1
|
Pang X, He Q, Tang K, Huang J, Fang N, Xie H, Ma J, Zhu Q, Lan G, Liang S. Drug resistance and influencing factors in HIV-1-infected individuals under antiretroviral therapy in Guangxi, China. J Antimicrob Chemother 2024; 79:1142-1152. [PMID: 38551451 DOI: 10.1093/jac/dkae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVES To assess the profiles and determinants of drug resistance in HIV-1-infected individuals undergoing ART in Guangxi. METHODS Samples and data were collected from HIV-1-infected individuals experiencing virological failure post-ART from 14 cities in Guangxi. Sequencing of the HIV-1 pol gene was conducted, followed by analysis for drug resistance mutations using the Stanford University HIV Drug Resistance Database. Logistic regression was employed to identify potential risk factors associated with both HIV drug resistance and mortality. RESULTS A total of 8963 individuals with pol sequences were included in this study. The overall prevalence of HIV-1 drug resistance (HIVDR) was 42.43% (3808/8963), showing a decrease from 59.62% to 41.40% from 2016 to 2023. Factors such as being aged ≥50 years, male, Han nationality, lower education levels, occupations including workers, peasants and children, AIDS, pre-treatment CD4 T cell counts <200 cells/mm3, infection with CRF01_AE and CRF55_01B subtypes, and ART regimen lamivudine/zidovudine/nevirapine were associated with higher susceptibility to HIVDR. The common mutations were M184V (17.38%) and K103N (22.14%). Additionally, the prevalence of M184V, S68G, M41L and G190A were different between the Han and Zhuang populations. Factors including age, gender, ethnicity, education level, occupation, infectious route, clinical stage, viral load, subtype, ART regimen and HIVDR showed significant associations with mortality. CONCLUSIONS The factors contributing to drug resistance in the HIV-1 ART individuals in Guangxi appear to be notably intricate. Continuous reinforcement of drug resistance surveillance is imperative, accompanied by the optimization of ART regimens to mitigate virological failures effectively.
Collapse
Affiliation(s)
- Xianwu Pang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Qin He
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Kailing Tang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Jinghua Huang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Ningye Fang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Haoming Xie
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Jie Ma
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Qiuying Zhu
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Guanghua Lan
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Shujia Liang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| |
Collapse
|
2
|
Biswas A, Choudhuri I, Arnold E, Lyumkis D, Haldane A, Levy RM. Kinetic coevolutionary models predict the temporal emergence of HIV-1 resistance mutations under drug selection pressure. Proc Natl Acad Sci U S A 2024; 121:e2316662121. [PMID: 38557187 PMCID: PMC11009627 DOI: 10.1073/pnas.2316662121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Drug resistance in HIV type 1 (HIV-1) is a pervasive problem that affects the lives of millions of people worldwide. Although records of drug-resistant mutations (DRMs) have been extensively tabulated within public repositories, our understanding of the evolutionary kinetics of DRMs and how they evolve together remains limited. Epistasis, the interaction between a DRM and other residues in HIV-1 protein sequences, is key to the temporal evolution of drug resistance. We use a Potts sequence-covariation statistical-energy model of HIV-1 protein fitness under drug selection pressure, which captures epistatic interactions between all positions, combined with kinetic Monte-Carlo simulations of sequence evolutionary trajectories, to explore the acquisition of DRMs as they arise in an ensemble of drug-naive patient protein sequences. We follow the time course of 52 DRMs in the enzymes protease, RT, and integrase, the primary targets of antiretroviral therapy. The rates at which DRMs emerge are highly correlated with their observed acquisition rates reported in the literature when drug pressure is applied. This result highlights the central role of epistasis in determining the kinetics governing DRM emergence. Whereas rapidly acquired DRMs begin to accumulate as soon as drug pressure is applied, slowly acquired DRMs are contingent on accessory mutations that appear only after prolonged drug pressure. We provide a foundation for using computational methods to determine the temporal evolution of drug resistance using Potts statistical potentials, which can be used to gain mechanistic insights into drug resistance pathways in HIV-1 and other infectious agents.
Collapse
Affiliation(s)
- Avik Biswas
- Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA19122
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA92037
- Department of Physics, University of California San Diego, La Jolla, CA92093
| | - Indrani Choudhuri
- Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA19122
- Department of Chemistry, Temple University, Philadelphia, PA19122
| | - Eddy Arnold
- Department of Chemistry and Chemical Biology, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ08854
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA92037
- Graduate School of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Allan Haldane
- Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA19122
- Department of Physics, Temple University, Philadelphia, PA19122
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA19122
- Department of Chemistry, Temple University, Philadelphia, PA19122
| |
Collapse
|
3
|
Vanangamudi M, Nair PC, Engels SEM, Palaniappan S, Namasivayam V. Structural Insights to Human Immunodeficiency Virus (HIV-1) Targets and Their Inhibition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:63-95. [PMID: 34258737 DOI: 10.1007/978-981-16-0267-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human immunodeficiency virus (HIV) is a deadly virus that attacks the body's immune system, subsequently leading to AIDS (acquired immunodeficiency syndrome) and ultimately death. Currently, there is no vaccine or effective cure for this infection; however, antiretrovirals that act at various phases of the virus life cycle have been useful to control the viral load in patients. One of the major problems with antiretroviral therapies involves drug resistance. The three-dimensional structure from crystallography studies are instrumental in understanding the structural basis of drug binding to various targets. This chapter provides key insights into different targets and drugs used in the treatment from a structural perspective. Specifically, an insight into the binding characteristics of drugs at the active and allosteric sites of different targets and the importance of targeting allosteric sites for design of new-generation antiretrovirals to overcome complex and resistant forms of the virus has been reviewed.
Collapse
Affiliation(s)
- Murugesan Vanangamudi
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Gwalior, Gwalior, Madhya Pradesh, India
| | - Pramod C Nair
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
4
|
Peixoto RT, Nogueira LFS, de Oliveira SA, Souza VD, Felipo BSL. Study of HIV Resistance Mutations Against Antiretrovirals using Bioinformatics Tools. Curr HIV Res 2020; 17:343-349. [PMID: 31629397 DOI: 10.2174/1570162x17666191019114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antiretroviral drugs to HIV-1 (ARV) are divided into classes: Nucleotide Reverse Transcriptase Inhibitors (NRTIs); Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs); Protease Inhibitors (PIs); Integrase Inhibitors (INIs); fusion inhibitors and entry Inhibitors. The occurrence of mutations developing resistance to antiretroviral drugs used in HIV treatment take place in a considerable proportion and has accumulated over its long period of therapy. OBJECTIVE This study aimed to identify resistance mutations to antiretrovirals used in the treatment of HIV-1 in strains isolated from Brazilian territory deposited at Genbank, as well as to relate to the clinical significance and mechanism of action. METHODS Elucidation of these mutations was by comparative method of peptide sequence resulting from genes encoding therapeutic targets in HIV antiretroviral therapy (ART) of the strains with a reference sequence through bioinformatic genetic information manipulation techniques. RESULTS Of the 399 sequences analyzed, 121 (30.3%) had some type of mutations associated with resistance to some class of antiretroviral drug. Resistance to NNRTIs was the most prevalent, detected in 77 (63.6%) of the 121 mutated sequences, compared to NRTIs and PIs, whose resistance was detected in 60 (49.6%) and 21 (17.3%), respectively, and to INIs, only 1 (0.8%) sample showed associated resistance mutation. CONCLUSION Resistance to HIV ARV was detected at a considerable rate of 30.3%, showing some concerns about the percentage of viral strains that escape the established therapeutic regimen and that circulate currently in Brazil. The non-use of NNRTIs in Brazil is justified by the emergence of resistance mutations. The low prevalence of mutations against INIs is because drugs in this class have a high genetic barrier.
Collapse
Affiliation(s)
- Roca Tárcio Peixoto
- Faculdades Integradas Aparicio Carvalho-FIMCA, School of Biomedicine, Research Group on Health Sciences, Porto Velho, Brazil.,Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia-FIOCRUZ-RO, Porto Velho, Brazil.,Universidade Federal de Rondônia - UNIR, Porto Velho, Brazil
| | - Lima Felipe Souza Nogueira
- Faculdades Integradas Aparicio Carvalho-FIMCA, School of Biomedicine, Research Group on Health Sciences, Porto Velho, Brazil.,Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia-FIOCRUZ-RO, Porto Velho, Brazil.,Universidade Federal de Rondônia - UNIR, Porto Velho, Brazil
| | - Santos Alcione de Oliveira
- Faculdades Integradas Aparicio Carvalho-FIMCA, School of Biomedicine, Research Group on Health Sciences, Porto Velho, Brazil.,Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia-FIOCRUZ-RO, Porto Velho, Brazil.,Universidade Federal de Rondônia - UNIR, Porto Velho, Brazil
| | - Vieira Deusilene Souza
- Faculdades Integradas Aparicio Carvalho-FIMCA, School of Biomedicine, Research Group on Health Sciences, Porto Velho, Brazil.,Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia-FIOCRUZ-RO, Porto Velho, Brazil.,Universidade Federal de Rondônia - UNIR, Porto Velho, Brazil
| | - Botelho-Souza Luan Felipo
- Faculdades Integradas Aparicio Carvalho-FIMCA, School of Biomedicine, Research Group on Health Sciences, Porto Velho, Brazil.,Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia-FIOCRUZ-RO, Porto Velho, Brazil.,Universidade Federal de Rondônia - UNIR, Porto Velho, Brazil.,National Institutes of Science and Technology - CNPq- INCT-EpiAmO, Porto Velho, Brazil
| |
Collapse
|
5
|
Giacomelli A, Pezzati L, Rusconi S. The crosstalk between antiretrovirals pharmacology and HIV drug resistance. Expert Rev Clin Pharmacol 2020; 13:739-760. [PMID: 32538221 DOI: 10.1080/17512433.2020.1782737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The clinical development of antiretroviral drugs has been followed by a rapid and concomitant development of HIV drug resistance. The development and spread of HIV drug resistance is due on the one hand to the within-host intrinsic HIV evolutionary rate and on the other to the wide use of low genetic barrier antiretrovirals. AREAS COVERED We searched PubMed and Embase on 31 January 2020, for studies reporting antiretroviral resistance and pharmacology. In this review, we assessed the molecular target and mechanism of drug resistance development of the different antiretroviral classes focusing on the currently approved antiretroviral drugs. Then, we assessed the main pharmacokinetic/pharmacodynamic of the antiretrovirals. Finally, we retraced the history of antiretroviral treatment and its interconnection with antiretroviral worldwide resistance development both in , and middle-income countries in the perspective of 90-90-90 World Health Organization target. EXPERT OPINION Drug resistance development is an invariably evolutionary driven phenomenon, which challenge the 90-90-90 target. In high-income countries, the antiretroviral drug resistance seems to be stable since the last decade. On the contrary, multi-intervention strategies comprehensive of broad availability of high genetic barrier regimens should be implemented in resource-limited setting to curb the rise of drug resistance.
