral membrane proteins and membrane-associated proteins, and describe several novel genetic systems that combine the advantages of the yeast two-hybrid system with the potential to identify interaction partners of membrane-associated proteins in their natural setting.
Collapse
Affiliation(s)
- Daniel Auerbach
- DUALSYSTEMS BIOTECH Inc., Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
35
|
Massaad MJ, Herscovics A. Interaction of the endoplasmic reticulum α1,2-mannosidase Mns1p with Rer1p using the split-ubiquitin system. J Cell Sci 2001; 114:4629-35. [PMID: 11792827 DOI: 10.1242/jcs.114.24.4629] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The α1,2-mannosidase Mns1p involved in the N-glycosidic pathway in Saccharomyces cerevisiae is a type II membrane protein of the endoplasmic reticulum. The localization of Mns1p depends on retrieval from the Golgi through a mechanism that involves Rer1p. A chimera consisting of the transmembrane domain of Mns1p fused to the catalytic domain of the Golgi α1,2-mannosyltransferase Kre2p was localized in the endoplasmic reticulum of Δpep4 cells and in the vacuoles of rer1/Δpep4 by indirect immunofluorescence. The split-ubiquitin system was used to determine if there is an interaction between Mns1p and Rer1p in vivo. Co-expression of NubG-Mns1p and Rer1p-Cub-protein A-lexA-VP16 in L40 yeast cells resulted in cleavage of the reporter molecule, protein A-lexA-VP16, detected by western blot analysis and by expression of β-galactosidase activity. Sec12p, another endoplasmic reticulum protein that depends on Rer1p for its localization, also interacted with Rer1p using the split-ubiquitin assay, whereas the endoplasmic reticulum protein Ost1p showed no interaction. A weak interaction was observed between Alg5p and Rer1p. These results demonstrate that the transmembrane domain of Mns1p is sufficient for Rer1p-dependent endoplasmic reticulum localization and that Mns1p and Rer1p interact. Furthermore, the split-ubiquitin system demonstrates that the C-terminal of Rer1p is in the cytosol.
Collapse
Affiliation(s)
- M J Massaad
- McGill Cancer Centre, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | |
Collapse
|
36
|
Dues G, Müller S, Johnsson N. Detection of a conformational change in G gamma upon binding G beta in living cells. FEBS Lett 2001; 505:75-80. [PMID: 11557045 DOI: 10.1016/s0014-5793(01)02782-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interaction induced changes in the conformation of proteins are frequently the molecular basis for the modulation of their activities. Although proteins perform their functions in cells, surrounded by many potential interaction partners, the studies of their conformational changes have been mainly restricted to in vitro studies. Ste4p (G beta) and Ste18p (G gamma) are the subunits of a heterotrimeric G-protein in the yeast Saccharomyces cerevisiae. A split-ubiquitin based conformational sensor was used to detect a major structural rearrangement in Ste18p upon binding to Ste4p. Based on these in vivo results and the solved structure of the mammalian G beta gamma, we propose that G gamma of yeast adopts an equally extended structure, which is only induced upon association with G beta.
Collapse
Affiliation(s)
- G Dues
- Max-Delbrück-Laboratorium, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | | | |
Collapse
|