1
|
Wang Z, Wang W, Gao Z, Gao H, Clercq ED, Pannecouque C, Chen CH, Kang D, Zhan P, Liu X. Structure-based design, synthesis, and biological characterization of indolylarylsulfone derivatives as novel human immunodeficiency virus type 1 inhibitors with potent antiviral activities and favorable drug-like profiles. J Med Virol 2024; 96:e29830. [PMID: 39072764 DOI: 10.1002/jmv.29830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/08/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
In the current antiretroviral landscape, continuous efforts are still needed to search for novel chemotypes of human immunodeficiency virus type 1 (HIV-1) inhibitors with improved drug resistance profiles and favorable drug-like properties. Herein, we report the design, synthesis, biological characterization, and druggability evaluation of a class of non-nucleoside reverse transcriptase inhibitors. Guided by the available crystallographic information, a series of novel indolylarylsulfone derivatives were rationally discovered via the substituent decorating strategy to fully explore the chemical space of the entrance channel. Among them, compound 11h bearing the cyano-substituted benzyl moiety proved to be the most effective inhibitor against HIV-1 wild-type and mutant strains (EC50 = 0.0039-0.338 μM), being far more potent than or comparable to etravirine and doravirine. Besides, 11h did not exhibit cytotoxicity at the maximum test concentration. Meanwhile, the binding target of 11h was further confirmed to be reverse transcriptase (IC50 = 0.055 μM). Preliminary structure-activity relationship were discussed to guide further optimization work. Molecular docking and dynamics simulation studies were investigated in detail to rationalize the biological evaluation results. Further drug-likeness assessment indicated that 11h possessed excellent physicochemical properties. Moreover, no apparent hERG blockade liability and cytochrome P450 inhibition were observed for 11h. Notably, 11h was characterized by favorable in vitro metabolic stability with moderate clearance rates and long half-lives in human plasma and liver microsomes. Overall, 11h holds great promise as an ideal Anti-HIV-1 lead compound due to its potent antiviral efficacy, low toxicity, and favorable drug-like profiles.
Collapse
Affiliation(s)
- Zhao Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu, China
| | - Wenbo Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen Gao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huizhan Gao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium
| | - Chin-Ho Chen
- Surgical Oncology Research Facility, Duke University Medical Center, Durham, North Carolina, USA
| | - Dongwei Kang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Peng Zhan
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Xinyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| |
Collapse
|
2
|
Biswas A, Choudhuri I, Arnold E, Lyumkis D, Haldane A, Levy RM. Kinetic coevolutionary models predict the temporal emergence of HIV-1 resistance mutations under drug selection pressure. Proc Natl Acad Sci U S A 2024; 121:e2316662121. [PMID: 38557187 PMCID: PMC11009627 DOI: 10.1073/pnas.2316662121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Drug resistance in HIV type 1 (HIV-1) is a pervasive problem that affects the lives of millions of people worldwide. Although records of drug-resistant mutations (DRMs) have been extensively tabulated within public repositories, our understanding of the evolutionary kinetics of DRMs and how they evolve together remains limited. Epistasis, the interaction between a DRM and other residues in HIV-1 protein sequences, is key to the temporal evolution of drug resistance. We use a Potts sequence-covariation statistical-energy model of HIV-1 protein fitness under drug selection pressure, which captures epistatic interactions between all positions, combined with kinetic Monte-Carlo simulations of sequence evolutionary trajectories, to explore the acquisition of DRMs as they arise in an ensemble of drug-naive patient protein sequences. We follow the time course of 52 DRMs in the enzymes protease, RT, and integrase, the primary targets of antiretroviral therapy. The rates at which DRMs emerge are highly correlated with their observed acquisition rates reported in the literature when drug pressure is applied. This result highlights the central role of epistasis in determining the kinetics governing DRM emergence. Whereas rapidly acquired DRMs begin to accumulate as soon as drug pressure is applied, slowly acquired DRMs are contingent on accessory mutations that appear only after prolonged drug pressure. We provide a foundation for using computational methods to determine the temporal evolution of drug resistance using Potts statistical potentials, which can be used to gain mechanistic insights into drug resistance pathways in HIV-1 and other infectious agents.