Collapse
Affiliation(s)
- Andrea Giacomelli
- III Infectious Disease Unit, ASST-FBF-Sacco , Milan, Italy.,Department of Biomedical and Clinical Sciences DIBIC L. Sacco, University of Milan , Milan, Italy
| | - Laura Pezzati
- III Infectious Disease Unit, ASST-FBF-Sacco , Milan, Italy.,Department of Biomedical and Clinical Sciences DIBIC L. Sacco, University of Milan , Milan, Italy
| | - Stefano Rusconi
- III Infectious Disease Unit, ASST-FBF-Sacco , Milan, Italy.,Department of Biomedical and Clinical Sciences DIBIC L. Sacco, University of Milan , Milan, Italy
| |
Collapse
|
6
|
Himmel DM, Arnold E. Non-Nucleoside Reverse Transcriptase Inhibitors Join Forces with Integrase Inhibitors to Combat HIV. Pharmaceuticals (Basel) 2020; 13:ph13060122. [PMID: 32545407 PMCID: PMC7345359 DOI: 10.3390/ph13060122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
In the treatment of acquired immune deficiency syndrome (AIDS), the diarylpyrimidine (DAPY) analogs etravirine (ETR) and rilpivirine (RPV) have been widely effective against human immunodeficiency virus (HIV) variants that are resistant to other non-nucleoside reverse transcriptase inhibitors (NNRTIs). With non-inferior or improved efficacy, better safety profiles, and lower doses or pill burdens than other NNRTIs in the clinic, combination therapies including either of these two drugs have led to higher adherence than other NNRTI-containing treatments. In a separate development, HIV integrase strand transfer inhibitors (INSTIs) have shown efficacy in treating AIDS, including raltegravir (RAL), elvitegravir (EVG), cabotegravir (CAB), bictegravir (BIC), and dolutegravir (DTG). Of these, DTG and BIC perform better against a wide range of resistance mutations than other INSTIs. Nevertheless, drug-resistant combinations of mutations have begun to emerge against all DAPYs and INSTIs, attributable in part to non-adherence. New dual therapies that may promote better adherence combine ETR or RPV with an INSTI and have been safer and non-inferior to more traditional triple-drug treatments. Long-acting dual- and triple-therapies combining ETR or RPV with INSTIs are under study and may further improve adherence. Here, highly resistant emergent mutations and efficacy data on these novel treatments are reviewed. Overall, ETR or RPV, in combination with INSTIs, may be treatments of choice as long-term maintenance therapies that optimize efficacy, adherence, and safety.
Collapse
Affiliation(s)
- Daniel M. Himmel
- Himmel Sci Med Com, L.L.C., Bala Cynwyd, PA 19004, USA
- Correspondence: ; Tel.: +1-848-391-5973
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine (CABM), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
7
|
Buemi MR, Gitto R, Ielo L, Pannecouque C, De Luca L. Inhibition of HIV-1 RT activity by a new series of 3-(1,3,4-thiadiazol-2-yl)thiazolidin-4-one derivatives. Bioorg Med Chem 2020; 28:115431. [DOI: 10.1016/j.bmc.2020.115431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/19/2023]
|
8
|
Han S, Lei Y, Pannecouque C, De Clercq E, Zhuang C, Chen F. Fragment-based discovery of sulfur-containing diarylbenzopyrimidines as novel nonnucleoside reverse transcriptase inhibitors. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Xu C, Xin Y, Chen M, Ba M, Guo Q, Zhu C, Guo Y, Shi J. Discovery, synthesis, and optimization of an N-alkoxy indolylacetamide against HIV-1 carrying NNRTI-resistant mutations from the Isatis indigotica root. Eur J Med Chem 2020; 189:112071. [PMID: 32004936 PMCID: PMC7111291 DOI: 10.1016/j.ejmech.2020.112071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
From an aqueous decoction of the traditional Chinese medicine "ban lan gen" (the Isatis indigotica root), an antiviral natural product CI - 39 was isolated as an NNRTI (non-nucleoside reverse transcriptase inhibitor) (EC50 = 3.40 μM). Its novel structure was determined as methyl (1-methoxy-1H-indol-3-yl)acetamidobenzoate by spectroscopic data and confirmed by single crystal X-ray diffraction. Through synthesis and structure-activity relationship (SAR) investigation of CI - 39 and 57 new derivatives (24 with EC50 values of 0.06-8.55 μM), two optimized derivatives 10f and 10i (EC50: 0.06 μM and 0.06 μM) having activity comparable to that of NVP (EC50 = 0.03 μM) were obtained. Further evaluation verified that 10f and 10i were RT DNA polymerase inhibitors and exhibited better activities and drug resistance folds compared to NVP against seven NNRTI-resistant strains carrying different mutations. Especially, 10i (EC50 = 0.43 μM) was more active to the L100I/K103N double-mutant strain as compared to both NVP (EC50 = 0.76 μM) and EFV (EC50 = 1.08 μM). The molecular docking demonstrated a possible binding pattern between 10i and RT and revealed activity mechanism of 10i against the NNRTI-resistant strains.
Collapse
Affiliation(s)
- Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yijing Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Minghua Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingyu Ba
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chenggen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
10
|
Borisov DV, Veselovsky AV. [Ligand-receptor binding kinetics in drug design]. BIOMEDITSINSKAIA KHIMIIA 2020; 66:42-53. [PMID: 32116225 DOI: 10.18097/pbmc20206601042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traditionally, the thermodynamic values of affinity are considered as the main criterion for the development of new drugs. Usually, these values for drugs are measured <i>in vitro</i> at steady concentrations of the receptor and ligand, which are differed from <i>in vivo</i> environment. Recent studies have shown that the kinetics of the process of drug binding to its receptor make significant contribution in the drug effectiveness. This has increased attention in characterizing and predicting the rate constants of association and dissociation of the receptor ligand at the stage of preclinical studies of drug candidates. A drug with a long residence time can determine ligand-receptor selectivity (kinetic selectivity), maintain pharmacological activity of the drug at its low concentration in vivo. The paper discusses the theoretical basis of protein-ligand binding, molecular determinants that control the kinetics of the drug-receptor binding. Understanding the molecular features underlying the kinetics of receptor-ligand binding will contribute to the rational design of drugs with desired properties.
Collapse
Affiliation(s)
- D V Borisov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
11
|
Collier DA, Monit C, Gupta RK. The Impact of HIV-1 Drug Escape on the Global Treatment Landscape. Cell Host Microbe 2019; 26:48-60. [PMID: 31295424 DOI: 10.1016/j.chom.2019.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rising prevalence of HIV drug resistance (HIVDR) could threaten gains made in combating the HIV epidemic and compromise the 90-90-90 target proposed by United Nations Programme on HIV/AIDS (UNAIDS) to have achieved virological suppression in 90% of all persons receiving antiretroviral therapy (ART) by the year 2020. HIVDR has implications for the persistence of HIV, the selection of current and future ART drug regimens, and strategies of vaccine and cure development. Focusing on drug classes that are in clinical use, this Review critically summarizes what is known about the mechanisms the virus utilizes to escape drug control. Armed with this knowledge, strategies to limit the expansion of HIVDR are proposed.
Collapse
Affiliation(s)
- D A Collier
- Division of Infection and Immunity, University College London, London, UK
| | - C Monit
- Division of Infection and Immunity, University College London, London, UK
| | - R K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Sang Y, Han S, Pannecouque C, De Clercq E, Zhuang C, Chen F. Conformational restriction design of thiophene-biphenyl-DAPY HIV-1 non-nucleoside reverse transcriptase inhibitors. Eur J Med Chem 2019; 182:111603. [DOI: 10.1016/j.ejmech.2019.111603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
|
13
|
Famiglini V, Silvestri R. Indolylarylsulfones, a fascinating story of highly potent human immunodeficiency virus type 1 non-nucleoside reverse transcriptase inhibitors. Antivir Chem Chemother 2019; 26:2040206617753443. [PMID: 29417826 PMCID: PMC5890576 DOI: 10.1177/2040206617753443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Indolylarylsulfones are a potent class of human immunodeficiency virus type 1 non-nucleoside reverse transcriptase inhibitors. In this review, the structure activity relationship (SAR) studies to improve the profile of sulfone L-737,126 discovered by Merck AG have been analysed with focus on introduction of the 3′,5′-dimethyl groups at the 3-phenylsulfonyl moiety, the 2-hydroxyethyl tail at the indole-2-carboxamide nitrogen, coupling of the carboxamide nitrogen with one or two glycinamide and alaninamide units, a fluorine atom at position 4 of the indole ring and correlation between configuration of the asymmetric centre and linker length. IAS derivatives look like promising drug candidates for the treatment of AIDS and related infections in combination with other antiretroviral agents.
