1
|
Two chaperones locked in an embrace: structure and function of the ribosome-associated complex RAC. Nat Struct Mol Biol 2017; 24:611-619. [PMID: 28771464 DOI: 10.1038/nsmb.3435] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/14/2017] [Indexed: 12/26/2022]
Abstract
Chaperones, which assist protein folding are essential components of every living cell. The yeast ribosome-associated complex (RAC) is a chaperone that is highly conserved in eukaryotic cells. The RAC consists of the J protein Zuo1 and the unconventional Hsp70 homolog Ssz1. The RAC heterodimer stimulates the ATPase activity of the ribosome-bound Hsp70 homolog Ssb, which interacts with nascent polypeptide chains to facilitate de novo protein folding. In addition, the RAC-Ssb system is required to maintain the fidelity of protein translation. Recent work reveals important details of the unique structures of RAC and Ssb and identifies how the chaperones interact with the ribosome. The new findings start to uncover how the exceptional chaperone triad cooperates in protein folding and maintenance of translational fidelity and its connection to extraribosomal functions.
Collapse
|
2
|
Keeling KM. Nonsense Suppression as an Approach to Treat Lysosomal Storage Diseases. Diseases 2016; 4:32. [PMID: 28367323 PMCID: PMC5370586 DOI: 10.3390/diseases4040032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/14/2016] [Indexed: 02/08/2023] Open
Abstract
In-frame premature termination codons (PTCs) (also referred to as nonsense mutations) comprise ~10% of all disease-associated gene lesions. PTCs reduce gene expression in two ways. First, PTCs prematurely terminate translation of an mRNA, leading to the production of a truncated polypeptide that often lacks normal function and/or is unstable. Second, PTCs trigger degradation of an mRNA by activating nonsense-mediated mRNA decay (NMD), a cellular pathway that recognizes and degrades mRNAs containing a PTC. Thus, translation termination and NMD are putative therapeutic targets for the development of treatments for genetic diseases caused by PTCs. Over the past decade, significant progress has been made in the identification of compounds with the ability to suppress translation termination of PTCs (also referred to as readthrough). More recently, NMD inhibitors have also been explored as a way to enhance the efficiency of PTC suppression. Due to their relatively low threshold for correction, lysosomal storage diseases are a particularly relevant group of diseases to investigate the feasibility of nonsense suppression as a therapeutic approach. In this review, the current status of PTC suppression and NMD inhibition as potential treatments for lysosomal storage diseases will be discussed.
Collapse
Affiliation(s)
- Kim M Keeling
- Department of Biochemistry and Molecular Genetics, Gregory Fleming Cystic Fibrosis Research Center, Comprehensive Arthritis, Musculoskeletal, Bone, and Autoimmunity Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; ; Tel.: +1-205-975-6585
| |
Collapse
|
3
|
Zadorsky SP, Sopova YV, Andreichuk DY, Startsev VA, Medvedeva VP, Inge-Vechtomov SG. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae. Yeast 2015; 32:479-97. [PMID: 25874850 DOI: 10.1002/yea.3074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/24/2015] [Accepted: 03/27/2015] [Indexed: 01/26/2023] Open
Abstract
The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts.
Collapse
Affiliation(s)
- S P Zadorsky
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| | - Y V Sopova
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| | - D Y Andreichuk
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - V A Startsev
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - V P Medvedeva
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - S G Inge-Vechtomov
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| |
Collapse
|
4
|
Nizhnikov AA, Antonets KS, Inge-Vechtomov SG, Derkatch IL. Modulation of efficiency of translation termination in Saccharomyces cerevisiae. Prion 2014; 8:247-60. [PMID: 25486049 DOI: 10.4161/pri.29851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a "phenotypic mirror" of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Department of Genetics and Biotechnology ; St. Petersburg State University ; St. Petersburg , Russia
| | | | | | | |
Collapse
|
5
|
Wong LE, Li Y, Pillay S, Frolova L, Pervushin K. Selectivity of stop codon recognition in translation termination is modulated by multiple conformations of GTS loop in eRF1. Nucleic Acids Res 2012; 40:5751-65. [PMID: 22383581 PMCID: PMC3384315 DOI: 10.1093/nar/gks192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translation termination in eukaryotes is catalyzed by two release factors eRF1 and eRF3 in a cooperative manner. The precise mechanism of stop codon discrimination by eRF1 remains obscure, hindering drug development targeting aberrations at translation termination. By solving the solution structures of the wild-type N-domain of human eRF1 exhibited omnipotent specificity, i.e. recognition of all three stop codons, and its unipotent mutant with UGA-only specificity, we found the conserved GTS loop adopting alternate conformations. We propose that structural variability in the GTS loop may underline the switching between omnipotency and unipotency of eRF1, implying the direct access of the GTS loop to the stop codon. To explore such feasibility, we positioned N-domain in a pre-termination ribosomal complex using the binding interface between N-domain and model RNA oligonucleotides mimicking Helix 44 of 18S rRNA. NMR analysis revealed that those duplex RNA containing 2-nt internal loops interact specifically with helix α1 of N-domain, and displace C-domain from a non-covalent complex of N-domain and C-domain, suggesting domain rearrangement in eRF1 that accompanies N-domain accommodation into the ribosomal A site.