Collapse
Affiliation(s)
- Avik Biswas
- Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA19122
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA92037
- Department of Physics, University of California San Diego, La Jolla, CA92093
| | - Indrani Choudhuri
- Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA19122
- Department of Chemistry, Temple University, Philadelphia, PA19122
| | - Eddy Arnold
- Department of Chemistry and Chemical Biology, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ08854
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA92037
- Graduate School of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Allan Haldane
- Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA19122
- Department of Physics, Temple University, Philadelphia, PA19122
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA19122
- Department of Chemistry, Temple University, Philadelphia, PA19122
| |
Collapse
|
3
|
Baldwin ET, van Eeuwen T, Hoyos D, Zalevsky A, Tchesnokov EP, Sánchez R, Miller BD, Di Stefano LH, Ruiz FX, Hancock M, Işik E, Mendez-Dorantes C, Walpole T, Nichols C, Wan P, Riento K, Halls-Kass R, Augustin M, Lammens A, Jestel A, Upla P, Xibinaku K, Congreve S, Hennink M, Rogala KB, Schneider AM, Fairman JE, Christensen SM, Desrosiers B, Bisacchi GS, Saunders OL, Hafeez N, Miao W, Kapeller R, Zaller DM, Sali A, Weichenrieder O, Burns KH, Götte M, Rout MP, Arnold E, Greenbaum BD, Romero DL, LaCava J, Taylor MS. Structures, functions and adaptations of the human LINE-1 ORF2 protein. Nature 2024; 626:194-206. [PMID: 38096902 PMCID: PMC10830420 DOI: 10.1038/s41586-023-06947-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.
Collapse
Affiliation(s)
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Bryant D Miller
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Luciano H Di Stefano
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Matthew Hancock
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Esin Işik
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Carlos Mendez-Dorantes
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Thomas Walpole
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Charles Nichols
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Paul Wan
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Kirsi Riento
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Rowan Halls-Kass
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | | | - Alfred Lammens
- Proteros Biostructures GmbH, Martinsried, Planegg, Germany
| | - Anja Jestel
- Proteros Biostructures GmbH, Martinsried, Planegg, Germany
| | - Paula Upla
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Kera Xibinaku
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | | | - Kacper B Rogala
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna M Schneider
- Structural Biology of Selfish RNA, Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Oliver Weichenrieder
- Structural Biology of Selfish RNA, Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Kathleen H Burns
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
| | | | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands.
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Zhou Z, Meng B, An J, Zhao F, Sun Y, Zeng D, Wang W, Gao S, Xia Y, Dun C, De Clercq E, Pannecouque C, Zhan P, Kang D, Liu X. Covalently Targeted Highly Conserved Tyr318 to Improve the Drug Resistance Profiles of HIV-1 NNRTIs: A Proof-of-Concept Study. Int J Mol Sci 2023; 24:ijms24021215. [PMID: 36674730 PMCID: PMC9865928 DOI: 10.3390/ijms24021215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
This study presents proof of concept for designing a novel HIV-1 covalent inhibitor targeting the highly conserved Tyr318 in the HIV-1 non-nucleoside reverse transcriptase inhibitors binding pocket to improve the drug resistance profiles. The target inhibitor ZA-2 with a fluorosulfate warhead in the structure was found to be a potent inhibitor (EC50 = 11-246 nM) against HIV-1 IIIB and a panel of NNRTIs-resistant strains, being far superior to those of NVP and EFV. Moreover, ZA-2 was demonstrated with lower cytotoxicity (CC50 = 125 µM). In the reverse transcriptase inhibitory assay, ZA-2 exhibited an IC50 value of 0.057 µM with the ELISA method, and the MALDI-TOF MS data demonstrated the covalent binding mode of ZA-2 with the enzyme. Additionally, the molecular simulations have also demonstrated that compounds can form covalent binding to the Tyr318.
Collapse
Affiliation(s)
- Zhenzhen Zhou
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Bairu Meng
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Jiaqi An
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Fabao Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Yanying Sun
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dan Zeng
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Wenna Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shenghua Gao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Yu Xia
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Caiyun Dun
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dongwei Kang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (D.K.); (X.L.)
| | - Xinyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (D.K.); (X.L.)
| |
Collapse
|
5
|
Me-Better Drug Design Based on Nevirapine and Mechanism of Molecular Interactions with Y188C Mutant HIV-1 Reverse Transcriptase. Molecules 2022; 27:molecules27217348. [DOI: 10.3390/molecules27217348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, the Y188C mutant HIV-1 reverse transcriptase (Y188CM-RT) target protein was constructed by homology modeling, and new ligands based on nevirapine (NVP) skeleton were designed by means of fragment growth. The binding activity of new ligands to Y188CM-RT was evaluated by structural analysis, ADMET prediction, molecular docking, energy calculation and molecular dynamics. Results show that 10 new ligands had good absorbability, and their binding energies to Y188CM-RT were significantly higher than those of wild-type HIV-1 reverse transcriptase(wt). The binding mode explained that fragment growth contributed to larger ligands, leading to improved suitability at the docking pocket. In the way of fragment growth, the larger side chain with extensive contact at terminal is obviously better than substituted benzene ring. The enhancement of docking activity is mainly due to the new fragments such as alkyl chains and rings with amino groups at NVP terminal, resulting in a large increase in hydrophobic bonding and the new addition of hydrogen bonding or salt bonding. This study is expected to provide reference for the research on non-nucleoside reverse transcriptase inhibitors resistance and AIDS treatment.