Collapse
Affiliation(s)
- Valeria Famiglini
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Roma, Italy
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Roma, Italy
| |
Collapse
|
14
|
Pribut N, Basson AE, van Otterlo WAL, Liotta DC, Pelly SC. Aryl Substituted Benzimidazolones as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. ACS Med Chem Lett 2019; 10:196-202. [PMID: 30783503 DOI: 10.1021/acsmedchemlett.8b00549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of HIV as the etiological agent of AIDS, the virus has infected millions of people each year. Fortunately, with the use of HAART, viremia can be suppressed to below detectable levels in the infected individuals, which significantly improves their quality of life and prevents the onset of AIDS. However, HAART is not curative and issues relating to adherence and drug resistance may lead to the re-emergence of viremia, the development of AIDS, and ultimately death. To address a pressing need for the development of new and efficacious antiretroviral agents with activity against viruses bearing prevalent resistant mutations, we have designed two generations of benzimidazolone derivatives as HIV non-nucleoside reverse transcriptase inhibitors. The first generation benzimidazolone inhibitors were found to be potent inhibitors of wild-type HIV reverse transcriptase but were ineffective in the presence of common resistance mutations such as K103N and Y181C. A second generation benzimidazolone inhibitor (compound 42) not only showed inhibitory activity against wild-type HIV but also remained active against HIV containing the K103N, Y181C, and K103N/Y181C drug resistance mutations.
Collapse
Affiliation(s)
- Nicole Pribut
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, 7602 Matieland, Western Cape South Africa
| | - Adriaan E. Basson
- School of Pathology, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, Parktown, JHB, Private Bag 3, WITS 2050, South Africa
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, 7602 Matieland, Western Cape South Africa
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stephen C. Pelly
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
15
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. A Structural View on Medicinal Chemistry Strategies against Drug Resistance. Angew Chem Int Ed Engl 2019; 58:3300-3345. [PMID: 29846032 DOI: 10.1002/anie.201802416] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Indexed: 12/31/2022]
Abstract
The natural phenomenon of drug resistance is a widespread issue that hampers the performance of drugs in many major clinical indications. Antibacterial and antifungal drugs are affected, as well as compounds for the treatment of cancer, viral infections, or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, the underlying molecular mechanisms have been identified to understand the emergence of resistance and to overcome this detrimental process. Detailed structural information on the root causes for drug resistance is nowadays frequently available, so next-generation drugs can be designed that are anticipated to suffer less from resistance. This knowledge-based approach is essential for fighting the inevitable occurrence of drug resistance.
Collapse
Affiliation(s)
- Stefano Agnello
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Michael Brand
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Silvia Gazzola
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| |
Collapse
|
16
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. Eine strukturelle Evaluierung medizinalchemischer Strategien gegen Wirkstoffresistenzen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201802416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Agnello
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Michael Brand
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Mathieu F. Chellat
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Silvia Gazzola
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
17
|
Namasivayam V, Vanangamudi M, Kramer VG, Kurup S, Zhan P, Liu X, Kongsted J, Byrareddy SN. The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. J Med Chem 2018; 62:4851-4883. [PMID: 30516990 DOI: 10.1021/acs.jmedchem.8b00843] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) infection is now pandemic. Targeting HIV-1 reverse transcriptase (HIV-1 RT) has been considered as one of the most successful targets for the development of anti-HIV treatment. Among the HIV-1 RT inhibitors, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity, and low toxicity in antiretroviral combination therapies used to treat HIV. Until now, >50 structurally diverse classes of compounds have been reported as NNRTIs. Among them, six NNRTIs were approved for HIV-1 treatment, namely, nevirapine (NVP), delavirdine (DLV), efavirenz (EFV), etravirine (ETR), rilpivirine (RPV), and doravirine (DOR). In this perspective, we focus on the six NNRTIs and lessons learned from their journey through development to clinical studies. It demonstrates the obligatory need of understanding the physicochemical and biological principles (lead optimization), resistance mutations, synthesis, and clinical requirements for drugs.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Murugesan Vanangamudi
- Department of Medicinal and Pharmaceutical Chemistry , Sree Vidyanikethan College of Pharmacy , Tirupathi , Andhra Pradesh 517102 , India
| | | | - Sonali Kurup
- College of Pharmacy , Roosevelt University , Schaumburg , Illinois 60173 , United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 , Odense M , Denmark
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha 68198-5880 , United States
| |
Collapse
|
18
|
Al-Mozaini M, Alrahbeni T, Al-Mograbi R, Alrajhi A. Antiretroviral resistance in HIV-1 patients at a tertiary medical institute in Saudi Arabia: a retrospective study and analysis. BMC Infect Dis 2018; 18:425. [PMID: 30153792 PMCID: PMC6114861 DOI: 10.1186/s12879-018-3339-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/17/2018] [Indexed: 11/18/2022] Open
Abstract
Background Since the early 90’s antiretroviral drugs have been available at King Faisal Specialist Hospital and Research Centre (KFSH&RC), a referral hospital in Riyadh, Saudi Arabia, for the treatment of both adults and children infected with HIV-1. However, up to date, there are no genetic profiling data for the resistance-causing mutations in HIV-1 virus in patients on antiretroviral drugs therapy. This paper presents an initial report and a profiling survey of drug resistance-associated mutations of 103 HIV-1 patients seen at KFSH&RC. Methods This is a retrospective study on Patients treated at KFSH&RC since 2003 up to 2016. The analysis was done on the drug resistance mutations profiles of 103 patients who were undergoing highly active antiretroviral therapy protocols. Results Our analysis shows that the drug resistance mutations reported in our treatment cohort of HIV-infected adults patients is similar what is internationally reported to some extent. Additionally, we have identified novel drug resistance causing mutations. Furthermore, different profile of drug resistance causing mutations was also observed. Conclusion Patients showed both similar and new drug resistant causing mutations, early identification of these mutations is crucial to guide and avoid failure future therapy.
Collapse
Affiliation(s)
- Maha Al-Mozaini
- Immunocompromised Host Research, Department of Infection and Immunity, The Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | - Reem Al-Mograbi
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdulrahman Alrajhi
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Kamil R, Debnath U, Verma S, Prabhakar Y. Identification of Adjacent NNRTI Binding Pocket in Multi-mutated HIV1- RT Enzyme Model: An in silico Study. Curr HIV Res 2018; 16:121-129. [DOI: 10.2174/1570162x16666180412165004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/25/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022]
Abstract
Introduction:
A possible strategy to combat mutant strains is to have a thorough structural
evaluation before and after mutations to identify the diversity in the non-nucleoside inhibitor binding
pocket and their effects on enzyme-ligand interactions to generate novel NNRTI’s accordingly.
Objective:
The primary objective of this study was to find effects of multiple point mutations on
NNRTI binding pocket. This study included the contribution of each individual mutation in NNIBP
that propose an adjacent binding pocket which can be used to discover novel NNRTI derivatives.
Methods:
An in Silico model of HIV-1 RT enzyme with multiple mutations K103N, Y181C and
Y188L was developed and evaluated. Two designed NNRTI pyridinone derivatives were selected as
ligands for docking studies with the homology model through alignment based docking and residue
based docking approaches. Binding pockets of wild type HIV-1 RT and multi-mutated homology
model were compared thoroughly.
Result and Discussion:
K103N mutation narrowed the entrance of NNRTI binding pocket and forbade
electrostatic interaction with α amino group of LYS103. Mutations Y181C and Y188L prevented
NNRTI binding by eliminating aromatic π interactions offered by tyrosine rings. Docking
study against new homology model suggested an adjacent binding pocket with combination of residues
in palm and connection domains. This pocket is approximately 14.46Å away from conventional
NNRTI binding site.
Conclusion:
Increased rigidity, steric hindrance and losses of important interactions cumulatively
prompt ligands to adapt adjacent NNRTI binding pocket. The proposed new and adjacent binding
pocket is identified by this study which can further be evaluated to generate novel derivatives.
Collapse
Affiliation(s)
- R.F. Kamil
- R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - U. Debnath
- Department of Pharmaceutical Chemistry, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata 700114, India
| | - S. Verma
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute Lucknow 226031, India
| | - Y.S. Prabhakar
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute Lucknow 226031, India
| |
Collapse
|
20
|
Yang Y, Kang D, Nguyen LA, Smithline ZB, Pannecouque C, Zhan P, Liu X, Steitz TA. Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2- d]pyrimidine non-nucleoside inhibitors. eLife 2018; 7:e36340. [PMID: 30044217 PMCID: PMC6080946 DOI: 10.7554/elife.36340] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022] Open
Abstract
Rapid generation of drug-resistant mutations in HIV-1 reverse transcriptase (RT), a prime target for anti-HIV therapy, poses a major impediment to effective anti-HIV treatment. Our previous efforts have led to the development of two novel non-nucleoside reverse transcriptase inhibitors (NNRTIs) with piperidine-substituted thiophene[3,2-d]pyrimidine scaffolds, compounds K-5a2 and 25a, which demonstrate highly potent anti-HIV-1 activities and improved resistance profiles compared with etravirine and rilpivirine, respectively. Here, we have determined the crystal structures of HIV-1 wild-type (WT) RT and seven RT variants bearing prevalent drug-resistant mutations in complex with K-5a2 or 25a at ~2 Å resolution. These high-resolution structures illustrate the molecular details of the extensive hydrophobic interactions and the network of main chain hydrogen bonds formed between the NNRTIs and the RT inhibitor-binding pocket, and provide valuable insights into the favorable structural features that can be employed for designing NNRTIs that are broadly active against drug-resistant HIV-1 variants.
