1
|
Yu LT, Hancu MC, Kreutzberger MAB, Henrickson A, Demeler B, Egelman EH, Hartgerink JD. Hollow Octadecameric Self-Assembly of Collagen-like Peptides. J Am Chem Soc 2023; 145:5285-5296. [PMID: 36812303 PMCID: PMC10131286 DOI: 10.1021/jacs.2c12931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The folding of collagen is a hierarchical process that starts with three peptides associating into the characteristic triple helical fold. Depending on the specific collagen in question, these triple helices then assemble into bundles reminiscent of α-helical coiled-coils. Unlike α-helices, however, the bundling of collagen triple helices is very poorly understood with almost no direct experimental data available. In order to shed light on this critical step of collagen hierarchical assembly, we have examined the collagenous region of complement component 1q. Thirteen synthetic peptides were prepared to dissect the critical regions allowing for its octadecameric self-assembly. We find that short peptides (under 40 amino acids) are able to self-assemble into specific (ABC)6 octadecamers. This requires the ABC heterotrimeric composition as the self-assembly subunit, but does not require disulfide bonds. Self-assembly into this octadecamer is aided by short noncollagenous sequences at the N-terminus, although they are not entirely required. The mechanism of self-assembly appears to begin with the very slow formation of the ABC heterotrimeric helix, followed by rapid bundling of triple helices into progressively larger oligomers, terminating in the formation of the (ABC)6 octadecamer. Cryo-electron microscopy reveals the (ABC)6 assembly as a remarkable, hollow, crown-like structure with an open channel approximately 18 Å at the narrow end and 30 Å at the wide end. This work helps to illuminate the structure and assembly mechanism of a critical protein in the innate immune system and lays the groundwork for the de novo design of higher order collagen mimetic peptide assemblies.
Collapse
Affiliation(s)
- Le Tracy Yu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Maria C. Hancu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia Box 800733, Charlottesville, VA 22908, United States
| | - Amy Henrickson
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia Box 800733, Charlottesville, VA 22908, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| |
Collapse
|
2
|
Iqbal H, Fung KW, Gor J, Bishop AC, Makhatadze GI, Brodsky B, Perkins SJ. A solution structure analysis reveals a bent collagen triple helix in the complement activation recognition molecule mannan-binding lectin. J Biol Chem 2023; 299:102799. [PMID: 36528062 PMCID: PMC9898670 DOI: 10.1016/j.jbc.2022.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Collagen triple helices are critical in the function of mannan-binding lectin (MBL), an oligomeric recognition molecule in complement activation. The MBL collagen regions form complexes with the serine proteases MASP-1 and MASP-2 in order to activate complement, and mutations lead to common immunodeficiencies. To evaluate their structure-function properties, we studied the solution structures of four MBL-like collagen peptides. The thermal stability of the MBL collagen region was much reduced by the presence of a GQG interruption in the typical (X-Y-Gly)n repeat compared to controls. Experimental solution structural data were collected using analytical ultracentrifugation and small angle X-ray and neutron scattering. As controls, we included two standard Pro-Hyp-Gly collagen peptides (POG)10-13, as well as three more peptides with diverse (X-Y-Gly)n sequences that represented other collagen features. These data were quantitatively compared with atomistic linear collagen models derived from crystal structures and 12,000 conformations obtained from molecular dynamics simulations. All four MBL peptides were bent to varying degrees up to 85o in the best-fit molecular dynamics models. The best-fit benchmark peptides (POG)n were more linear but exhibited a degree of conformational flexibility. The remaining three peptides showed mostly linear solution structures. In conclusion, the collagen helix is not strictly linear, the degree of flexibility in the triple helix depends on its sequence, and the triple helix with the GQG interruption showed a pronounced bend. The bend in MBL GQG peptides resembles the bend in the collagen of complement C1q and may be key for lectin pathway activation.
Collapse
Affiliation(s)
- Hina Iqbal
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Ka Wai Fung
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Jayesh Gor
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Anthony C Bishop
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - George I Makhatadze
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Barbara Brodsky
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, Massachusetts, USA
| | - Stephen J Perkins
- Department of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
3
|
Nanda R, Hazan S, Sauer K, Aladin V, Keinan-Adamsky K, Corzilius B, Shahar R, Zaslansky P, Goobes G. Molecular differences in collagen organization and in organic-inorganic interfacial structure of bones with and without osteocytes. Acta Biomater 2022; 144:195-209. [PMID: 35331939 DOI: 10.1016/j.actbio.2022.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
Bone is a fascinating biomaterial composed mostly of type-I collagen fibers as an organic phase, apatite as an inorganic phase, and water molecules residing at the interfaces between these phases. They are hierarchically organized with minor constituents such as non-collagenous proteins, citrate ions and glycosaminoglycans into a composite structure that is mechanically durable yet contains enough porosity to accommodate cells and blood vessels. The nanometer scale organization of the collagen fibrous structure and the mineral constituents in bone were recently extensively scrutinized. However, molecular details at the lowest hierarchical level still need to be unraveled to better understand the exact atomic-level arrangement of all these important components in the context of the integral structure of the bone. In this report, we unfold some of the molecular characteristics differentiating between two load-bearing (cleithrum) bones, one from sturgeon fish, where the matrix contains osteocytes and one from pike fish where the bone tissue is devoid of these bone cells. Using enhanced solid-state NMR measurements, we underpin disparities in the collagen fibril structure and dynamics, the mineral phases, the citrate content at the organic-inorganic interface and water penetrability in the two bones. These findings suggest that different strategies are undertaken in the erection of the mineral-organic interfaces in various bones characterized by dissimilar osteogenesis or remodeling pathways and may have implications for the mechanical properties of the particular bone. STATEMENT OF SIGNIFICANCE: Bone boasts unique interactions between collagen fibers and mineral phases through interfaces holding together this bio-composite structure. Over evolution, fish have gone from mineralizing their bones aided by certain bone cells called osteocytes, like tetrapod, to mineralization without these cells. Here, we report atomic level differences in collagen fiber cross linking and organization, porosity of the mineral phases and content of citrate molecules at the bio-mineral interface in bones from modern versus ancient fish. The dissimilar structural features may suggest disparate mechanical properties for the two bones. Fundamental level understanding of the organic and inorganic components in bone and the interfacial interactions holding them together is essential for successful bone repair and for treating better tissue pathologies.
Collapse
|
4
|
Xu Y, Kirchner M. Segment-Long-Spacing (SLS) and the Polymorphic Structures of Fibrillar Collagen. Subcell Biochem 2022; 99:495-521. [PMID: 36151387 DOI: 10.1007/978-3-031-00793-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The diverse and complex functions of collagen during the development of an organism are closely related to the polymorphism of its supramolecular structures in the extracellular matrix. SLS (segment-long-spacing) is one of the best understood alternative structures of collagen. SLS played an instrumental role in the original studies of collagen more than half a century ago that laid the foundation of nearly everything we know about collagen today. Despite being used mostly under in vitro conditions, the natural occurrence of SLS in tissues has also been reported. Here we will provide a brief overview of the major findings of the SLS and other structures of collagen based on a wealth of work published starting from the 1940s. We will discuss the factors that determine the stability and the structural specificity of the different molecular assemblies of collagen in light of the new studies using designed fibril forming collagen peptides. At the end of the chapter, we will summarize some recent discoveries of the alternative structures of collagen in tissues, especially those involved in pathogenic states. A revisit of SLS will likely inspire new understandings concerning the range of critical roles of fibrillar collagen in terms of its organizational diversity in the extracellular matrix.