Collapse
Affiliation(s)
- Leo E Wong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Hatin I, Fabret C, Rousset JP, Namy O. Molecular dissection of translation termination mechanism identifies two new critical regions in eRF1. Nucleic Acids Res 2009; 37:1789-98. [PMID: 19174561 PMCID: PMC2665212 DOI: 10.1093/nar/gkp012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Translation termination in eukaryotes is completed by two interacting factors eRF1 and eRF3. In Saccharomyces cerevisiae, these proteins are encoded by the genes SUP45 and SUP35, respectively. The eRF1 protein interacts directly with the stop codon at the ribosomal A-site, whereas eRF3—a GTPase protein—probably acts as a proofreading factor, coupling stop codon recognition to polypeptide chain release. We performed random PCR mutagenesis of SUP45 and screened the library for mutations resulting in increased eRF1 activity. These mutations led to the identification of two new pockets in domain 1 (P1 and P2) involved in the regulation of eRF1 activity. Furthermore, we identified novel mutations located in domains 2 and 3, which confer stop codon specificity to eRF1. Our findings are consistent with the model of a closed-active conformation of eRF1 and shed light on two new functional regions of the protein.
Collapse
Affiliation(s)
- Isabelle Hatin
- Université Paris-Sud and IGM, CNRS, UMR 8621, Orsay, F 91405, France
| | | | | | | |
Collapse
|
8
|
Tselika S, Konstantinidis T, Synetos D. Two nucleotide substitutions in the A-site of yeast 18S rRNA affect translation and differentiate the interaction of ribosomes with aminoglycoside antibiotics. Biochimie 2008; 90:908-17. [DOI: 10.1016/j.biochi.2008.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 02/12/2008] [Indexed: 11/27/2022]
|
9
|
Fan-Minogue H, Bedwell DM. Eukaryotic ribosomal RNA determinants of aminoglycoside resistance and their role in translational fidelity. RNA (NEW YORK, N.Y.) 2008; 14:148-57. [PMID: 18003936 PMCID: PMC2151042 DOI: 10.1261/rna.805208] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent studies of prokaryotic ribosomes have dramatically increased our knowledge of ribosomal RNA (rRNA) structure, functional centers, and their interactions with antibiotics. However, much less is known about how rRNA function differs between prokaryotic and eukaryotic ribosomes. The core decoding sites are identical in yeast and human 18S rRNAs, suggesting that insights obtained in studies with yeast rRNA mutants can provide information about ribosome function in both species. In this study, we examined the importance of key nucleotides of the 18S rRNA decoding site on ribosome function and aminoglycoside susceptibility in Saccharomyces cerevisiae cells expressing homogeneous populations of mutant ribosomes. We found that residues G577, A1755, and A1756 (corresponding to Escherichia coli residues G530, A1492, and A1493, respectively) are essential for cell viability. We also found that residue G1645 (A1408 in E. coli) and A1754 (G1491 in E. coli) both make significant and distinct contributions to aminoglycoside resistance. Furthermore, we found that mutations at these residues do not alter the basal level of translational accuracy, but influence both paromomycin-induced misreading of sense codons and readthrough of stop codons. This study represents the most comprehensive mutational analysis of the eukaryotic decoding site to date, and suggests that many fundamental features of decoding site function are conserved between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Hua Fan-Minogue
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
10
|
Rakauskaite R, Dinman JD. An arc of unpaired "hinge bases" facilitates information exchange among functional centers of the ribosome. Mol Cell Biol 2006; 26:8992-9002. [PMID: 17000775 PMCID: PMC1636827 DOI: 10.1128/mcb.01311-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Information must be shared and functions coordinated among the spatially distinct functional centers of the ribosome. To address these issues, a yeast-based genetic system enabling generation of stable strains expressing only mutant forms of rRNA was devised. The B1a bridge (helix 38) has been implicated in the subtle modulation of numerous ribosomal functions. Base-specific mutations were introduced into helix 38 at sites affecting the B1a bridge and where it contacts the aminoacyl-tRNA (aa-tRNA) D-loop. Both sets of mutants promoted increased affinities for aa-tRNA but had different effects in their responses to two A-site-specific drugs and on suppression nonsense codons. Structural analyses revealed an arc of nucleotides in 25S rRNA that link the B1a bridge, the peptidyltransferase center, the GTPase-associated center, and the sarcin/ricin loop. We propose that a series of regularly spaced "hinge bases" provide fulcrums around which rigid helices can reorient themselves depending on the occupancy status of the A-site.