Collapse
Affiliation(s)
- Yang Yang
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteYale UniversityNew HavenUnited States
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Laura A Nguyen
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | - Zachary B Smithline
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | | | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Thomas A Steitz
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteYale UniversityNew HavenUnited States
- Department of ChemistryYale UniversityNew HavenUnited States
| |
Collapse
|
21
|
Abstract
INTRODUCTION There are 36.7 million people living with HIV with 20.9 million having access to antiretroviral therapy (ART). Nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) remain the 'backbone' of ART. However, the currently available nine NRTIs and five non-nucleoside reverse transcriptase inhibitors (NNRTIs) have significant side effects and resistance profiles. Areas covered: We summarize the mechanisms of resistance and other limitations of the existing NRTIs/NNRTIs. GS-9131, MK-8591, Elsulfavirine and Doravirine are four new agents that are furthest along in development. Expert opinion: ART development has evolved with several new promising agents. Longer-acting agents, like MK-8591 are extremely attractive to enhance drug adherence and patient satisfaction. Doravirine offers an NNRTI effective against common mutations that has fewer side effects, limitations on dosing and drug interactions. GS-9131 is very potent and active against a variety of NRTI mutants but it is too early in its development to understand its full risks and benefits. Finally, Elsulfavirine has a long half-life and preliminary data suggests fewer side effects than the most commonly used NNRTI, efavirenz. Each of these new agents shows promise and potential to improve ART in the future. The newer generation of reverse transcriptase inhibitors have longer half-lives, more favorable adverse effect profiles, and fewer drug interactions.
Collapse
Affiliation(s)
- Mohammad A Rai
- a Department of Internal Medicine , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Sam Pannek
- a Department of Internal Medicine , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Carl J Fichtenbaum
- a Department of Internal Medicine , University of Cincinnati Medical Center , Cincinnati , OH , USA
| |
Collapse
|
22
|
Tarasova O, Poroikov V. HIV Resistance Prediction to Reverse Transcriptase Inhibitors: Focus on Open Data. Molecules 2018; 23:E956. [PMID: 29671808 PMCID: PMC6017644 DOI: 10.3390/molecules23040956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022] Open
Abstract
Research and development of new antiretroviral agents are in great demand due to issues with safety and efficacy of the antiretroviral drugs. HIV reverse transcriptase (RT) is an important target for HIV treatment. RT inhibitors targeting early stages of the virus-host interaction are of great interest for researchers. There are a lot of clinical and biochemical data on relationships between the occurring of the single point mutations and their combinations in the pol gene of HIV and resistance of the particular variants of HIV to nucleoside and non-nucleoside reverse transcriptase inhibitors. The experimental data stored in the databases of HIV sequences can be used for development of methods that are able to predict HIV resistance based on amino acid or nucleotide sequences. The data on HIV sequences resistance can be further used for (1) development of new antiretroviral agents with high potential for HIV inhibition and elimination and (2) optimization of antiretroviral therapy. In our communication, we focus on the data on the RT sequences and HIV resistance, which are available on the Internet. The experimental methods, which are applied to produce the data on HIV-1 resistance, the known data on their concordance, are also discussed.
Collapse
Affiliation(s)
- Olga Tarasova
- Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya st., Moscow 119121, Russia.
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya st., Moscow 119121, Russia.
| |
Collapse
|
23
|
Valuev-Elliston VT, Kochetkov SN. Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors: A Combinatorial Approach. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523068 DOI: 10.1134/s0006297917130107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Highly active antiretroviral therapy (HAART) is one of the most effective means for fighting against HIV-infection. HAART primarily targets HIV-1 reverse transcriptase (RT), and 14 of 28 compounds approved by the FDA as anti-HIV drugs act on this enzyme. HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) hold a special place among HIV RT inhibitors owing to their high specificity and unique mode of action. Nonetheless, these drugs show a tendency to decrease their efficacy due to high HIV-1 variability and formation of resistant virus strains tolerant to clinically applied HIV NNRTIs. A combinatorial approach based on varying substituents within various fragments of the parent molecule that results in development of highly potent compounds is one of the approaches aimed at designing novel HIV NNRTIs. Generation of HIV NNRTIs based on pyrimidine derivatives explicitly exemplifies this approach, which is discussed in this review.
Collapse
Affiliation(s)
- V T Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | | |
Collapse
|
24
|
Galilee M, Alian A. The structure of FIV reverse transcriptase and its implications for non-nucleoside inhibitor resistance. PLoS Pathog 2018; 14:e1006849. [PMID: 29364950 PMCID: PMC5798851 DOI: 10.1371/journal.ppat.1006849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/05/2018] [Accepted: 01/03/2018] [Indexed: 11/24/2022] Open
Abstract
Reverse transcriptase (RT) is the target for the majority of anti-HIV-1 drugs. As with all anti-AIDS treatments, continued success of RT inhibitors is persistently disrupted by the occurrence of resistance mutations. To explore latent resistance mechanisms potentially accessible to therapeutically challenged HIV-1 viruses, we examined RT from the related feline immunodeficiency virus (FIV). FIV closely parallels HIV-1 in its replication and pathogenicity, however, is resistant to all non-nucleoside inhibitors (NNRTI). The intrinsic resistance of FIV RT is particularly interesting since FIV harbors the Y181 and Y188 sensitivity residues absent in both HIV-2 and SIV. Unlike RT from HIV-2 or SIV, previous efforts have failed to make FIV RT susceptible to NNRTIs concluding that the structure or flexibility of the feline enzyme must be profoundly different. We report the first crystal structure of FIV RT and, being the first structure of an RT from a non-primate lentivirus, enrich the structural and species repertoires available for RT. The structure demonstrates that while the NNRTI binding pocket is conserved, minor subtleties at the entryway can render the FIV RT pocket more restricted and unfavorable for effective NNRTI binding. Measuring NNRTI binding affinity to FIV RT shows that the “closed” pocket configuration inhibits NNRTI binding. Mutating the loop residues rimming the entryway of FIV RT pocket allows for NNRTI binding, however, it does not confer sensitivity to these inhibitors. This reveals a further layer of resistance caused by inherent FIV RT variances that could have enhanced the dissociation of bound inhibitors, or, perhaps, modulated protein plasticity to overcome inhibitory effects of bound NNRTIs. The more “closed” conformation of FIV RT pocket can provide a template for the development of innovative drugs that could unlock the constrained pocket, and the resilient mutant version of the enzyme can offer a fresh model for the study of NNRTI-resistance mechanisms overlooked in HIV-1. The majority of anti-AIDS drugs target the reverse transcriptase (RT) enzyme of the HIV-1 virus. RT catalyzes the central step in the virus replication cycle converting the viral RNA genome into DNA for subsequent integration into the host genome. As with all anti-AIDS treatments, continued success of RT inhibitors is persistently disrupted by the occurrence of resistance mutations. To explore latent resistance mechanisms potentially accessible to therapeutically challenged HIV-1 viruses, we examined RT from the related feline immunodeficiency virus (FIV). FIV closely parallels HIV-1 in its replication and pathogenicity however is resistant to all non-nucleoside inhibitors of HIV-1 RT. We resolved the crystal structure of FIV RT, and using mutational and biochemical analyses, we show that specific differences in the FIV RT structure inhibit the binding of non-nucleoside inhibitors. We further show that mutating the protein to facilitate binding of the inhibitors does not confer sensitivity to these inhibitors, suggesting that other variances inherent in FIV RT modulate a second layer of resistance. These insights can help in the development of novel drugs against evolving HIV-1 RT resistance.
Collapse
Affiliation(s)
- Meytal Galilee
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Akram Alian
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
25
|
Aeksiri N, Warakulwit C, Hannongbua S, Unajak S, Choowongkomon K. Use of Capillary Electrophoresis to Study the Binding Interaction of Aptamers with Wild-Type, K103N, and Double Mutant (K103N/Y181C) HIV-1 RT : Studying the Binding Interaction of Wild-Type, K103N, and Double Mutant (K103N/Y181C) HIV-1 RT with Aptamers by Performing the Capillary Electrophoresis. Appl Biochem Biotechnol 2016; 182:546-558. [PMID: 27900665 DOI: 10.1007/s12010-016-2343-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022]
Abstract
A number of nucleic acid aptamers with high affinities to human immunodeficiency virus reverse transcriptase (HIV-1 RT) are currently known. They can potentially be developed as broad-spectrum antiviral drugs, but there is little known about their binding interaction with mutant HIV-1 RT. Therefore, we utilized non-equilibrium capillary electrophoresis of equilibrium mixture (NECEEM) to study the interaction of three HIV-1 RTs (wild type, K103N, and double mutant (K103N/Y181C)) with RT1t49 and RT12 aptamers. This approach was used to study and evaluate the K d values of these molecules. The results showed that the K d values of the tested aptamers were lower than that of the DNA substrate. The results also pointed out that RT1t49 could bind with all HIV-1 RTs and compete with the DNA substrate at the active site. Moreover, we studied the binding stoichiometry of HIV-1 RT using aptamers as probes. The findings showed evidence of two binding stoichiometries with HIV-1 RT and the RT12 aptamer but only one binding stoichiometry for RT1t49. In addition, RT1t49 could bind specifically with the wild-type, K103N, and double mutants in Escherichia coli lysate. This result also indicated that the aptamer could detect HIV-1 RT in the presence of E. coli lysate.