Collapse
|
6
|
Terefe EM, Okalebo FA, Derese S, Muriuki J, Rotich W, Mas-Claret E, Sadgrove N, Padilla-González GF, Prescott TAK, Siddique H, Langat MK. Constituents of Croton megalocarpus with Potential Anti-HIV Activity. JOURNAL OF NATURAL PRODUCTS 2022; 85:1861-1866. [PMID: 35709365 DOI: 10.1021/acs.jnatprod.1c01013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Reported herein is an anti-HIV monochlorinated compound, 1β-acetoxy-3β-chloro-5α,6α-dihydroxycrotocascarin L (1), of the rare crotofolane diterpenoid class. Compound 1, a suspected artifact of extraction, along with the previously undescribed 11β-acetoxycrotocascarin L (2) and a known compound, crotocascarin K (3), were isolated from the bark of Croton megalocarpus, a Kenyan oil-producing seed crop. Compounds 1 and 3 inhibited HIV-1 replication with IC50 values of 28 and 5.5 nM, respectively. Furthermore, both compounds lacked cytotoxicity toward MT-4 cells and FM-55-M1 cells at concentrations of up to 50 μM. Compounds 1 and 3 were both found to inhibit HIV-1 protease.
Collapse
Affiliation(s)
- Ermias Mergia Terefe
- Department of Pharmacology and Pharmacognosy, School of Pharmacy and Health Sciences, United States International University-Africa, 14634-00800, Nairobi, Kenya
- Department of Pharmacology and Pharmacognosy, College of Health Sciences, University of Nairobi, 14634-00800, Nairobi, Kenya
| | - Faith A Okalebo
- Department of Pharmacology and Pharmacognosy, College of Health Sciences, University of Nairobi, 14634-00800, Nairobi, Kenya
| | - Solomon Derese
- Department of Chemistry, University of Nairobi, 30197-00100, Nairobi, Kenya
| | - Joseph Muriuki
- Centre for Virus Research, Kenya Medical Research Institute, 54628-00200, Nairobi, Kenya
| | - Winnie Rotich
- Sigowet-Soin Sub-County Hospital, Sondu-Kapsoit Road, Sigowet, Kericho County, 112-20200, Kericho, Kenya
| | - Eduard Mas-Claret
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, U.K
| | - Nicholas Sadgrove
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, U.K
| | | | | | - Holly Siddique
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, U.K
| | - Moses K Langat
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, U.K
| |
Collapse
|
7
|
Shrestha J, Porter SR, Tinsley C, Arslanian AJ, Dearden DV. Prototypical Allosterism in a Simple Ditopic Ligand: Gas-Phase Topologies of Cucurbit[n]uril· n-Alkylammonium Complexes Controlled by Binding in the Second Site. J Phys Chem A 2022; 126:2950-2958. [PMID: 35536594 DOI: 10.1021/acs.jpca.2c01703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have employed mass spectrometry, ion mobility, and computational techniques to characterize complexes of n-alkylammonium ions with cucurbit[5]uril (CB[5]) and cucurbit[6]uril (CB[6]) ligands in the gas phase. Nonrotaxane structures are energetically preferred and experimentally observed for all CB[5] complexes. Pseudorotaxane structures are computationally favored and experimentally observed for [CB[6]·n-alkylammonium]+ complexes, but the addition of a second cation (proton, alkali metal ion, another alkylammonium ion, or guanidinium) on the opposite rim of CB[6] causes sufficiently unfavorable steric interactions that n-pentylammonium and longer chains no longer remain threaded through the CB[6] cavity; nonrotaxane topologies are then favored. This provides a very simple example of negative allosteric interactions and molecular structure switching in these complexes.