Collapse
Affiliation(s)
- Yujia Xu
- Department of Chemistry, Hunter College of the City University of New York, New York, NY, USA.
| | - Michele Kirchner
- Department of Chemistry, Hunter College of the City University of New York, New York, NY, USA
| |
Collapse
|
5
|
Qi Y, Zhou D, Kessler JL, Qiu R, Yu SM, Li G, Qin Z, Li Y. Terminal repeats impact collagen triple-helix stability through hydrogen bonding. Chem Sci 2022; 13:12567-12576. [PMID: 36382282 PMCID: PMC9629113 DOI: 10.1039/d2sc03666e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Nearly 30% of human proteins have tandem repeating sequences. Structural understanding of the terminal repeats is well-established for many repeat proteins with the common α-helix and β-sheet foldings. By contrast, the sequence–structure interplay of the terminal repeats of the collagen triple-helix remains to be fully explored. As the most abundant human repeat protein and the most prevalent structural component of the extracellular matrix, collagen features a hallmark triple-helix formed by three supercoiled polypeptide chains of long repeating sequences of the Gly–X–Y triplets. Here, with CD characterization of 28 collagen-mimetic peptides (CMPs) featuring various terminal motifs, as well as DSC measurements, crystal structure analysis, and computational simulations, we show that CMPs only differing in terminal repeat may have distinct end structures and stabilities. We reveal that the cross-chain hydrogen bonding mediated by the terminal repeat is key to maintaining the triple-helix's end structure, and that disruption of it with a single amide to carboxylate substitution can lead to destabilization as drastic as 19 °C. We further demonstrate that the terminal repeat also impacts how strong the CMP strands form hybrid triple-helices with unfolded natural collagen chains in tissue. Our findings provide a spatial profile of hydrogen bonding within the CMP triple-helix, marking a critical guideline for future crystallographic or NMR studies of collagen, and algorithms for predicting triple-helix stability, as well as peptide-based collagen assemblies and materials. This study will also inspire new understanding of the sequence–structure relationship of many other complex structural proteins with repeating sequences. Collagen mimetic peptides (CMPs) only differing in terminal repeat have distinct stabilities and end structures due to a spatial hydrogen bonding profile that is useful for future crystallography, algorithm prediction, and materials of collagen.![]()
Collapse
Affiliation(s)
- Yingying Qi
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Daoning Zhou
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Julian L. Kessler
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Rongmao Qiu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - S. Michael Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Gang Li
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Zhao Qin
- Department of Civil & Environmental Engineering, College of Engineering & Computer Science, Syracuse University, Syracuse, New York 13244, USA
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
6
|
Xu Y, Kirchner M. Collagen Mimetic Peptides. Bioengineering (Basel) 2021; 8:5. [PMID: 33466358 PMCID: PMC7824840 DOI: 10.3390/bioengineering8010005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Since their first synthesis in the late 1960s, collagen mimetic peptides (CMPs) have been used as a molecular tool to study collagen, and as an approach to develop novel collagen mimetic biomaterials. Collagen, a major extracellular matrix (ECM) protein, plays vital roles in many physiological and pathogenic processes. Applications of CMPs have advanced our understanding of the structure and molecular properties of a collagen triple helix-the building block of collagen-and the interactions of collagen with important molecular ligands. The accumulating knowledge is also paving the way for developing novel CMPs for biomedical applications. Indeed, for the past 50 years, CMP research has been a fast-growing, far-reaching interdisciplinary field. The major development and achievement of CMPs were documented in a few detailed reviews around 2010. Here, we provided a brief overview of what we have learned about CMPs-their potential and their limitations. We focused on more recent developments in producing heterotrimeric CMPs, and CMPs that can form collagen-like higher order molecular assemblies. We also expanded the traditional view of CMPs to include larger designed peptides produced using recombinant systems. Studies using recombinant peptides have provided new insights on collagens and promoted progress in the development of collagen mimetic fibrillar self-assemblies.
Collapse
Affiliation(s)
- Yujia Xu
- Department of Chemistry, Hunter College of the City University of New York, 695 Park Ave., New York, NY 10065, USA;
| | | |
Collapse
|
7
|
Proton Conduction via Water Bridges Hydrated in the Collagen Film. J Funct Biomater 2020; 11:jfb11030061. [PMID: 32887392 PMCID: PMC7563757 DOI: 10.3390/jfb11030061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Accepted: 09/01/2020] [Indexed: 01/16/2023] Open
Abstract
Collagen films with proton conduction are a candidate of next generation of fuel-cell electrolyte. To clarify a relation between proton conductivity and formation of water networks in the collagen film originating from a tilapia’s scale, we systematically measured the ac conductivity, infrared absorption spectrum, and weight change as a function of relative humidity (RH) at room temperature. The integrated absorbance concerning an O–H stretching mode of water molecules increases above 60% RH in accordance with the weight change. The dc conductivity varies in the vicinity of 60 and 83% RH. From those results, we have determined the dc conductivity vs. hydration number (N) per unit (Gly-X-Y). The proton conduction is negligible in the collagen molecule itself, but dominated by the hydration shell, the development of which is characterized with three regions. For 0 < N < 2, the conductivity is extremely small, because the water molecule in the primary hydration shell has a little hydrogen bonded with each other. For 2 < N < 4, a quasi-one-dimensional proton conduction occurs through intra-water bridges in the helix. For 4 < N, the water molecule fills the helix, and inter-water bridges are formed in between the adjacent helices, so that a proton-conducting network is extended three dimensional.
Collapse
|
8
|
Bourne JW, Shi L, Torzilli PA. Collagen peptide simulated bending after applied axial deformation. J Mech Behav Biomed Mater 2020; 108:103835. [PMID: 32469728 DOI: 10.1016/j.jmbbm.2020.103835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 01/19/2023]
Abstract
Structural proteins in the extracellular matrix are subjected to a range of mechanical loading conditions, including varied directions of force application. Molecular modeling suggests that these mechanical forces directly affect collagen's conformation and the subsequent mechanical response at the molecular level is complex. For example, tensile forces in the axial direction result in collagen triple helix elongation and unwinding, while perpendicular forces can cause local triple helix disruption. However, the effects of more complicated mechanical loading, such as the effect of axial pretension on collagen bending and triple helix microunfolding are unknown. In this study we used steered molecular dynamics to first model a collagen peptide under axial tension and then apply a perpendicular bending force. Axial tension causes molecular elongation and increased the subsequent perpendicular bending stiffness, but surprisingly did not increase the predicted collagen triple helix microunfolding threshold. We believe these results elucidate a key potential mechanism by which microscale mechanical loads translate from cellular and micro scales down to the nano and atomistic. Further, these data predict that cryptic force-induced collagen triple helix unwinding is axial-deformation independent, supporting the possibility that cell traction forces could be a key molecular mechanism to alter the cellular matrix microenvironment to facilitate collagen enzymatic degradation and subsequent cellular migration, such as in tumor extravasation.
Collapse
Affiliation(s)
- Jonathan W Bourne
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, 535 E. 70(th) St., New York, NY, 10021, USA.
| | - Lei Shi
- Dept. of Physiology and Biophysics (Box 75), Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA
| | - Peter A Torzilli
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, 535 E. 70(th) St., New York, NY, 10021, USA; Physiology, Biophysics, and Systems Biology Program (Box 75), Weill Cornell Graduate School of Medical Sciences, 1300 York Ave., New York, NY, 10065, USA
| |
Collapse
|
9
|
Etzkorn FA, Ware RI, Pester AM, Troya D. Conformational Analysis of n→π* Interactions in Collagen Triple Helix Models. J Phys Chem B 2019; 123:496-503. [PMID: 30525631 DOI: 10.1021/acs.jpcb.8b08384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ab initio calculations of three models of collagen at positions Pro-Pro-Gly (1), Pro-Gly-Pro (2), and Gly-Pro-Pro (3) were performed to assess the conformational variation of n→π* contributions to the stability of the collagen triple helix. Full conformational analyses by relaxed potential-energy scans of the Ψ dihedral angle of the central residue in models 1, 2, and 3 revealed the presence of several n→π* interactions. In model 2, with Gly as the central residue, both the Φ and Ψ dihedral angles of Gly were scanned. Most minima of each model contained one or two n→π* interactions, with pyramidalization at the π* carbon. We also observed pyramidalization at the n→π* donor amide nitrogens. Minima with hydrogen-bond or non-native n→π* interactions compete with the collagen stabilizing n→π* interactions. The collagen-like n→ re-π* conformation was found as the global minimum only in model 3. The global minimum of 1 had a 5-membered ring hydrogen bond with an additional weak n→ si-π* interaction. The global minimum of 2 was in the extended conformation. We predict that the n→π* interactions found in native collagen, while individually small, cumulatively contribute to the stability of the triple helix conformation of collagen.