Collapse
Affiliation(s)
- Niran Aeksiri
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chompunuch Warakulwit
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Kiattawee Choowongkomon
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, NRU-KU, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
26
|
Kirtane AR, Langer R, Traverso G. Past, Present, and Future Drug Delivery Systems for Antiretrovirals. J Pharm Sci 2016; 105:3471-3482. [PMID: 27771050 DOI: 10.1016/j.xphs.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
The human immunodeficiency virus has infected millions of people and the epidemic continues to grow rapidly in some parts of the world. Antiretroviral (ARV) therapy has provided improved treatment and prolonged the life expectancy of patients. Moreover, there is growing interest in using ARVs to protect against new infections. Hence, ARVs have emerged as our primary strategy in combating the virus. Unfortunately, several challenges limit the optimal performance of these drugs. First, ARVs often require life-long use and complex dosing regimens. This results in low patient adherence and periods of lapsed treatment manifesting in drug resistance. This has prompted the development of alternate dosage forms such as vaginal rings and long-acting injectables that stand to improve patient adherence. Another problem central to therapeutic failure is the inadequate penetration of drugs into infected tissues. This can lead to incomplete treatment, development of resistance, and viral rebound. Several strategies have been developed to improve drug penetration into these drug-free sanctuaries. These include encapsulation of drugs in nanoparticles, use of pharmacokinetic enhancers, and cell-based drug delivery platforms. In this review, we discuss issues surrounding ARV therapy and their impact on drug efficacy. We also describe various drug delivery-based approaches developed to overcome these issues.
Collapse
Affiliation(s)
- Ameya R Kirtane
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - Giovanni Traverso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
27
|
Mechanistic Study of Common Non-Nucleoside Reverse Transcriptase Inhibitor-Resistant Mutations with K103N and Y181C Substitutions. Viruses 2016; 8:v8100263. [PMID: 27669286 PMCID: PMC5086599 DOI: 10.3390/v8100263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/30/2022] Open
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a mainstay of therapy for human immunodeficiency type 1 virus (HIV-1) infections. However, their effectiveness can be hampered by the emergence of resistant mutations. To aid in designing effective NNRTIs against the resistant mutants, it is important to understand the resistance mechanism of the mutations. Here, we investigate the mechanism of the two most prevalent NNRTI-associated mutations with K103N or Y181C substitution. Virus and reverse transcriptase (RT) with K103N/Y188F, K103A, or K103E substitutions and with Y181F, Y188F, or Y181F/Y188F substitutions were employed to study the resistance mechanism of the K103N and Y181C mutants, respectively. Results showed that the virus and RT with K103N/Y188F substitutions displayed similar resistance levels to the virus and RT with K103N substitution versus NNRTIs. Virus and RT containing Y181F, Y188F, or Y181F/Y188F substitution exhibited either enhanced or similar susceptibility to NNRTIs compared with the wild type (WT) virus. These results suggest that the hydrogen bond between N103 and Y188 may not play an important role in the resistance of the K103N variant to NNRTIs. Furthermore, the results from the studies with the Y181 or Y188 variant provide the direct evidence that aromatic π-π stacking plays a crucial role in the binding of NNRTIs to RT.
Collapse
|
28
|
Sharaf NG, Ishima R, Gronenborn AM. Conformational Plasticity of the NNRTI-Binding Pocket in HIV-1 Reverse Transcriptase: A Fluorine Nuclear Magnetic Resonance Study. Biochemistry 2016; 55:3864-73. [PMID: 27163463 DOI: 10.1021/acs.biochem.6b00113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV-1 reverse transcriptase (RT) is a major drug target in the treatment of HIV-1 infection. RT inhibitors currently in use include non-nucleoside, allosteric RT inhibitors (NNRTIs), which bind to a hydrophobic pocket, distinct from the enzyme's active site. We investigated RT-NNRTI interactions by solution (19)F nuclear magnetic resonance (NMR), using singly (19)F-labeled RT proteins. Comparison of (19)F chemical shifts of fluorinated RT and drug-resistant variants revealed that the fluorine resonance is a sensitive probe for identifying mutation-induced changes in the enzyme. Our data show that in the unliganded enzyme, the NNRTI-binding pocket is highly plastic and not locked into a single conformation. Upon inhibitor binding, the binding pocket becomes rigidified. In the inhibitor-bound state, the (19)F signal of RT is similar to that of drug-resistant mutant enzymes, distinct from what is observed for the free state. Our results demonstrate the power of (19)F NMR spectroscopy to characterize conformational properties using selectively (19)F-labeled protein.
Collapse
Affiliation(s)
- Naima G Sharaf
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Rieko Ishima
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Angela M Gronenborn
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
29
|
Elgaher WAM, Sharma KK, Haupenthal J, Saladini F, Pires M, Real E, Mély Y, Hartmann RW. Discovery and Structure-Based Optimization of 2-Ureidothiophene-3-carboxylic Acids as Dual Bacterial RNA Polymerase and Viral Reverse Transcriptase Inhibitors. J Med Chem 2016; 59:7212-22. [PMID: 27339173 DOI: 10.1021/acs.jmedchem.6b00730] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We are concerned with the development of novel anti-infectives with dual antibacterial and antiretroviral activities for MRSA/HIV-1 co-infection. To achieve this goal, we exploited for the first time the mechanistic function similarity between the bacterial RNA polymerase (RNAP) "switch region" and the viral non-nucleoside reverse transcriptase inhibitor (NNRTI) binding site. Starting from our previously discovered RNAP inhibitors, we managed to develop potent RT inhibitors effective against several resistant HIV-1 strains with maintained or enhanced RNAP inhibitory properties following a structure-based design approach. A quantitative structure-activity relationship (QSAR) analysis revealed distinct molecular features necessary for RT inhibition. Furthermore, mode of action (MoA) studies revealed that these compounds inhibit RT noncompetitively, through a new mechanism via closing of the RT clamp. In addition, the novel RNAP/RT inhibitors are characterized by a potent antibacterial activity against S. aureus and in cellulo antiretroviral activity against NNRTI-resistant strains. In HeLa and HEK 293 cells, the compounds showed only marginal cytotoxicity.
Collapse
Affiliation(s)
- Walid A M Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); and Pharmaceutical and Medicinal Chemistry, Saarland University , Campus E8.1, 66123 Saarbrücken, Germany
| | - Kamal K Sharma
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); and Pharmaceutical and Medicinal Chemistry, Saarland University , Campus E8.1, 66123 Saarbrücken, Germany
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena , Viale Mario Bracci 16, 53100 Siena, Italy
| | - Manuel Pires
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Eleonore Real
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); and Pharmaceutical and Medicinal Chemistry, Saarland University , Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
30
|
Zhang Z, Hamatake R, Hong Z. Clinical Utility of Current NNRTIs and Perspectives of New Agents in This Class under Development. ACTA ACUST UNITED AC 2016; 15:121-34. [PMID: 15266894 DOI: 10.1177/095632020401500302] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Highly active antiretroviral therapy (HAART) has significantly reduced the number of deaths caused by AIDS. However, the antiviral efficacy of HAART comprising protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs) is frequently accompanied by a decrease in patients' quality of life. PI-based therapies often fail due to poor adherence caused by heavy pill burden, complex dosing schedules and undesirable side effects. The current trend is to switch from PI-based to PI-sparing regimens consisting of non-nucleoside reverse transcriptase inhibitors (NNRTIs) and NRTIs. Despite some encouraging results from NNRTI-containing therapies, two major concerns in using the currently available NNRTIs remain: 1) low genetic barrier to the emergence of resistance and 2) cross-resistance due to single mutations that often render the whole class of NNRTIs ineffective. Clearly, new and improved NNRTIs are needed to address these concerns.
Collapse
Affiliation(s)
- Zhijun Zhang
- Drug Discovery, Valeant Pharmaceuticals International, Costa Mesa, Calif., USA.
| | | | | |
Collapse
|
31
|
Kankanala J, Kirby KA, Liu F, Miller L, Nagy E, Wilson DJ, Parniak MA, Sarafianos SG, Wang Z. Design, Synthesis, and Biological Evaluations of Hydroxypyridonecarboxylic Acids as Inhibitors of HIV Reverse Transcriptase Associated RNase H. J Med Chem 2016; 59:5051-62. [PMID: 27094954 DOI: 10.1021/acs.jmedchem.6b00465] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Targeting the clinically unvalidated reverse transcriptase (RT) associated ribonuclease H (RNase H) for human immunodeficiency virus (HIV) drug discovery generally entails chemotypes capable of chelating two divalent metal ions in the RNase H active site. The hydroxypyridonecarboxylic acid scaffold has been implicated in inhibiting homologous HIV integrase (IN) and influenza endonuclease via metal chelation. We report herein the design, synthesis, and biological evaluations of a novel variant of the hydroxypyridonecarboxylic acid scaffold featuring a crucial N-1 benzyl or biarylmethyl moiety. Biochemical studies show that most analogues consistently inhibited HIV RT-associated RNase H in the low micromolar range in the absence of significant inhibition of RT polymerase or IN. One compound showed reasonable cell-based antiviral activity (EC50 = 10 μM). Docking and crystallographic studies corroborate favorable binding to the active site of HIV RNase H, providing a basis for the design of more potent analogues.