Collapse
Affiliation(s)
- Jamir Shrestha
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Savannah R Porter
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Caleb Tinsley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Andrew J Arslanian
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - David V Dearden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| |
Collapse
|
8
|
Kumar S, Choudhary M. Structure-based design and synthesis of copper( ii) complexes as antivirus drug candidates targeting SARS CoV-2 and HIV. NEW J CHEM 2022. [DOI: 10.1039/d2nj00703g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes the structure-based design and synthesis of two novel square-planar trans-N2O2 Cu(ii) complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) of 2-((Z)-(4-methoxyphenylimino)methyl)-4,6-dichlorophenol (L1H) and 2-((Z)-(2,4-dibromophenylimino)methyl)-4-bromophenol (L2H) as potential inhibitors against the main protease of the SARS-CoV-2 and HIV viruses.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna-800005, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna-800005, Bihar, India
| |
Collapse
|
9
|
HIV-1 Reverse Transcriptase Inhibition by Major Compounds in a Kenyan Multi-Herbal Composition (CareVid™): In Vitro and In Silico Contrast. Pharmaceuticals (Basel) 2021; 14:ph14101009. [PMID: 34681233 PMCID: PMC8541497 DOI: 10.3390/ph14101009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
CareVid is a multi-herbal product used in southwest Kenya as an immune booster and health tonic and has been anecdotally described as improving the condition of HIV-positive patients. The product is made up of roots, barks and whole plant of 14 African medicinal plants: Acacia nilotica (L.) Willd. ex Delile (currently, Vachelia nilotica (L.) P.J.H Hurter & Mabb.), Adenia gummifera (Harv.) Harms, Anthocleista grandiflora Gilg, Asparagus africanus Lam., Bersama abyssinica Fresen., Clematis hirsuta Guill. & Perr., Croton macrostachyus Hochst. ex Delile, Clutia robusta Pax (accepted as Clutia kilimandscharica Engl.), Dovyalis abyssinica (A. Rich.) Warb, Ekebergia capensis Sparm., Periploca linearifolia Quart.-Dill. & A. Rich., Plantago palmata Hook.f., Prunus africana Hook.f. Kalkman and Rhamnus prinoides L’Her. The objective of this study was to determine the major chemical constituents of CareVid solvent extracts and screen them for in vitro and in silico activity against the HIV-1 reverse transcriptase enzyme. To achieve this, CareVid was separately extracted using CH2Cl2, MeOH, 80% EtOH in H2O, cold H2O, hot H2O and acidified H2O (pH 1.5–3.5). The extracts were analysed using HPLC–MS equipped with UV diode array detection. HIV-1 reverse transcriptase inhibition was performed in vitro and compared to in silico HIV-1 reverse transcriptase inhibition, with the latter carried out using MOE software, placing the docking on the hydrophobic pocket in the subdomain of p66, the NNRTI pocket. The MeOH and 80% EtOH extracts showed strong in vitro HIV-1 reverse transcriptase inhibition, with an EC50 of 7 μg·mL−1. The major components were identified as sucrose, citric acid, ellagic acid, catechin 3-hexoside, epicatechin 3-hexoside, procyanidin B, hesperetin O-rutinoside, pellitorine, mangiferin, isomangiferin, 4-O-coumaroulquinic acid, ellagic acid, ellagic acid O-pentoside, crotepoxide, oleuropein, magnoflorine, tremulacin and an isomer of dammarane tetrol. Ellagic acid and procyanidin B inhibited the HIV-1 reverse transcription process at 15 and 3.2 µg/mL−1, respectively. Docking studies did not agree with in vitro results because the best scoring ligand was crotepoxide (ΔG = −8.55 kcal/mol), followed by magnoflorine (ΔG = −8.39 kcal/mol). This study showed that CareVid has contrasting in vitro and in silico activity against HIV-1 reverse transcriptase. However, the strongest in vitro inhibitors were ellagic acid and procyanidin B.