Collapse
Affiliation(s)
- Felicia A Etzkorn
- Department of Chemistry , Virginia Tech , Blacksburg Virginia 24061 , United States
| | - Rachel I Ware
- Department of Chemistry , Virginia Tech , Blacksburg Virginia 24061 , United States
| | - Amanda M Pester
- Department of Chemistry , Virginia Tech , Blacksburg Virginia 24061 , United States
| | - Diego Troya
- Department of Chemistry , Virginia Tech , Blacksburg Virginia 24061 , United States
| |
Collapse
|
10
|
Collagen degradation in tuberculosis pathogenesis: the biochemical consequences of hosting an undesired guest. Biochem J 2018; 475:3123-3140. [PMID: 30315001 DOI: 10.1042/bcj20180482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
The scenario of chemical reactions prompted by the infection by Mycobacterium tuberculosis is huge. The infection generates a localized inflammatory response, with the recruitment of neutrophils, monocytes, and T-lymphocytes. Consequences of this immune reaction can be the eradication or containment of the infection, but these events can be deleterious to the host inasmuch as lung tissue can be destroyed. Indeed, a hallmark of tuberculosis (TB) is the formation of lung cavities, which increase disease development and transmission, as they are sites of high mycobacterial burden. Pulmonary cavitation is associated with antibiotic failure and the emergence of antibiotic resistance. For cavities to form, M. tuberculosis induces the overexpression of host proteases, like matrix metalloproteinases and cathepsin, which are secreted from monocyte-derived cells, neutrophils, and stromal cells. These proteases destroy the lung parenchyma, in particular the collagen constituent of the extracellular matrix (ECM). Namely, in an attempt to destroy infected cells, the immune reactions prompted by mycobacterial infections induce the destruction of vital regions of the lung, in a process that can become fatal. Here, we review structure and function of the main molecular actors of ECM degradation due to M. tuberculosis infection and the proposed mechanisms of tissue destruction, mainly attacking fibrillar collagen. Importantly, enzymes responsible for collagen destruction are emerging as key targets for adjunctive therapies to limit immunopathology in TB.
Collapse
|
11
|
Makareeva E, Sun G, Mirigian LS, Mertz EL, Vera JC, Espinoza NA, Yang K, Chen D, Klein TE, Byers PH, Leikin S. Substitutions for arginine at position 780 in triple helical domain of the α1(I) chain alter folding of the type I procollagen molecule and cause osteogenesis imperfecta. PLoS One 2018; 13:e0200264. [PMID: 29990383 PMCID: PMC6039012 DOI: 10.1371/journal.pone.0200264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/24/2018] [Indexed: 01/30/2023] Open
Abstract
OI is a clinically and genetically heterogeneous disorder characterized by bone fragility. More than 90% of patients are heterozygous for mutations in type I collagen genes, COL1A1 and COL1A2, and a common mutation is substitution for an obligatory glycine in the triple helical Gly-X-Y repeats. Few non-glycine substitutions in the triple helical domain have been reported; most result in Y-position substitutions of arginine by cysteine. Here, we investigated leucine and cysteine substitutions for one Y-position arginine, p.Arg958 (Arg780 in the triple helical domain) of proα1(I) chains that cause mild OI. We compared their effects with two substitutions for glycine located in close proximity. Like substitutions for glycine, those for arginine reduced the denaturation temperature of the whole molecule and caused asymmetric posttranslational overmodification of the chains. Circular dichroism and increased susceptibility to cleavage by MMP1, MMP2 and catalytic domain of MMP1 revealed significant destabilization of the triple helix near the collagenase cleavage site. On a cellular level, we observed slower triple helix folding and intracellular collagen retention, which disturbed the Endoplasmic Reticulum function and affected matrix deposition. Molecular dynamic modeling suggested that Arg780 substitutions disrupt the triple helix structure and folding by eliminating hydrogen bonds of arginine side chains, in addition to preventing HSP47 binding. The pathogenic effects of these non-glycine substitutions in bone are probably caused mostly by procollagen misfolding and its downstream effects.
Collapse
Affiliation(s)
- Elena Makareeva
- Section on Physical Biochemistry, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Guoli Sun
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Lynn S. Mirigian
- Section on Physical Biochemistry, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Edward L. Mertz
- Section on Physical Biochemistry, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juan C. Vera
- Section on Physical Biochemistry, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nydea A. Espinoza
- Section on Physical Biochemistry, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathleen Yang
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Diana Chen
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Teri E. Klein
- Department of Genetics, Stanford University, Palo Alto, California, United States of America
| | - Peter H. Byers
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
| | - Sergey Leikin
- Section on Physical Biochemistry, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Release of ICTP and CTX telopeptides from demineralized dentin matrices: Effect of time, mass and surface area. Dent Mater 2018; 34:452-459. [DOI: 10.1016/j.dental.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/23/2022]
|
13
|
Breschi L, Maravic T, Cunha SR, Comba A, Cadenaro M, Tjäderhane L, Pashley DH, Tay FR, Mazzoni A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent Mater 2018; 34:78-96. [DOI: 10.1016/j.dental.2017.11.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
|
14
|
Hoop CL, Zhu J, Nunes AM, Case DA, Baum J. Revealing Accessibility of Cryptic Protein Binding Sites within the Functional Collagen Fibril. Biomolecules 2017; 7:biom7040076. [PMID: 29104255 PMCID: PMC5745458 DOI: 10.3390/biom7040076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 11/16/2022] Open
Abstract
Fibrillar collagens are the most abundant proteins in the extracellular matrix. Not only do they provide structural integrity to all of the connective tissues in the human body, but also their interactions with multiple cell receptors and other matrix molecules are essential to cell functions, such as growth, repair, and cell adhesion. Although specific binding sequences of several receptors have been determined along the collagen monomer, processes by which collagen binding partners recognize their binding sites in the collagen fibril, and the critical driving interactions, are poorly understood. The complex molecular assembly of bundled triple helices within the collagen fibril makes essential ligand binding sites cryptic or hidden from the molecular surface. Yet, critical biological processes that require collagen ligands to have access to interaction sites still occur. In this contribution, we will discuss the molecular packing of the collagen I fibril from the perspective of how collagen ligands access their known binding regions within the fibril, and we will present our analysis of binding site accessibility from the fibril surface. Understanding the basis of these interactions at the atomic level sets the stage for developing drug targets against debilitating collagen diseases and using collagen as drug delivery systems and new biomaterials.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Jie Zhu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Ana Monica Nunes
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Nurlidar F, Kobayashi M, Terada K, Ando T, Tanihara M. Cytocompatible polyion complex gel of poly(Pro-Hyp-Gly) for simultaneous rat bone marrow stromal cell encapsulation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1480-1496. [PMID: 28514893 DOI: 10.1080/09205063.2017.1331872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polyion complex (PIC) gel of poly(Pro-Hyp-Gly) was successfully fabricated by simply mixing polyanion and polycation derivatives of poly(Pro-Hyp-Gly), a collagen-like polypeptide. The polyanion, succinylated poly(Pro-Hyp-Gly), and the polycation, arginylated poly(Pro-Hyp-Gly), contain carboxy (pKa = 5.2) and guanidinium (pKa = 12.4) groups, respectively. Mixing the polyanion and the polycation at physiological pH (pH = 7.4) resulted in PIC gel. The hydrogel formation was optimum at an equimolar ratio of carboxy to guanidinium groups, suggesting that ionic interaction is the main determinant for the hydrogel formation. The hydrogel was successfully used for simultaneous rat bone marrow stromal cell encapsulation. The encapsulated cells survived and proliferated within the hydrogel. In addition, the cells exhibited different morphology in the hydrogel compared with cells cultured on a tissue culture dish as a two-dimensional (2D) control. At day one, a round morphology and homogeneous single cell distribution were observed in the hydrogel. In contrast, the cells spread and formed a fibroblast-like morphology on the 2D control. After three days, the cells in the hydrogel maintained their morphology and some of them formed multicellular aggregates, which is similar to cell morphology in an in vivo microenvironment. These results suggest that the PIC gel of poly(Pro-Hyp-Gly) can serve as a cytocompatible three-dimensional scaffold for stem cell encapsulation, supporting their viability, proliferation, and in vivo-like behavior.