Collapse
Affiliation(s)
- Jayakanth Kankanala
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Karen A Kirby
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center , Columbia, Missouri 65211, United States
| | - Feng Liu
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Lena Miller
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219, United States
| | - Eva Nagy
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219, United States
| | - Daniel J Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Michael A Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219, United States
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center , Columbia, Missouri 65211, United States
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Abstract
The enzyme reverse transcriptase (RT) was discovered in retroviruses almost 50 years ago. The demonstration that other types of viruses, and what are now called retrotransposons, also replicated using an enzyme that could copy RNA into DNA came a few years later. The intensity of the research in both the process of reverse transcription and the enzyme RT was greatly stimulated by the recognition, in the mid-1980s, that human immunodeficiency virus (HIV) was a retrovirus and by the fact that the first successful anti-HIV drug, azidothymidine (AZT), is a substrate for RT. Although AZT monotherapy is a thing of the past, the most commonly prescribed, and most successful, combination therapies still involve one or both of the two major classes of anti-RT drugs. Although the basic mechanics of reverse transcription were worked out many years ago, and the first high-resolution structures of HIV RT are now more than 20 years old, we still have much to learn, particularly about the roles played by the host and viral factors that make the process of reverse transcription much more efficient in the cell than in the test tube. Moreover, we are only now beginning to understand how various host factors that are part of the innate immunity system interact with the process of reverse transcription to protect the host-cell genome, the host cell, and the whole host, from retroviral infection, and from unwanted retrotransposition.
Collapse
|
33
|
Smith SJ, Pauly GT, Akram A, Melody K, Rai G, Maloney DJ, Ambrose Z, Thomas CJ, Schneider JT, Hughes SH. Rilpivirine analogs potently inhibit drug-resistant HIV-1 mutants. Retrovirology 2016; 13:11. [PMID: 26880034 PMCID: PMC4754833 DOI: 10.1186/s12977-016-0244-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a class of antiretroviral compounds that bind in an allosteric binding pocket in HIV-1 RT, located about 10 Å from the polymerase active site. Binding of an NNRTI causes structural changes that perturb the alignment of the primer terminus and polymerase active site, preventing viral DNA synthesis. Rilpivirine (RPV) is the most recent NNRTI approved by the FDA, but like all other HIV-1 drugs, suboptimal treatment can lead to the development of resistance. To generate better compounds that could be added to the current HIV-1 drug armamentarium, we have developed several RPV analogs to combat viral variants that are resistant to the available NNRTIs. Results Using a single-round infection assay, we identified several RPV analogs that potently inhibited a broad panel of NNRTI resistant mutants. Additionally, we determined that several resistant mutants selected by either RPV or Doravirine (DOR) caused only a small increase in susceptibility to the most promising RPV analogs. Conclusions The antiviral data suggested that there are RPV analogs that could be candidates for further development as NNRTIs, and one of the most promising compounds was modeled in the NNRTI binding pocket. This model can be used to explain why this compound is broadly effective against the panel of NNRTI resistance mutants. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0244-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven J Smith
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Gary T Pauly
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Aamir Akram
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Kevin Melody
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ganesha Rai
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - Zandrea Ambrose
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA. .,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Craig J Thomas
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - Joel T Schneider
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Stephen H Hughes
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
34
|
An in-silico approach aimed to clarify the role of Y181C and K103N HIV-1 reverse transcriptase mutations versus Indole Aryl Sulphones. J Mol Graph Model 2016; 63:49-56. [DOI: 10.1016/j.jmgm.2015.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
|
35
|
Bahar I, Cheng MH, Lee JY, Kaya C, Zhang S. Structure-Encoded Global Motions and Their Role in Mediating Protein-Substrate Interactions. Biophys J 2015; 109:1101-9. [PMID: 26143655 DOI: 10.1016/j.bpj.2015.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/22/2022] Open
Abstract
Recent structure-based computational studies suggest that, in contrast to the classical description of equilibrium fluctuations as wigglings and jigglings, proteins have access to well-defined spectra of collective motions, called intrinsic dynamics, encoded by their structure under native state conditions. In particular, the global modes of motions (at the low frequency end of the spectrum) are shown by multiple studies to be highly robust to minor differences in the structure or to detailed interactions at the atomic level. These modes, encoded by the overall fold, usually define the mechanisms of interactions with substrates. They can be estimated by low-resolution models such as the elastic network models (ENMs) exclusively based on interresidue contact topology. The ability of ENMs to efficiently assess the global motions intrinsically favored by the overall fold as well as the relevance of these predictions to the dominant changes in structure experimentally observed for a given protein in the presence of different substrates suggest that the intrinsic dynamics plays a role in mediating protein-substrate interactions. These observations underscore the functional significance of structure-encoded dynamics, or the importance of the predisposition to favor functional global modes in the evolutionary selection of structures.
Collapse
Affiliation(s)
- Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ji Young Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cihan Kaya
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - She Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
36
|
Frey KM, Puleo DE, Spasov KA, Bollini M, Jorgensen WL, Anderson KS. Structure-based evaluation of non-nucleoside inhibitors with improved potency and solubility that target HIV reverse transcriptase variants. J Med Chem 2015; 58:2737-45. [PMID: 25700160 PMCID: PMC4378236 DOI: 10.1021/jm501908a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
The
development of novel non-nucleoside inhibitors (NNRTIs) with
activity against variants of HIV reverse transcriptase (RT) is crucial
for overcoming treatment failure. The NNRTIs bind in an allosteric
pocket in RT ∼10 Å away from the active site. Earlier
analogues of the catechol diether compound series have picomolar activity
against HIV strains with wild-type RT but lose potency against variants
with single Y181C and double K103N/Y181C mutations. As guided by structure-based
and computational studies, removal of the 5-Cl substitution of compound 1 on the catechol aryl ring system led to a new analogue compound 2 that maintains greater potency against Y181C and K103N/Y181C
variants and better solubility (510 μg/mL). Crystal structures
were determined for wild-type, Y181C, and K103N/Y181C RT in complex
with both compounds 1 and 2 to understand
the structural basis for these findings. Comparison of the structures
reveals that the Y181C mutation destabilizes the binding mode of compound 1 and disrupts the interactions with residues in the pocket.
Compound 2 maintains the same conformation in wild-type
and mutant structures, in addition to several interactions with the
NNRTI binding pocket. Comparison of the six crystal structures will
assist in the understanding of compound binding modes and future optimization
of the catechol diether series.
Collapse
Affiliation(s)
- Kathleen M Frey
- †Department of Pharmacology, ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8066, United States
| | - David E Puleo
- †Department of Pharmacology, ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8066, United States
| | - Krasimir A Spasov
- †Department of Pharmacology, ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8066, United States
| | - Mariella Bollini
- †Department of Pharmacology, ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8066, United States
| | - William L Jorgensen
- †Department of Pharmacology, ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8066, United States
| | - Karen S Anderson
- †Department of Pharmacology, ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8066, United States
| |
Collapse
|
37
|
Deuzing IP, Charpentier C, Wright DW, Matheron S, Paton J, Frentz D, van de Vijver DA, Coveney PV, Descamps D, Boucher CAB, Beerens N. Mutation V111I in HIV-2 reverse transcriptase increases the fitness of the nucleoside analogue-resistant K65R and Q151M viruses. J Virol 2015; 89:833-43. [PMID: 25355888 PMCID: PMC4301157 DOI: 10.1128/jvi.02259-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/23/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Infection with HIV-2 can ultimately lead to AIDS, although disease progression is much slower than with HIV-1. HIV-2 patients are mostly treated with a combination of nucleoside reverse transcriptase (RT) inhibitors (NRTIs) and protease inhibitors designed for HIV-1. Many studies have described the development of HIV-1 resistance to NRTIs and identified mutations in the polymerase domain of RT. Recent studies have shown that mutations in the connection and RNase H domains of HIV-1 RT may also contribute to resistance. However, only limited information exists regarding the resistance of HIV-2 to NRTIs. In this study, therefore, we analyzed the polymerase, connection, and RNase H domains of RT in HIV-2 patients failing NRTI-containing therapies. Besides the key resistance mutations K65R, Q151M, and M184V, we identified a novel mutation, V111I, in the polymerase domain. This mutation was significantly associated with mutations K65R and Q151M. Sequencing of the connection and RNase H domains of the HIV-2 patients did not reveal any of the mutations that were reported to contribute to NRTI resistance in HIV-1. We show that V111I does not strongly affect drug susceptibility but increases the replication capacity of the K65R and Q151M viruses. Biochemical assays demonstrate that V111I restores the polymerization defects of the K65R and Q151M viruses but negatively affects the fidelity of the HIV-2 RT enzyme. Molecular dynamics simulations were performed to analyze the structural changes mediated by V111I. This showed that V111I changed the flexibility of the 110-to-115 loop region, which may affect deoxynucleoside triphosphate (dNTP) binding and polymerase activity. IMPORTANCE Mutation V111I in the HIV-2 reverse transcriptase enzyme was identified in patients failing therapies containing nucleoside analogues. We show that the V111I change does not strongly affect the sensitivity of HIV-2 to nucleoside analogues but increases the fitness of viruses with drug resistance mutations K65R and Q151M.