Collapse
MESH Headings
- Base Sequence
- Codon, Nonsense
- Escherichia coli/genetics
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- Peptidyl Transferases/chemistry
- Peptidyl Transferases/metabolism
- Plasmids/metabolism
- RNA, Bacterial/genetics
- RNA, Fungal/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Rasa Rakauskaite
- Department of Cell Biology and Molecular Genetics, University of Maryland, 2135 Microbiology Building, College Park, MD 20742, USA
| | | |
Collapse
|
11
|
Liebman SW, Bagriantsev SN, Derkatch IL. Biochemical and genetic methods for characterization of [PIN+] prions in yeast. Methods 2006; 39:23-34. [PMID: 16793281 DOI: 10.1016/j.ymeth.2006.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022] Open
Abstract
The glutamine- and asparagine-rich Rnq1p protein in Saccharomyces cerevisiae can exist in the cell as a soluble monomer or in one of several aggregated, infectious, prion forms called [PIN(+)]. Interest in [PIN(+)] is heightened by its ability to promote the conversion of other proteins into a prion or an aggregated amyloid state. However, little is known about the function of Rnq1p, which makes it difficult to assay the phenotypes associated with its normal vs. prion forms. In this chapter, we describe methods used to detect [PIN(+)] and distinguish between different variations of the prion. Genetic methods are based on the ability of the [PIN(+)] prion to facilitate the appearance of another yeast prion, [PSI(+)], which has an easily detectable phenotype. Biochemical methods exploit the fact that the [PIN(+)] prion exists in the yeast cytosol in the form of large aggregates, composed of SDS-stable subparticles. Sucrose gradient centrifugation, agarose SDS electrophoresis and GFP fusions are used to distinguish between aggregates and subparticles from different [PIN(+)] variants.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois, Chicago, IL 60607, USA
| | | | | |
Collapse
|
12
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 155:1-30. [PMID: 15928926 DOI: 10.1007/3-540-28217-3_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During protein translation, a variety of quality control checks ensure that the resulting polypeptides deviate minimally from their genetic encoding template. Translational fidelity is central in order to preserve the function and integrity of each cell. Correct termination is an important aspect of translational fidelity, and a multitude of mechanisms and players participate in this exquisitely regulated process. This review explores our current understanding of eukaryotic termination by highlighting the roles of the different ribosomal components as well as termination factors and ribosome-associated proteins, such as chaperones.
Collapse
Affiliation(s)
- S Rospert
- Universität Freiburg, Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
13
|
Kiparisov S, Petrov A, Meskauskas A, Sergiev PV, Dontsova OA, Dinman JD. Structural and functional analysis of 5S rRNA in Saccharomyces cerevisiae. Mol Genet Genomics 2005; 274:235-47. [PMID: 16047201 PMCID: PMC1276653 DOI: 10.1007/s00438-005-0020-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 05/27/2005] [Indexed: 11/26/2022]
Abstract
5S rRNA extends from the central protuberance of the large ribosomal subunit, through the A-site finger, and down to the GTPase-associated center. Here, we present a structure-function analysis of seven 5S rRNA alleles which are sufficient for viability in the yeast Saccharomyces cerevisiae when expressed in the absence of wild-type 5S rRNAs, and extend this analysis using a large bank of mutant alleles that show semi-dominant phenotypes in the presence of wild-type 5S rRNA. This analysis supports the hypothesis that 5S rRNA serves to link together several different functional centers of the ribosome. Data are also presented which suggest that in eukaryotic genomes selection has favored the maintenance of multiple alleles of 5S rRNA, and that these may provide cells with a mechanism to post-transcriptionally regulate gene expression.