Collapse
Affiliation(s)
- Farah Nurlidar
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| | - Mime Kobayashi
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| | - Kayo Terada
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| | - Tsuyoshi Ando
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| | - Masao Tanihara
- a Graduate School of Materials Science , Nara Institute of Science and Technology , Nara , Japan
| |
Collapse
|
16
|
Chin-Quee K, Donahue HJ. MDA-MET-conditioned-medium augments the chemoattractant-dependent migration of MDA-MET cells towards hFOB-conditioned medium and increases collagenase activity. BMC Cancer 2017; 17:324. [PMID: 28494752 PMCID: PMC5426062 DOI: 10.1186/s12885-017-3315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 05/02/2017] [Indexed: 11/21/2022] Open
Abstract
Background Metastasis of breast cancer displays site-specificity towards bone. Recently, studies have emerged indicating that primary tumors may remotely influence creation of a pre-metastatic niche. In this study, we used human fetal osteoblastic cells and MDA-MET, a metastatic and preferentially bone homing derivative of the breast cancer cell line MDA-MB-231. We examined 1) whether secreted factors from MDA-MET cells increase generation of chemoattractants by human foetal osteoblastic cells 2) whether MDA-MET cells were responsive to these chemoattractants and 3) the identity of these chemoattractants. Methods Human foetal osteoblastic cells were treated with conditioned medium of MDA-MET cells for 24 hours and then washed with phosphate-buffered saline. Serum-free replacement medium was conditioned by treated hFOB cells for 18 hours, before its use in in vitro quantification of MDA-MET migration. We also quantified collagen levels and collagenase activity in conditioned medium from human foetal osteoblastic cells. Results Conditioned medium from human foetal osteoblastic cells that had been treated with MDA-MET-conditioned medium attracted more MDA-MET cells than hFOB cells pre-exposed to their own medium. This conditioned medium had increased collagenase activity. The addition of bacterial collagenase removed the ability of conditioned medium from human foetal osteoblastic cells to attract MDA-MET cells. Conclusions Our data suggest that an increase in collagenase activity in osteoblastic cells induced by their exposure to breast cancer cell–secreted factors may increase their ability to attract breast cancer cells.
Collapse
Affiliation(s)
- Karis Chin-Quee
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, 17033-2391, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Institute of Engineering and Medicine, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284-3067, USA.
| |
Collapse
|
17
|
Abstract
Fibrillar collagens (types I, II, III, V, XI, XXIV and XXVII) constitute a sub-group within the collagen family (of which there are 28 types in humans) whose functions are to provide three-dimensional frameworks for tissues and organs. These networks confer mechanical strength as well as signalling and organizing functions through binding to cellular receptors and other components of the extracellular matrix (ECM). Here we describe the structure and assembly of fibrillar collagens, and their procollagen precursors, from the molecular to the tissue level. We show how the structure of the collagen triple-helix is influenced by the amino acid sequence, hydrogen bonding and post-translational modifications, such as prolyl 4-hydroxylation. The numerous steps in the biosynthesis of the fibrillar collagens are reviewed with particular attention to the role of prolyl 3-hydroxylation, collagen chaperones, trimerization of procollagen chains and proteolytic maturation. The multiple steps controlling fibril assembly are then discussed with a focus on the cellular control of this process in vivo. Our current understanding of the molecular packing in collagen fibrils, from different tissues, is then summarized on the basis of data from X-ray diffraction and electron microscopy. These results provide structural insights into how collagen fibrils interact with cell receptors, other fibrillar and non-fibrillar collagens and other ECM components, as well as enzymes involved in cross-linking and degradation.
Collapse
Affiliation(s)
- Jordi Bella
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering Unit (UMR5305), CNRS/Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
18
|
Bezerra KS, Oliveira JIN, Lima Neto JX, Albuquerque EL, Caetano EWS, Freire VN, Fulco UL. Quantum binding energy features of the T3-785 collagen-like triple-helical peptide. RSC Adv 2017. [DOI: 10.1039/c6ra25206k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Structural representation of the T3-785 collagen-like triple-helical peptide depicting the 15 most and fewest energetically significant amino acids.
Collapse
Affiliation(s)
- Katyanna S. Bezerra
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Jonas I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - José X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | | | | | - Valder N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| |
Collapse
|
19
|
Collagen structure: new tricks from a very old dog. Biochem J 2016; 473:1001-25. [PMID: 27060106 DOI: 10.1042/bj20151169] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
The main features of the triple helical structure of collagen were deduced in the mid-1950s from fibre X-ray diffraction of tendons. Yet, the resulting models only could offer an average description of the molecular conformation. A critical advance came about 20 years later with the chemical synthesis of sufficiently long and homogeneous peptides with collagen-like sequences. The availability of these collagen model peptides resulted in a large number of biochemical, crystallographic and NMR studies that have revolutionized our understanding of collagen structure. High-resolution crystal structures from collagen model peptides have provided a wealth of data on collagen conformational variability, interaction with water, collagen stability or the effects of interruptions. Furthermore, a large increase in the number of structures of collagen model peptides in complex with domains from receptors or collagen-binding proteins has shed light on the mechanisms of collagen recognition. In recent years, collagen biochemistry has escaped the boundaries of natural collagen sequences. Detailed knowledge of collagen structure has opened the field for protein engineers who have used chemical biology approaches to produce hyperstable collagens with unnatural residues, rationally designed collagen heterotrimers, self-assembling collagen peptides, etc. This review summarizes our current understanding of the structure of the collagen triple helical domain (COL×3) and gives an overview of some of the new developments in collagen molecular engineering aiming to produce novel collagen-based materials with superior properties.
Collapse
|
20
|
Subramanian SR, Singam ERA, Berinski M, Subramanian V, Wade RC. Identification of an Electrostatic Ruler Motif for Sequence-Specific Binding of Collagenase to Collagen. J Phys Chem B 2016; 120:8580-9. [PMID: 27245212 DOI: 10.1021/acs.jpcb.6b02573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sequence-specific cleavage of collagen by mammalian collagenase plays a pivotal role in cell function. Collagenases are matrix metalloproteinases that cleave the peptide bond at a specific position on fibrillar collagen. The collagenase Hemopexin-like (HPX) domain has been proposed to be responsible for substrate recognition, but the mechanism by which collagenases identify the cleavage site on fibrillar collagen is not clearly understood. In this study, Brownian dynamics simulations coupled with atomic-detail and coarse-grained molecular dynamics simulations were performed to dock matrix metalloproteinase-1 (MMP-1) on a collagen IIIα1 triple helical peptide. We find that the HPX domain recognizes the collagen triple helix at a conserved R-X11-R motif C-terminal to the cleavage site to which the HPX domain of collagen is guided electrostatically. The binding of the HPX domain between the two arginine residues is energetically stabilized by hydrophobic contacts with collagen. From the simulations and analysis of the sequences and structural flexibility of collagen and collagenase, a mechanistic scheme by which MMP-1 can recognize and bind collagen for proteolysis is proposed.