Collapse
Affiliation(s)
- Ilona P Deuzing
- Department of Virology, Viroscience Laboratory, Erasmus MC, Rotterdam, the Netherlands
| | - Charlotte Charpentier
- INSERM, IAME, UMR 1137, University Paris Diderot, Sorbonne Paris Cité, Paris, France AP-HP, Hôpital Bichat, Laboratoire de Virologie, Paris, France
| | - David W Wright
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Sophie Matheron
- INSERM, IAME, UMR 1137, University Paris Diderot, Sorbonne Paris Cité, Paris, France AP-HP, Hôpital Bichat, Service des Maladies Infecieuse et Tropicales, Paris, France
| | - Jack Paton
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Dineke Frentz
- Department of Virology, Viroscience Laboratory, Erasmus MC, Rotterdam, the Netherlands
| | - David A van de Vijver
- Department of Virology, Viroscience Laboratory, Erasmus MC, Rotterdam, the Netherlands
| | - Peter V Coveney
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
| | - Diane Descamps
- INSERM, IAME, UMR 1137, University Paris Diderot, Sorbonne Paris Cité, Paris, France AP-HP, Hôpital Bichat, Laboratoire de Virologie, Paris, France
| | - Charles A B Boucher
- Department of Virology, Viroscience Laboratory, Erasmus MC, Rotterdam, the Netherlands
| | - Nancy Beerens
- Department of Virology, Viroscience Laboratory, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
38
|
Famiglini V, La Regina G, Coluccia A, Pelliccia S, Brancale A, Maga G, Crespan E, Badia R, Riveira-Muñoz E, Esté JA, Ferretti R, Cirilli R, Zamperini C, Botta M, Schols D, Limongelli V, Agostino B, Novellino E, Silvestri R. Indolylarylsulfones carrying a heterocyclic tail as very potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors. J Med Chem 2014; 57:9945-57. [PMID: 25418038 DOI: 10.1021/jm5011622] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We synthesized new indolylarylsulfone (IAS) derivatives carrying a heterocyclic tail at the indole-2-carboxamide nitrogen as potential anti-HIV/AIDS agents. Several new IASs yielded EC50 values <1.0 nM against HIV-1 WT and mutant strains in MT-4 cells. The (R)-11 enantiomer proved to be exceptionally potent against the whole viral panel; in the reverse transcriptase (RT) screening assay, it was remarkably superior to NVP and EFV and comparable to ETV. The binding poses were consistent with the one previously described for the IAS non-nucleoside reverse transcriptase inhibitors. Docking studies showed that the methyl group of (R)-11 points toward the cleft created by the K103N mutation, different from the corresponding group of (S)-11. By calculating the solvent-accessible surface, we observed that the exposed area of RT in complex with (S)-11 was larger than the area of the (R)-11 complex. Compounds 6 and 16 and enantiomer (R)-11 represent novel robust lead compounds of the IAS class.
Collapse
Affiliation(s)
- Valeria Famiglini
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014; 6:4095-139. [PMID: 25341668 PMCID: PMC4213579 DOI: 10.3390/v6104095] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
40
|
In vitro characterization of MK-1439, a novel HIV-1 nonnucleoside reverse transcriptase inhibitor. Antimicrob Agents Chemother 2013; 58:1652-63. [PMID: 24379202 DOI: 10.1128/aac.02403-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a mainstay of therapy for treating human immunodeficiency type 1 virus (HIV-1)-infected patients. MK-1439 is a novel NNRTI with a 50% inhibitory concentration (IC50) of 12, 9.7, and 9.7 nM against the wild type (WT) and K103N and Y181C reverse transcriptase (RT) mutants, respectively, in a biochemical assay. Selectivity and cytotoxicity studies confirmed that MK-1439 is a highly specific NNRTI with minimum off-target activities. In the presence of 50% normal human serum (NHS), MK-1439 showed excellent potency in suppressing the replication of WT virus, with a 95% effective concentration (EC95) of 20 nM, as well as K103N, Y181C, and K103N/Y181C mutant viruses with EC95 of 43, 27, and 55 nM, respectively. MK-1439 exhibited similar antiviral activities against 10 different HIV-1 subtype viruses (a total of 93 viruses). In addition, the susceptibility of a broader array of clinical NNRTI-associated mutant viruses (a total of 96 viruses) to MK-1439 and other benchmark NNRTIs was investigated. The results showed that the mutant profile of MK-1439 was superior overall to that of efavirenz (EFV) and comparable to that of etravirine (ETR) and rilpivirine (RPV). Furthermore, E138K, Y181C, and K101E mutant viruses that are associated with ETR and RPV were susceptible to MK-1439 with a fold change (FC) of <3. A two-drug in vitro combination study indicated that MK-1439 acts nonantagonistically in the antiviral activity with each of 18 FDA-licensed drugs for HIV infection. Taken together, these in vitro data suggest that MK-1439 possesses the desired properties for further development as a new antiviral agent.
Collapse
|
41
|
Mohamed S, Ravet S, Camus C, Khiri H, Olive D, Halfon P. Clinical and analytical relevance of NNRTIs minority mutations on viral failure in HIV-1 infected patients. J Med Virol 2013; 86:394-403. [DOI: 10.1002/jmv.23853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Sofiane Mohamed
- Laboratoire Alphabio; Marseille France
- Laboratoire d'Immunologie des Tumeurs et Centre INSERM de Recherche en Cancérologie, Institut Paoli Calmettes; Marseille France
| | | | | | | | - Daniel Olive
- Laboratoire d'Immunologie des Tumeurs et Centre INSERM de Recherche en Cancérologie, Institut Paoli Calmettes; Marseille France
| | - Philippe Halfon
- Laboratoire Alphabio; Marseille France
- Hôpital Européen; Marseille France
| |
Collapse
|
42
|
Schauer G, Leuba S, Sluis-Cremer N. Biophysical Insights into the Inhibitory Mechanism of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors. Biomolecules 2013; 3:889-904. [PMID: 24970195 PMCID: PMC4030976 DOI: 10.3390/biom3040889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/16/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) plays a central role in HIV infection. Current United States Federal Drug Administration (USFDA)-approved antiretroviral therapies can include one of five approved non-nucleoside RT inhibitors (NNRTIs), which are potent inhibitors of RT activity. Despite their crucial clinical role in treating and preventing HIV-1 infection, their mechanism of action remains elusive. In this review, we introduce RT and highlight major advances from experimental and computational biophysical experiments toward an understanding of RT function and the inhibitory mechanism(s) of NNRTIs.
Collapse
Affiliation(s)
- Grant Schauer
- Program in Molecular Biophysics and Structural Biology, Hillman Cancer Center, University of Pittsburgh, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| | - Sanford Leuba
- Program in Molecular Biophysics and Structural Biology, Hillman Cancer Center, University of Pittsburgh, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| | - Nicolas Sluis-Cremer
- Department of Medicine, Division of Infectious Diseases, 3550 Terrace St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
43
|
Seckler JM, Leioatts N, Miao H, Grossfield A. The interplay of structure and dynamics: insights from a survey of HIV-1 reverse transcriptase crystal structures. Proteins 2013; 81:1792-801. [PMID: 23720322 DOI: 10.1002/prot.24325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/12/2013] [Accepted: 04/19/2013] [Indexed: 11/07/2022]
Abstract
HIV-1 reverse transcriptase (RT) is a critical drug target for HIV treatment, and understanding the exact mechanisms of its function and inhibition would significantly accelerate the development of new anti-HIV drugs. It is well known that structure plays a critical role in protein function, but for RT, structural information has proven to be insufficient-despite enormous effort-to explain the mechanism of inhibition and drug resistance of non-nucleoside RT inhibitors. We hypothesize that the missing link is dynamics, information about the motions of the system. However, many of the techniques that give the best information about dynamics, such as solution nuclear magnetic resonance and molecular dynamics simulations, cannot be easily applied to a protein as large as RT. As an alternative, we combine elastic network modeling with simultaneous hierarchical clustering of structural and dynamic data. We present an extensive survey of the dynamics of RT bound to a variety of ligands and with a number of mutations, revealing a novel mechanism for drug resistance to non-nucleoside RT inhibitors. Hydrophobic core mutations restore active-state motion to multiple functionally significant regions of HIV-1 RT. This model arises out of a combination of structural and dynamic information, rather than exclusively from one or the other.
Collapse
Affiliation(s)
- James M Seckler
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York
| | | | | | | |
Collapse
|
44
|
Abstract
Viral diseases are leading cause of deaths worldwide as WHO report suggests that hepatitis A virus (HAV) infects more than 80 % of the population of many developing countries. Viral hepatitis B (HBV) affects an estimated 360 million people, whereas hepatitis C affects 123 million people worldwide, and last but not least, at current, India has an HIV/AIDS population of approximately 2.4 million people and more than 30 million in whole world and now it has become a reason for 1.8 million death globally; thus, millions of people still struggle for their lives. The progress in medical science has made it possible in overcoming the various fatal diseases such as small pox, chicken pox, dengue, etc., but human immunodeficiency viruses, influenza, and hepatitis virus have renewed challenge surprisingly. The obstacles and challenges in therapy include existence of antibiotic resistance strains of common organisms due to overuse of antibiotics, lack of vaccines, adverse drug reaction, and last but not least the susceptibility concerns. Emergence of pharmacogenomics and pharmacogenetics has shown some promises to take challenges. The discovery of human genome project has opened new vistas to understand the behaviors of genetic makeup in development and progression of diseases and treatment in various viral diseases. Current and previous decade have been engaged in making repositories of polymorphisms (SNPs) of various genes including drug-metabolizing enzymes, receptors, inflammatory cells related with immunity, and antigen-presenting cells, along with the prediction of risks. The genetic makeup alone is most likely an adequate way to handle the therapeutic decision-making process for previous regimen failure. With the introduction of new antiviral therapeutic agents, a significant improvement in progression and overall survival has been achieved, but these drugs have shown several adverse responses in some individuals, so the success is not up to the expectations. Research and acquisition of new knowledge of pharmacogenomics may help in overcoming the prevailing burden of viral diseases. So it will definitely help in selecting the most effective therapeutic agents, effective doses, and drug response for the individuals. Thus, it will be able to transform the laboratory research into the clinical bench side and will also help in understanding the pathogenesis of viral diseases with drug action, so the patients will be managed more properly and finally become able to fulfill the promise of the future.