Collapse
|
14
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. Rev Physiol Biochem Pharmacol 2005. [DOI: 10.1007/s10254-005-0039-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Salas-Marco J, Bedwell DM. GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination. Mol Cell Biol 2004; 24:7769-78. [PMID: 15314182 PMCID: PMC506980 DOI: 10.1128/mcb.24.17.7769-7778.2004] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation termination in eukaryotes is mediated by two release factors, eRF1 and eRF3. eRF1 recognizes each of the three stop codons (UAG, UAA, and UGA) and facilitates release of the nascent polypeptide chain. eRF3 is a GTPase that stimulates the translation termination process by a poorly characterized mechanism. In this study, we examined the functional importance of GTP hydrolysis by eRF3 in Saccharomyces cerevisiae. We found that mutations that reduced the rate of GTP hydrolysis also reduced the efficiency of translation termination at some termination signals but not others. As much as a 17-fold decrease in the termination efficiency was observed at some tetranucleotide termination signals (characterized by the stop codon and the first following nucleotide), while no effect was observed at other termination signals. To determine whether this stop signal-dependent decrease in the efficiency of translation termination was due to a defect in either eRF1 or eRF3 recycling, we reduced the level of eRF1 or eRF3 in cells by expressing them individually from the CUP1 promoter. We found that the limitation of either factor resulted in a general decrease in the efficiency of translation termination rather than a decrease at a subset of termination signals as observed with the eRF3 GTPase mutants. We also found that overproduction of eRF1 was unable to increase the efficiency of translation termination at any termination signals. Together, these results suggest that the GTPase activity of eRF3 is required to couple the recognition of translation termination signals by eRF1 to efficient polypeptide chain release.
Collapse
Affiliation(s)
- Joe Salas-Marco
- Department of Microbiology, BBRB 432/Box 8, 1530 Third Ave. South, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | |
Collapse
|
16
|
Abstract
Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | |
Collapse
|
17
|
Keeling KM, Lanier J, Du M, Salas-Marco J, Gao L, Kaenjak-Angeletti A, Bedwell DM. Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA (NEW YORK, N.Y.) 2004; 10:691-703. [PMID: 15037778 PMCID: PMC1262634 DOI: 10.1261/rna.5147804] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Nonsense-Mediated mRNA Decay (NMD) pathway mediates the rapid degradation of mRNAs that contain premature stop mutations in eukaryotic organisms. It was recently shown that mutations in three yeast genes that encode proteins involved in the NMD process, UPF1, UPF2, and UPF3, also reduce the efficiency of translation termination. In the current study, we compared the efficiency of translation termination in a upf1Delta strain and a [PSI(+)] strain using a collection of translation termination reporter constructs. The [PSI(+)] state is caused by a prion form of the polypeptide chain release factor eRF3 that limits its availability to participate in translation termination. In contrast, the mechanism by which Upf1p influences translation termination is poorly understood. The efficiency of translation termination is primarily determined by a tetranucleotide termination signal consisting of the stop codon and the first nucleotide immediately 3' of the stop codon. We found that the upf1Delta mutation, like the [PSI(+)] state, decreases the efficiency of translation termination over a broad range of tetranucleotide termination signals in a unique, context-dependent manner. These results suggest that Upf1p may associate with the termination complex prior to polypeptide chain release. We also found that the increase in readthrough observed in a [PSI(+)]/upf1Delta strain was larger than the readthrough observed in strains carrying either defect alone, indicating that the upf1Delta mutation and the [PSI(+)] state influence the termination process in distinct ways. Finally, our analysis revealed that the mRNA destabilization associated with NMD could be separated into two distinct forms that correlated with the extent the premature stop codon was suppressed. The minor component of NMD was a 25% decrease in mRNA levels observed when readthrough was >/=0.5%, while the major component was represented by a larger decrease in mRNA abundance that was observed only when readthrough was </=0.5%. This low threshold for the onset of the major component of NMD indicates that mRNA surveillance is an ongoing process that occurs throughout the lifetime of an mRNA.
Collapse
Affiliation(s)
- Kim M Keeling
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Tork S, Hatin I, Rousset JP, Fabret C. The major 5' determinant in stop codon read-through involves two adjacent adenines. Nucleic Acids Res 2004; 32:415-21. [PMID: 14736996 PMCID: PMC373328 DOI: 10.1093/nar/gkh201] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this approach was to identify the major determinants, located at the 5' end of the stop codon, that modulate translational read-through in Saccharomyces cerevisiae. We developed a library of oligonucleotides degenerate at the six positions immediately upstream of the termination codon, cloned in the ADE2 reporter gene. Variations at these positions modulated translational read-through efficiency approximately 16-fold. The major effect was imposed by the two nucleotides immediately upstream of the stop codon. We showed that this effect was neither mediated by the last amino acid residues present in the polypeptide chain nor by the tRNA present in the ribosomal P site. We propose that the mRNA structure, depending on the nucleotides in the P site, is the main 5' determinant of read-through efficiency.