Collapse
Affiliation(s)
- Sundar Raman Subramanian
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69117 Heidelberg, Germany.,Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai, India
| | - Ettayapuram Ramaprasad Azhagiya Singam
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69117 Heidelberg, Germany.,Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai, India
| | - Michael Berinski
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69117 Heidelberg, Germany.,Edinburgh Genomics, The University of Edinburgh , Edinburgh, Scotland
| | - Venkatesan Subramanian
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai, India
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69117 Heidelberg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg , Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University , Heidelberg, Germany
| |
Collapse
|
21
|
Okuyama K, Kawaguchi T, Shimura M, Noguchi K, Mizuno K, Bächinger HP. Crystal structure of the collagen model peptide (Pro-Pro-Gly)4-Hyp-Asp-Gly-(Pro-Pro-Gly)4 at 1.0 Å resolution. Biopolymers 2016; 99:436-47. [PMID: 23616212 DOI: 10.1002/bip.22198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 11/11/2022]
Abstract
The single-crystal structure of the collagen-like peptide (Pro-Pro-Gly)4 -Hyp-Asp-Gly-(Pro-Pro-Gly)4, was analyzed at 1.02 Å resolution. The overall average helical twist (θ = 49.6°) suggests that this peptide adopts a 7/2 triple-helical structure and that its conformation is very similar to that of (Gly-Pro-Hyp)9, which has the typical repeating sequence in collagen. High-resolution studies on other collagen-like peptides have shown that imino acid-rich sequences preferentially adopt a 7/2 triple-helical structure (θ = 51.4°), whereas imino acid-lean sequences adopt relaxed conformations (θ < 51.4°). The guest Gly-Hyp-Asp sequence in the present peptide, however, has a large helical twist (θ = 61.1°), whereas that of the host Pro-Pro-Gly sequence is small (θ = 46.7°), indicating that the relationship between the helical conformation and the amino acid sequence of such peptides is complex. In the present structure, a strong intermolecular hydrogen bond between two Asp residues on the A and B strands might induce the large helical twist of the guest sequence; this is compensated by a reduced helical twist in the host, so that an overall 7/2-helical symmetry is maintained. The Asp residue in the C strand might interact electrostatically with the N-terminus of an adjacent molecule, causing axial displacement, reminiscent of the D-staggered structure in fibrous collagens.
Collapse
Affiliation(s)
- Kenji Okuyama
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Domene C, Jorgensen C, Abbasi SW. A perspective on structural and computational work on collagen. Phys Chem Chem Phys 2016; 18:24802-24811. [DOI: 10.1039/c6cp03403a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Collagen is the single most abundant protein in the extracellular matrix in the animal kingdom, with remarkable structural and functional diversity and regarded one of the most useful biomaterials.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry
- King's College London
- UK
- Chemistry Research Laboratory
- University of Oxford
| | | | | |
Collapse
|
23
|
Velmurugan P, Jonnalagadda RR, Sankaranarayanan K, Dhathathreyan A. Does L to D-amino acid substitution trigger helix→sheet conformations in collagen like peptides adsorbed to surfaces? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:249-56. [PMID: 26354261 DOI: 10.1016/j.msec.2015.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 06/22/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022]
Abstract
The present work reports on the structural order, self assembling behaviour and the role in adsorption to hydrophilic or hydrophobic solid surfaces of modified sequence from the triple helical peptide model of the collagenase cleavage site in type I collagen (Uniprot accession number P02452 residues from 935 to 970) using (D)Ala and (D)Ile substitutions as given in the models below: Model-1: GSOGADGPAGAOGTOGPQGIAGQRGVV GLOGQRGER. Model-2: GSOGADGP(D)AGAOGTOGPQGIAGQRGVVGLOGQRGER. Model-3: GSOGADGPAGAOGTOGPQG(D)IAGQRGVVGLOGQRGER. Collagenase is an important enzyme that plays an important role in degrading collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism by which this degradation occurs is not completely understood. Our results show that adsorption of the peptides to the solid surfaces, specifically hydrophobic triggers a helix to beta transition with order increasing in peptide models 2 and 3. This restricts the collagenolytic behaviour of collagenase and may find application in design of peptides and peptidomimetics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins.
Collapse
Affiliation(s)
- Punitha Velmurugan
- Council of Scientific and Industrial Research-Central Leather Research Institute, Chemical Laboratory, Adyar, Chennai 600 020, India; University of Madras, Centre for Advanced Study in Crystallography and Biophysics, Guindy Campus, Chennai 600 025, India
| | - Raghava Rao Jonnalagadda
- Council of Scientific and Industrial Research-Central Leather Research Institute, Chemical Laboratory, Adyar, Chennai 600 020, India.
| | - Kamatchi Sankaranarayanan
- Council of Scientific and Industrial Research-Central Leather Research Institute, Chemical Laboratory, Adyar, Chennai 600 020, India
| | - Aruna Dhathathreyan
- Council of Scientific and Industrial Research-Central Leather Research Institute, Biophysics Laboratory, Adyar, Chennai 600 020, India
| |
Collapse
|
24
|
Sun X, Chai Y, Wang Q, Liu H, Wang S, Xiao J. A Natural Interruption Displays Higher Global Stability and Local Conformational Flexibility than a Similar Gly Mutation Sequence in Collagen Mimic Peptides. Biochemistry 2015; 54:6106-13. [PMID: 26352622 DOI: 10.1021/acs.biochem.5b00747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural interruptions in the repeating (Gly-X-Y)n amino acid sequence pattern are found normally in triple helix domains of all nonfibrillar collagens, while any Gly substitution in fibrillar collagens leads to pathological conditions. As revealed by our sequence analysis, two peptides, one modeling a natural G5G interruption (POALO) and the other one mimicking a pathological Gly-to-Ala substitution (LOAPO), are designed. Circular dichroism (CD), NMR, and computational simulation studies have discovered significant differences in stability, conformation, and folding between the two peptides. Compared with the Gly substitution sequence, the natural interruption maintains higher stability, higher triple helix content, and a higher folding rate while introducing more alterations in local triple helical conformation in terms of dihedral angles and hydrogen bonding. The conserved hydrophobic residues at the specific sites of interruptions may provide functional constraints for higher-order assembly as well as biomolecular interactions. These results suggest a molecular basis of different biological roles of natural interruptions and Gly substitutions and may guide the design of collagen mimic peptides containing functional natural interruptions.
Collapse
Affiliation(s)
| | | | | | | | - Shaoru Wang
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | | |
Collapse
|
25
|
Parmar AS, Xu F, Pike DH, Belure SV, Hasan NF, Drzewiecki KE, Shreiber DI, Nanda V. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides. Biochemistry 2015; 54:4987-97. [PMID: 26225466 PMCID: PMC5335877 DOI: 10.1021/acs.biochem.5b00502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo- and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal-specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix.
Collapse
Affiliation(s)
- Avanish S. Parmar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad-500046, Telangana, INDIA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Fei Xu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Douglas H. Pike
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Sandeep V. Belure
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Nida F. Hasan
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kathryn E. Drzewiecki
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
26
|
Velmurugan P, Jonnalagadda RR, Unni Nair B. Engineering D-Amino Acid Containing Collagen Like Peptide at the Cleavage Site of Clostridium histolyticum Collagenase for Its Inhibition. PLoS One 2015; 10:e0124398. [PMID: 25973613 PMCID: PMC4431724 DOI: 10.1371/journal.pone.0124398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/13/2015] [Indexed: 02/02/2023] Open
Abstract
Collagenase is an important enzyme which plays an important role in degradation of collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism of this degradation has not yet been completely understood. In the field of biomedical and protein engineering, the design and development of new peptide based materials is of main concern. In the present work an attempt has been made to study the effect of DAla in collagen like peptide (imino-poor region of type I collagen) on the structure and stability of peptide against enzyme hydrolysis. Effect of replacement of DAla in the collagen like peptide has been studied using circular dichroic spectroscopy (CD). Our findings suggest that, DAla substitution leads to conformational changes in the secondary structure and favours the formation of polyproline II conformation than its L-counterpart in the imino-poor region of collagen like peptides. Change in the chirality of alanine at the cleavage site of collagenase in the imino-poor region inhibits collagenolytic activity. This may find application in design of peptides and peptidomimics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins.