Collapse
Affiliation(s)
- Debmalya Barh
- Centre for Genomics & Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, West Bengal India
| | - Dipali Dhawan
- Institute of Life Sciences, B.V. Patel Pharmaceutical Education and Research Development Centre, Ahmedabad University, Ahmedabad, Gujarat India
| | - Nirmal Kumar Ganguly
- Policy Centre for Biomedical Research, Translational Health Science and Technology Institute (Department of Biotechnology Institute, Government of India), Office @ National Institute of Immunology, New Delhi, India
| |
Collapse
|
45
|
Global Conformational Dynamics of HIV-1 Reverse Transcriptase Bound to Non-Nucleoside Inhibitors. BIOLOGY 2012; 1:222-44. [PMID: 24832224 PMCID: PMC4009785 DOI: 10.3390/biology1020222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 11/16/2022]
Abstract
HIV-1 Reverse Transcriptase (RT) is a multifunctional enzyme responsible for the transcription of the RNA genome of the HIV virus into DNA suitable for incorporation within the DNA of human host cells. Its crucial role in the viral life cycle has made it one of the major targets for antiretroviral drug therapy. The Non-Nucleoside RT Inhibitor (NNRTI) class of drugs binds allosterically to the enzyme, affecting many aspects of its activity. We use both coarse grained network models and atomistic molecular dynamics to explore the changes in protein dynamics induced by NNRTI binding. We identify changes in the flexibility and conformation of residue Glu396 in the RNaseH primer grip which could provide an explanation for the acceleration in RNaseH cleavage rate observed experimentally in NNRTI bound HIV-1 RT. We further suggest a plausible path for conformational and dynamic changes to be communicated from the vicinity of the NNRTI binding pocket to the RNaseH at the other end of the enzyme.
Collapse
|
46
|
Abstract
Three-dimensional molecular structures can provide detailed information on biological mechanisms and, for cases in which the molecular function affects human health, can significantly aid in the development of therapeutic interventions. For almost 25 years, key components of the lentivirus HIV-1, including the envelope glycoproteins, the capsid and the replication enzymes reverse transcriptase, integrase and protease, have been scrutinized to near atomic-scale resolution. Moreover, structural analyses of the interactions between viral and host cell components have yielded key insights into the mechanisms of viral entry, chromosomal integration, transcription and egress from cells. Here, we review recent advances in HIV-1 structural biology, focusing on the molecular mechanisms of viral replication and on the development of new therapeutics.
Collapse
|
47
|
Ammaranond P, Sanguansittianan S. Mechanism of HIV antiretroviral drugs progress toward drug resistance. Fundam Clin Pharmacol 2011; 26:146-61. [PMID: 22118474 DOI: 10.1111/j.1472-8206.2011.01009.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapid replication rate of HIV-1 RNA and its inherent genetic variation have led to the production of many HIV-1 variants with decreased drug susceptibility. The capacity of HIV to develop drug resistance mutations is a major obstacle to long-term effective anti-HIV therapy. Incomplete suppression of viral replication with an initial drug regimen diminishes the clinical benefit to the patient and may promote the development of broader drug resistance that may cause subsequent treatment regimens to be ineffective. The increased clinical use of combination antiretroviral treatment for HIV-1 infection has led to the selection of viral strains resistant to multiple drugs, including strains resistant to all licensed nucleoside analog RT inhibitors and protease inhibitors. Therefore, it is important to understand the influence of such mutations on viral properties such as replicative fitness, fidelity, and mutation rates. Although research continues to improve our understanding of resistance, leading to refined treatment strategies and, in some cases, improved outcome, resistance to antiretroviral therapy remains a major cause of treatment failure among patients living with HIV-1.
Collapse
Affiliation(s)
- Palanee Ammaranond
- Department of Transfusion Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| | | |
Collapse
|
48
|
Minkara MS, Davis PH, Radhakrishnan ML. Multiple drugs and multiple targets: An analysis of the electrostatic determinants of binding between non-nucleoside HIV-1 reverse transcriptase inhibitors and variants of HIV-1 RT. Proteins 2011; 80:573-90. [DOI: 10.1002/prot.23221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/13/2011] [Accepted: 10/06/2011] [Indexed: 11/09/2022]
|
49
|
F18, a novel small-molecule nonnucleoside reverse transcriptase inhibitor, inhibits HIV-1 replication using distinct binding motifs as demonstrated by resistance selection and docking analysis. Antimicrob Agents Chemother 2011; 56:341-51. [PMID: 22037848 DOI: 10.1128/aac.05537-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are one of the key components of antiretroviral therapy drug regimen against human immunodeficiency virus type 1 (HIV-1) replication. We previously described a newly synthesized small molecule, 10-chloromethyl-11-demethyl-12-oxo-calanolide A (F18), a (+)-calanolide A analog, as a novel anti-HIV-1 NNRTI (H. Xue et al., J. Med. Chem. 53:1397-1401, 2010). Here, we further investigated its antiviral range, drug resistance profile, and underlying mechanism of action. F18 consistently displayed potent activity against primary HIV-1 isolates, including various subtypes of group M, circulating recombinant form (CRF) 01_AE, and laboratory-adapted drug-resistant viruses. Moreover, F18 displayed distinct profiles against 17 NNRTI-resistant pseudoviruses, with an excellent potency especially against one of the most prevalent strains with the Y181C mutation (50% effective concentration, 1.0 nM), which was in stark contrast to the extensively used NNRTIs nevirapine and efavirenz. Moreover, we induced F18-resistant viruses by in vitro serial passages and found that the mutation L100I appeared to be the dominant contributor to F18 resistance, further suggesting a binding motif different from that of nevirapine and efavirenz. F18 was nonantagonistic when used in combination with other antiretrovirals against both wild-type and drug-resistant viruses in infected peripheral blood mononuclear cells. Interestingly, F18 displayed a highly synergistic antiviral effect with nevirapine against nevirapine-resistant virus (Y181C). Furthermore, in silico docking analysis suggested that F18 may bind to the HIV-1 reverse transcriptase differently from other NNRTIs. This study presents F18 as a new potential drug for clinical use and also presents a new mechanism-based design for future NNRTI.
Collapse
|
50
|
Alcaro S, Alteri C, Artese A, Ceccherini-Silberstein F, Costa G, Ortuso F, Bertoli A, Forbici F, Santoro MM, Parrotta L, Flandre P, Masquelier B, Descamps D, Calvez V, Marcelin AG, Perno CF, Sing T, Svicher V. Docking analysis and resistance evaluation of clinically relevant mutations associated with the HIV-1 non-nucleoside reverse transcriptase inhibitors nevirapine, efavirenz and etravirine. ChemMedChem 2011; 6:2203-13. [PMID: 21953939 DOI: 10.1002/cmdc.201100362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Indexed: 11/07/2022]
Abstract
An integrated computational and statistical approach was used to determine the association of non-nucleoside reverse transcriptase inhibitors (NNRTIs) nevirapine, efavirenz and etravirine with resistance mutations that cause therapeutic failure and their impact on NNRTI resistance. Mutations detected for nevirapine virological failure with a prevalence greater than 10% in the used patient set were: K103N, Y181C, G190A, and K101E. A support vector regression model, based on matched genotypic/phenotypic data (n=850), showed that among 6365 analyzed mutations, K103N, Y181C and G190A have the first, third, and sixth greatest significance for nevirapine resistance, respectively. The most common indicator of treatment failure for efavirenz was K103N mutation present in 56.7% of the patients where the drug failed, followed by V108I, L100I, and G190A. For efavirenz resistance, K103N, G190, and L100I have the first, fourth, and eighth greatest significance, respectively, as determined in support vector regression model. No positive interactions were observed among nevirapine resistance mutations, while a more complex situation was observed with treatment failure of efavirenz and etravirine, characterized by the accumulation of multiple mutations. Docking simulations and free energy analysis based on docking scores of mutated human immunodeficiency virus (HIV) RT complexes were used to evaluate the influence of selected mutations on drug recognition. Results from support vector regression were confirmed by docking analysis. In particular, for nevirapine and efavirenz, a single mutation K103N was associated with the most unfavorable energetic profile compared to the wild-type sequence. This is in line with recent clinical data reporting that diarylpyrimidine etravirine, a very potent third generation drug effective against a wide range of drug-resistant HIV-1 variants, shows increased affinity towards K103N/S mutants due to its high conformational flexibility.
Collapse
Affiliation(s)
- Stefano Alcaro
- Dipartimento di Scienze Farmacobiologiche, Università degli Studi Magna Graecia di Catanzaro, Complesso Ninì Barbieri, 88021 Roccelletta di Borgia (CZ), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|