Collapse
MESH Headings
- Adenine Nucleotides/genetics
- Base Composition
- Base Sequence
- Binding Sites
- Codon, Terminator/genetics
- Gene Library
- Genes, Fungal/genetics
- Genes, Reporter/genetics
- Nucleic Acid Conformation
- Oligoribonucleotides/chemistry
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Peptide Chain Elongation, Translational/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Regulatory Sequences, Ribonucleic Acid/genetics
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
Collapse
Affiliation(s)
- Sanaa Tork
- CNRS UMR 8621, Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
19
|
Bulygin KN, A Demeshkina N, Frolova LY, Graifer DM, Ven'yaminova AG, Kisselev LL, Karpova GG. The ribosomal A site-bound sense and stop codons are similarly positioned towards the A1823-A1824 dinucleotide of the 18S ribosomal RNA. FEBS Lett 2003; 548:97-102. [PMID: 12885414 DOI: 10.1016/s0014-5793(03)00755-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Positioning of the mRNA codon towards the 18S ribosomal RNA in the A site of human 80S ribosomes has been studied applying short mRNA analogs containing either the stop codon UAA or the sense codon UCA with a perfluoroaryl azide group at the uridine residue. Bound to the ribosomal A site, a modified codon crosslinks exclusively to the 40S subunits under mild UV irradiation. This result is inconsistent with the hypothesis [Ivanov et al. (2001) RNA 7, 1683-1692] which requires direct contact between the large rRNA and the stop codon of the mRNA as recognition step at translation termination. Both sense and stop codons crosslink to the same A1823/A1824 invariant dinucleotide in helix 44 of 18S rRNA. The data point to the resemblance between the ternary complexes formed at elongation (sense codon.aminoacyl-tRNA.AA dinucleotide of 18S rRNA) and termination (stop codon.eRF1.AA dinucleotide of 18S rRNA) steps of protein synthesis and support the view that eRF1 may be considered as a functional mimic of aminoacyl-tRNA.
Collapse
MESH Headings
- Azides
- Base Sequence
- Binding Sites
- Codon
- Codon, Terminator
- Cross-Linking Reagents
- Dinucleoside Phosphates
- Oligoribonucleotides/metabolism
- Protein Biosynthesis/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Transfer, Amino Acyl
- RNA, Transfer, Phe
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | | | | | | | | | | | | |
Collapse
|
20
|
Kisselev L, Ehrenberg M, Frolova L. Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J 2003; 22:175-82. [PMID: 12514123 PMCID: PMC140092 DOI: 10.1093/emboj/cdg017] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Termination of translation in eukaryotes has focused recently on functional anatomy of polypeptide chain release factor, eRF1, by using a variety of different approaches. The tight correlation between the domain structure and different functions of eRF1 has been revealed. Independently, the role of prokaryotic RF1/2 in GTPase activity of RF3 has been deciphered, as well as RF3 function itself.
Collapse
Affiliation(s)
- Lev Kisselev
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia and
Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S75124 Uppsala, Sweden Corresponding author e-mail:
| | - Måns Ehrenberg
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia and
Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S75124 Uppsala, Sweden Corresponding author e-mail:
| | | |
Collapse
|
21
|
Seit-Nebi A, Frolova L, Kisselev L. Conversion of omnipotent translation termination factor eRF1 into ciliate-like UGA-only unipotent eRF1. EMBO Rep 2002; 3:881-6. [PMID: 12189178 PMCID: PMC1084231 DOI: 10.1093/embo-reports/kvf178] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic ribosomes, termination of translation is triggered by class 1 polypeptide release factor, eRF1. In organisms with a universal code, eRF1 responds to three stop codons, whereas, in ciliates with variant codes, only one or two codon(s) remain(s) as stop signals. By mutagenesis of the Y-C-F minidomain of the N domain, we converted an omnipotent human eRF1 recognizing all three stop codons into a unipotent 'ciliate-like' UGA-only eRF1. The conserved Cys127 located in the Y-C-F minidomain plays a critical role in stop codon recognition. The UGA-only response has also been achieved by concomitant substitutions of four other amino acids located at the Y-C-F and NIKS minidomains of eRF1. We suggest that for eRF1 the stop codon decoding is of a non-linear (non-protein-anticodon) type and explores a combination of positive and negative determinants. We assume that stop codon recognition is profoundly different by eukaryotic and prokaryotic class 1 RFs.
Collapse
Affiliation(s)
- Alim Seit-Nebi
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | | | | |
Collapse
|
22
|
Current Awareness. Yeast 2001. [DOI: 10.1002/yea.686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|