Collapse
Affiliation(s)
- Punitha Velmurugan
- Council of Scientific and Industrial Research—Central Leather Research Institute, Chemical Laboratory, Adyar, Chennai, 600 020, India
| | - Raghava Rao Jonnalagadda
- Council of Scientific and Industrial Research—Central Leather Research Institute, Chemical Laboratory, Adyar, Chennai, 600 020, India
- * E-mail:
| | - Balachandran Unni Nair
- Council of Scientific and Industrial Research—Central Leather Research Institute, Chemical Laboratory, Adyar, Chennai, 600 020, India
| |
Collapse
|
27
|
Brand I, Habecker F, Ahlers M, Klüner T. Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 138:216-224. [PMID: 25498816 DOI: 10.1016/j.saa.2014.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
The polarization modulation infrared reflection-absorption spectra of collagen adsorbed on a titania surface and quantum chemical calculations are used to describe components of the amide I mode to the protein structure at a sub-molecular level. In this study, imino acid rich and poor fragments, representing the entire collagen molecule, are taken into account. The amide I mode of the collagen triple helix is composed of three absorption bands which involve: (i) (∼1690cm(-1)) the CO stretching modes at unhydrated groups, (ii) (1655-1673cm(-1)) the CO stretching at carbonyl groups at imino acids and glycine forming intramolecular hydrogen bonds with H atoms at both NH2 and, unusual for proteins, CH2 groups at glycine at a neighbouring chain and (iii) (∼1640cm(-1)) the CO stretching at carbonyl groups forming hydrogen bonds between two, often charged, amino acids as well as hydrogen bonds to water along the entire helix. The IR spectrum of films prepared from diluted solutions (c<50μgml(-1)) corresponds to solution spectra indicating that native collagen molecules interact with water adsorbed on the titania surface. In films prepared from solutions (c⩾50μgml(-1)) collagen multilayers are formed. The amide I mode is blue-shifted by 18cm(-1), indicating that intramolecular hydrogen bonds at imino acid rich fragments are weakened. Simultaneous red-shift of the amide A mode implies that the strength of hydrogen bonds at the imino acid poor fragments increases. Theoretically predicted distortion of the collagen structure upon adsorption on the titania surface is experimentally confirmed.
Collapse
Affiliation(s)
- Izabella Brand
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Department of Chemistry, CIS - Center of Interface Science, D-26111 Oldenburg, Germany.
| | - Florian Habecker
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Department of Chemistry, CIS - Center of Interface Science, D-26111 Oldenburg, Germany
| | - Michael Ahlers
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Department of Chemistry, CIS - Center of Interface Science, D-26111 Oldenburg, Germany
| | - Thorsten Klüner
- Carl von Ossietzky University of Oldenburg, School of Mathematics and Science, Department of Chemistry, CIS - Center of Interface Science, D-26111 Oldenburg, Germany
| |
Collapse
|
28
|
Zaitseva OV. Biochemical markers of bone collagen type I metabolism. UKRAINIAN BIOCHEMICAL JOURNAL 2015; 87:21-32. [DOI: 10.15407/ubj87.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
29
|
Agee KA, Prakki A, Abu-Haimed T, Naguib GH, Nawareg MA, Tezvergil-Mutluay A, Scheffel DLS, Chen C, Jang SS, Hwang H, Brackett M, Grégoire G, Tay FR, Breschi L, Pashley DH. Water distribution in dentin matrices: bound vs. unbound water. Dent Mater 2015; 31:205-16. [PMID: 25612786 DOI: 10.1016/j.dental.2014.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This work measured the amount of bound versus unbound water in completely-demineralized dentin. METHODS Dentin beams prepared from extracted human teeth were completely demineralized, rinsed and dried to constant mass. They were rehydrated in 41% relative humidity (RH), while gravimetrically measuring their mass increase until the first plateau was reached at 0.064 (vacuum) or 0.116 gH2O/g dry mass (Drierite). The specimens were then exposed to 60% RH until attaining the second plateau at 0.220 (vacuum) or 0.191 gH2O/g dry mass (Drierite), and subsequently exposed to 99% RH until attaining the third plateau at 0.493 (vacuum) or 0.401 gH2O/g dry mass (Drierite). RESULTS Exposure of the first layer of bound water to 0% RH for 5 min produced a -0.3% loss of bound water; in the second layer of bound water it caused a -3.3% loss of bound water; in the third layer it caused a -6% loss of bound water. Immersion in 100% ethanol or acetone for 5 min produced a 2.8 and 1.9% loss of bound water from the first layer, respectively; it caused a -4 and -7% loss of bound water in the second layer, respectively; and a -17 and -23% loss of bound water in the third layer. Bound water represented 21-25% of total dentin water. Chemical dehydration of water-saturated dentin with ethanol/acetone for 1 min only removed between 25 and 35% of unbound water, respectively. SIGNIFICANCE Attempts to remove bound water by evaporation were not very successful. Chemical dehydration with 100% acetone was more successful than 100% ethanol especially the third layer of bound water. Since unbound water represents between 75 and 79% of total matrix water, the more such water can be removed, the more resin can be infiltrated.
Collapse
Affiliation(s)
- Kelli A Agee
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA 30912-1129, USA
| | - Anuradha Prakki
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Tariq Abu-Haimed
- Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghada H Naguib
- Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manar Abu Nawareg
- Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arzu Tezvergil-Mutluay
- Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland
| | - Debora L S Scheffel
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, UNESP-UnivEstadualPaulista, Araraquara, SP, Brazil
| | - Chen Chen
- Department of Endodontology and Oral Mucosa, Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Affiliated Hospital of Stomatology, Nanjing, Jiangsu, China
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hyea Hwang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Martha Brackett
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA 30912-1129, USA
| | - Geneviéve Grégoire
- Department of Biomaterials, Faculty of Odontology, University of Toulouse III, Toulouse, France
| | - Franklin R Tay
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA 30912-1129, USA
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna and IGM-CNR, Unit of Bologna, Bologna, Italy
| | - David H Pashley
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA 30912-1129, USA.
| |
Collapse
|
30
|
Acevedo-Jake AM, Jalan AA, Hartgerink JD. Comparative NMR Analysis of Collagen Triple Helix Organization from N- to C-Termini. Biomacromolecules 2014; 16:145-55. [DOI: 10.1021/bm501281a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Amanda M. Acevedo-Jake
- Departments of Chemistry
and Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Abhishek A. Jalan
- Departments of Chemistry
and Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Jeffrey D. Hartgerink
- Departments of Chemistry
and Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
31
|
Sarkar B, O'Leary LER, Hartgerink JD. Self-assembly of fiber-forming collagen mimetic peptides controlled by triple-helical nucleation. J Am Chem Soc 2014; 136:14417-24. [PMID: 25494829 DOI: 10.1021/ja504377s] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mimicking the multistep self-assembly of the fibrillar protein collagen is an important design challenge in biomimetic supramolecular chemistry. Utilizing the complementarity of oppositely charged domains in short collagen-like peptides, we have devised a strategy for the self-assembly of these peptides into fibers. The strategy depends on the formation of a staggered triple helical species facilitated by interchain charged pairs, and is inspired by similar sticky-ended fibrillation designs applied in DNA and coiled coil fibers. We compare two classes of collagen mimetic peptides with the same composition but different domain arrangements, and show that differences in their proposed nucleation events differentiates their fibrillation capabilities. Larger nucleation domains result in rapid fiber formation and eventual precipitation or gelation while short nucleation domains leave the peptide soluble for long periods of time. For one of the fiber-forming peptides, we elucidate the packing parameters by X-ray diffraction.
Collapse
Affiliation(s)
- Biplab Sarkar
- Department of Chemistry and ‡Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | | | | |
Collapse
|
32
|
Barrea RA, Antipova O, Gore D, Heurich R, Vukonich M, Kujala NG, Irving TC, Orgel JPRO. X-ray micro-diffraction studies on biological samples at the BioCAT Beamline 18-ID at the Advanced Photon Source. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:1200-1205. [PMID: 25178013 PMCID: PMC4151685 DOI: 10.1107/s1600577514012259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
The small source sizes of third-generation synchrotron sources are ideal for the production of microbeams for diffraction studies of crystalline and non-crystalline materials. While several such facilities have been available around the world for some time now, few have been optimized for the handling of delicate soft-tissue specimens under cryogenic conditions. Here the development of a new X-ray micro-diffraction instrument at the Biophysics Collaborative Access Team beamline 18-ID at the Advanced Photon Source, and its use with newly developed cryo-diffraction techniques for soft-tissue studies, are described. The combination of the small beam sizes delivered by this instrument, the high delivered flux and successful cryo-freezing of rat-tail tendon has enabled us to record data to better than 4 Å resolution. The ability to quickly raster scan samples in the beam allows selection of ordered regions in fibrous samples for markedly improved data quality. Examples of results of experiments obtainable using this instrument are presented.
Collapse
Affiliation(s)
- R. A. Barrea
- The Biophysics Collaborative Access Team (BioCAT), CSRRI and Departments of Biology, Physics and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - O. Antipova
- The Biophysics Collaborative Access Team (BioCAT), CSRRI and Departments of Biology, Physics and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - D. Gore
- The Biophysics Collaborative Access Team (BioCAT), CSRRI and Departments of Biology, Physics and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - R. Heurich
- The Biophysics Collaborative Access Team (BioCAT), CSRRI and Departments of Biology, Physics and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - M. Vukonich
- The Biophysics Collaborative Access Team (BioCAT), CSRRI and Departments of Biology, Physics and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - N. G. Kujala
- The Biophysics Collaborative Access Team (BioCAT), CSRRI and Departments of Biology, Physics and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - T. C. Irving
- The Biophysics Collaborative Access Team (BioCAT), CSRRI and Departments of Biology, Physics and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - J. P. R. O. Orgel
- The Biophysics Collaborative Access Team (BioCAT), CSRRI and Departments of Biology, Physics and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
33
|
Okuyama K, Haga M, Noguchi K, Tanaka T. Preferred side-chain conformation of arginine residues in a triple-helical structure. Biopolymers 2014; 101:1000-9. [DOI: 10.1002/bip.22478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Kenji Okuyama
- Department of Macromolecular Science; Graduate School of Science; Osaka University; Toyonaka Osaka 560-0043 Japan
| | - Mitsuru Haga
- Graduate School of Technology; Tokyo University of Agriculture and Technology; Koganei Tokyo 184-8588 Japan
| | - Keiichi Noguchi
- Graduate School of Technology; Tokyo University of Agriculture and Technology; Koganei Tokyo 184-8588 Japan
| | - Toshiki Tanaka
- Department of Materials Sciences; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-chou Nagoya 466-8555 Japan
| |
Collapse
|
34
|
Li Y, Qiao C, Shi L, Jiang Q, Li T. Viscosity of Collagen Solutions: Influence of Concentration, Temperature, Adsorption, and Role of Intermolecular Interactions. J MACROMOL SCI B 2014. [DOI: 10.1080/00222348.2013.852059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Computational Study of a Heterostructural Model of Type I Collagen and Implementation of an Amino Acid Potential Method Applicable to Large Proteins. Polymers (Basel) 2014. [DOI: 10.3390/polym6020491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Díaz N, Suárez D, Valdés H. Unraveling the molecular structure of the catalytic domain of matrix metalloproteinase-2 in complex with a triple-helical peptide by means of molecular dynamics simulations. Biochemistry 2013; 52:8556-69. [PMID: 24164447 DOI: 10.1021/bi401144p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein, we present the results of a computational study that employed various simulation methodologies to build and validate a series of molecular models of a synthetic triple-helical peptide (fTHP-5) both in its native state and in a prereactive complex with the catalytic domain of the MMP-2 enzyme. First, the structure and dynamical properties of the fTHP-5 substrate are investigated by means of molecular dynamics (MD) simulations. Then, the propensity of each of the three peptide chains in fTHP-5 to be distorted around the scissile peptide bond is assessed by carrying out potential of mean force calculations. Subsequently, the distorted geometries of fTHP-5 are docked within the MMP-2 active site following a semirigid protocol, and the most stable docked structures are fully relaxed and characterized by extensive MD simulations in explicit solvent. Following a similar approach, we also investigate a hypothetical ternary complex formed between two MMP-2 catalytic units and a single fTHP-5 molecule. Overall, our models for the MMP-2/fTHP-5 complexes unveil the extent to which the triple helix is distorted to allow the accommodation of an individual peptide chain within the MMP active site.
Collapse
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo , Julián Clavería 8, Oviedo (Asturias) 33006, Spain
| | | | | |
Collapse
|
37
|
Ahlers M, Stein N, Broch L, Brand I. Study of the potential driven changes in a collagen film self-assembled on a polycrystalline gold electrode surface. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Insight into the degradation of type-I collagen fibrils by MMP-8. J Mol Biol 2013; 425:1815-25. [PMID: 23399546 DOI: 10.1016/j.jmb.2013.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 02/05/2023]
Abstract
Although a number of studies have shed light on the mechanism of collagen degradation in solution, the precise mechanism of collagenolysis in the native fibrillar state remains unclear. To gain insight into the mechanism of fibrillar degradation, we calculated the conformational free-energy landscape for unfolding regions of the α2 chain of type-I collagen within the context of the microfibril. Our data suggest that, relatively, imino-rich sequences maintain the canonical triple-helical structure at body temperature. By contrast, the unique MMP (matrix metalloproteinase) cleavage site adopts conformations where the α2 chain is dissociated from the rest of the fibril--behavior that is similar to what was observed in unfolding simulations of isolated collagen-like model peptides in solution. However, the dissociated cleavage site does not fit within the catalytic site of MMP-8, a representative fibrillar collagenase. Additional free-energy simulations suggest that the presence of the catalytic domain leads to a reorientation of the α2 chain such that it adopts a pose that is complementary to the enzyme's active site. These observations argue that, in the fibrillar state, there is a synergy between the normal thermal fluctuations of the substrate when the enzyme is absent and the fluctuations of the substrate when the enzyme is present. More precisely, our findings suggest that thermal fluctuations serve as the driving force for a degradative process that requires both an unfolded cleavage site and the presence of the enzyme.
Collapse
|
39
|
Rodrigues C, Oliveira J, Fulco U, Albuquerque E, Moura R, Caetano E, Freire V. Quantum biochemistry study of the T3-785 tropocollagen triple-helical structure. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.12.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Parmar AS, Nunes AM, Baum J, Brodsky B. A peptide study of the relationship between the collagen triple-helix and amyloid. Biopolymers 2012; 97:795-806. [PMID: 22806499 DOI: 10.1002/bip.22070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type XXV collagen, or collagen-like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro-Hyp-Gly)₁₀ , an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)(n) domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple-helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple-helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple-helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly-Xaa-Yaa sequence and required the triple-helix conformation. The inhibitory effect of the collagen triple-helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation.
Collapse
Affiliation(s)
- Avanish S Parmar
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | | | | |
Collapse
|
41
|
Singam ERA, Balamurugan K, Gopalakrishnan R, Subramanian SR, Subramanian V, Ramasami T. Molecular dynamic simulation studies on the effect of one residue chain staggering on the structure and stability of heterotrimeric collagen-like peptides with interruption. Biopolymers 2012; 97:847-63. [DOI: 10.1002/bip.22085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Okuyama K, Miyama K, Mizuno K, Bächinger HP. Crystal structure of (Gly-Pro-Hyp)9: Implications for the collagen molecular model. Biopolymers 2012; 97:607-16. [DOI: 10.1002/bip.22048] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Implications for collagen I chain registry from the structure of the collagen von Willebrand factor A3 domain complex. Proc Natl Acad Sci U S A 2012; 109:5253-8. [PMID: 22440751 DOI: 10.1073/pnas.1112388109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fibrillar collagens, the most abundant proteins in the vertebrate body, are involved in a plethora of biological interactions. Plasma protein von Willebrand factor (VWF) mediates adhesion of blood platelets to fibrillar collagen types I, II, and III, which is essential for normal haemostasis. High affinity VWF-binding sequences have been identified in the homotrimeric collagen types II and III, however, it is unclear how VWF recognizes the heterotrimeric collagen type I, the superstructure of which is unknown. Here we present the crystal structure of VWF domain A3 bound to a collagen type III-derived homotrimeric peptide. Our structure reveals that VWF-A3 interacts with all three collagen chains and binds through conformational selection to a sequence that is one triplet longer than was previously appreciated from platelet and VWF binding studies. The VWF-binding site overlaps those of SPARC (also known as osteonectin) and discodin domain receptor 2, but is more extended and shifted toward the collagen amino terminus. The observed collagen-binding mode of VWF-A3 provides direct structural constraints on collagen I chain registry. A VWF-binding site can be generated from the sequences RGQAGVMF, present in the two α1(I) chains, and RGEOGNIGF, in the unique α2(I) chain, provided that α2(I) is in the middle or trailing position. Combining these data with previous structural data on integrin binding to collagen yields strong support for the trailing position of the α2(I) chain, shedding light on the fundamental and long-standing question of the collagen I chain registry.
Collapse
|
44
|
Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat Chem 2011; 3:821-8. [PMID: 21941256 DOI: 10.1038/nchem.1123] [Citation(s) in RCA: 458] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/25/2011] [Indexed: 12/23/2022]
Abstract
Replicating the multi-hierarchical self-assembly of collagen has long-attracted scientists, from both the perspective of the fundamental science of supramolecular chemistry and that of potential biomedical applications in tissue engineering. Many approaches to drive the self-assembly of synthetic systems through the same steps as those of natural collagen (peptide chain to triple helix to nanofibres and, finally, to a hydrogel) are partially successful, but none simultaneously demonstrate all the levels of structural assembly. Here we describe a peptide that replicates the self-assembly of collagen through each of these steps. The peptide features collagen's characteristic proline-hydroxyproline-glycine repeating unit, complemented by designed salt-bridged hydrogen bonds between lysine and aspartate to stabilize the triple helix in a sticky-ended assembly. This assembly is propagated into nanofibres with characteristic triple helical packing and lengths with a lower bound of several hundred nanometres. These nanofibres form a hydrogel that is degraded by collagenase at a similar rate to that of natural collagen.
Collapse
|
45
|
Ravikumar KM, Hwang W. Role of hydration force in the self-assembly of collagens and amyloid steric zipper filaments. J Am Chem Soc 2011; 133:11766-73. [PMID: 21692533 DOI: 10.1021/ja204377y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In protein self-assembly, types of surfaces determine the force between them. Yet the extent to which the surrounding water contributes to this force remains as a fundamental question. Here we study three self-assembling filament systems that respectively have hydrated (collagen), dry nonpolar, and dry polar (amyloid) interfaces. Using molecular dynamics simulations, we calculate and compare local hydration maps and hydration forces. We find that the primary hydration shells are formed all over the surface, regardless of the types of the underlying amino acids. The weakly oscillating hydration force arises from coalescence and depletion of hydration shells as two filaments approach, whereas local water diffusion, orientation, or hydrogen-bonding events have no direct effect. Hydration forces between hydrated, polar, and nonpolar interfaces differ in the amplitude and phase of the oscillation relative to the equilibrium surface separation. Therefore, water-mediated interactions between these protein surfaces, ranging in character from "hydrophobic" to "hydrophilic", have a common molecular origin based on the robustly formed hydration shells, which is likely applicable to a broad range of biomolecular assemblies whose interfacial geometry is similar in length scale to those of the present study.
Collapse
|
46
|
Contributions of cation–π interactions to the collagen triple helix stability. Arch Biochem Biophys 2011; 508:46-53. [DOI: 10.1016/j.abb.2011.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/07/2011] [Accepted: 01/12/2011] [Indexed: 11/20/2022]
|
47
|
Okuyama K, Miyama K, Morimoto T, Masakiyo K, Mizuno K, Bächinger HP. Stabilization of triple-helical structures of collagen peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence. Biopolymers 2011; 95:628-40. [DOI: 10.1002/bip.21625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/07/2011] [Accepted: 03/07/2011] [Indexed: 11/06/2022]
|
48
|
O'Leary LER, Fallas JA, Hartgerink JD. Positive and negative design leads to compositional control in AAB collagen heterotrimers. J Am Chem Soc 2011; 133:5432-43. [PMID: 21428435 DOI: 10.1021/ja111239r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although collagen is the most abundant protein in the human body and has at least 28 types, research involving collagen mimetic systems only recently began to consider the innate ability of collagen to control helix composition and register. Collagen triple helices can be homotrimeric or heterotrimeric, and while some types of natural collagen form only one specific composition of helix, others can form multiple compositions. It is critical to fully understand and, if possible, reproduce the control that native collagen has on helix composition and register. In this Article, we utilize both positive and negative design for the assembly of specific AAB heterotrimers using charged amino acids to form intrahelix electrostatic interactions, which promote heterotrimer formation and simultaneously discourage homotrimers. Homotrimers are further discouraged by reducing hydroxyproline content, which would otherwise lead to nonspecific promotion of triple helix formation. We combine peptides in a 2:1 ratio in which the more abundant peptide has a charge 1/2 and opposite of the less abundant peptide, which can result in the formation of a zwitterionically neutral AAB heterotrimer. Using this approach, we are able to design collagen mimetic systems with full control over the composition of the resulting triple helix. All previous reports on synthetic collagen heterotrimers have shown mixed populations with respect to composition due to varying amounts of residual homotrimers. Our results yield a greater understanding of the self-assembly of collagenous sequences as well as provide a novel design scheme, both positive and negative, for the synthesis of extracellular matrix mimetics.
Collapse
Affiliation(s)
- Lesley E R O'Leary
- Department of Chemistry, Rice University, 6100 Main Street, Mail Stop 602, Houston, Texas 77005, USA
| | | | | |
Collapse
|
49
|
Ruderman G, Mogilner IG, Tolosa EJ, Massa N, Garavaglia M, Grigera JR. Ordered collagen membranes: production and characterization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2011; 23:823-32. [PMID: 21396177 DOI: 10.1163/092050611x560942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A collagen membrane with microscopic order is presented. The membranes were produced with acid-soluble collagen, using two different methods to obtain orientation. The product was characterized by mean of UV and IR spectra, scanning electronic microscopy, optical microscopy and laser diffractometry. The results clearly show a high level of order in the membranes obtained by both techniques. Permeability for rifamycin, ascorbic acid and NaCl was also measured. Due to the characteristics of the membranes, they have a potential application for treatment of surface injuries.
Collapse
Affiliation(s)
- G Ruderman
- a Instituto de Física de Líquidos y Sistemasiológicos (IFLY SIB) CONICET-UNLP-CIC, La Plata, Argentina; Facultad de Ciencias Exactas UNLP, 59-789, c.c. 565, B1900BTE, La Plata, Argentina.
| | | | | | | | | | | |
Collapse
|
50
|
S. Sundar R, Gopalakrishnan R, Wade RC, Subramanian V. Structural Basis for the Varying Propensities of Different Amino Acids To Adopt the Collagen Conformation. J Phys Chem B 2011; 115:2593-607. [DOI: 10.1021/jp109133v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Raman S. Sundar
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS) gGmbH, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - R. Gopalakrishnan
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
| | - R. C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS) gGmbH, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - V. Subramanian
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
| |
Collapse
|