Collapse
|
10
|
Mathpal D, Almeleebia TM, Alshahrani KM, Alshahrani MY, Ahmad I, Asiri M, Kamal M, Jawaid T, Srivastava SP, Saeed M, Balaramnavar VM. Identification of 3-((1-(Benzyl(2-hydroxy-2-phenylethyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamoyl)pyrazine-2-carboxylic Acid as a Potential Inhibitor of Non-Nucleosidase Reverse Transcriptase Inhibitors through InSilico Ligand- and Structure-Based Approaches. Molecules 2021; 26:molecules26175262. [PMID: 34500699 PMCID: PMC8433663 DOI: 10.3390/molecules26175262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/03/2022] Open
Abstract
Non-nucleosidase reverse transcriptase inhibitors (NNRTIs) are highly promising agents for use in highly effective antiretroviral therapy. We implemented a rational approach for the identification of promising NNRTIs based on the validated ligand- and structure-based approaches. In view of our state-of-the-art techniques in drug design and discovery utilizing multiple modeling approaches, we report here, for the first time, quantitative pharmacophore modeling (HypoGen), docking, and in-house database screening approaches in the identification of potential NNRTIs. The validated pharmacophore model with three hydrophobic groups, one aromatic ring group, and a hydrogen-bond acceptor explains the interactions at the active site by the inhibitors. The model was implemented in pharmacophore-based virtual screening (in-house and commercially available databases) and molecular docking for prioritizing the potential compounds as NNRTI. The identified leads are in good corroboration with binding affinities and interactions as compared to standard ligands. The model can be utilized for designing and identifying the potential leads in the area of NNRTIs.
Collapse
Affiliation(s)
- Deepti Mathpal
- School of Pharmacy and Research, Sanskriti University, 28 K. M. Stone, Mathura Delhi Highway, Chhata, Mathura 281401, Uttar Pradesh, India;
| | - Tahani M. Almeleebia
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, P.O. Box 61413, Abha 62529, Saudi Arabia;
| | - Kholoud M. Alshahrani
- College of Medicine, King Khalid University, P.O. Box 61413, Abha 62529, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 62529, Saudi Arabia; (M.Y.A.); (I.A.); (M.A.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 62529, Saudi Arabia; (M.Y.A.); (I.A.); (M.A.)
| | - Mohammed Asiri
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 62529, Saudi Arabia; (M.Y.A.); (I.A.); (M.A.)
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al Kharj 11942, Saudi Arabia;
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Al Imam Mohammad ibn Saud Islamic University (IMSIU), Othman ibn Affan Street, Riyadh 13317, Saudi Arabia;
| | - Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine CT, New Haven, CT 06520, USA;
- Vascular Biology and Therapeutic Program, Yale University School of Medicine CT, New Haven, CT 06511, USA
| | - Mohd Saeed
- Department of Biology College of Sciences, University of Hail, P.O. Box 2440, Hail 55425, Saudi Arabia
- Correspondence: (M.S.); (V.M.B.)
| | - Vishal M. Balaramnavar
- School of Pharmacy and Research, Sanskriti University, 28 K. M. Stone, Mathura Delhi Highway, Chhata, Mathura 281401, Uttar Pradesh, India;
- Correspondence: (M.S.); (V.M.B.)
| |
Collapse
|
11
|
Cilento ME, Kirby KA, Sarafianos SG. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem Rev 2021; 121:3271-3296. [PMID: 33507067 DOI: 10.1021/acs.chemrev.0c00967] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV reverse transcriptase (RT) is an enzyme that plays a major role in the replication cycle of HIV and has been a key target of anti-HIV drug development efforts. Because of the high genetic diversity of the virus, mutations in RT can impart resistance to various RT inhibitors. As the prevalence of drug resistance mutations is on the rise, it is necessary to design strategies that will lead to drugs less susceptible to resistance. Here we provide an in-depth review of HIV reverse transcriptase, current RT inhibitors, novel RT inhibitors, and mechanisms of drug resistance. We also present novel strategies that can be useful to overcome RT's ability to escape therapies through drug resistance. While resistance may not be completely avoidable, designing drugs based on the strategies and principles discussed in this review could decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Maria E Cilento
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| |
Collapse
|
12
|
Vanangamudi M, Nair PC, Engels SEM, Palaniappan S, Namasivayam V. Structural Insights to Human Immunodeficiency Virus (HIV-1) Targets and Their Inhibition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:63-95. [PMID: 34258737 DOI: 10.1007/978-981-16-0267-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human immunodeficiency virus (HIV) is a deadly virus that attacks the body's immune system, subsequently leading to AIDS (acquired immunodeficiency syndrome) and ultimately death. Currently, there is no vaccine or effective cure for this infection; however, antiretrovirals that act at various phases of the virus life cycle have been useful to control the viral load in patients. One of the major problems with antiretroviral therapies involves drug resistance. The three-dimensional structure from crystallography studies are instrumental in understanding the structural basis of drug binding to various targets. This chapter provides key insights into different targets and drugs used in the treatment from a structural perspective. Specifically, an insight into the binding characteristics of drugs at the active and allosteric sites of different targets and the importance of targeting allosteric sites for design of new-generation antiretrovirals to overcome complex and resistant forms of the virus has been reviewed.
Collapse
Affiliation(s)
- Murugesan Vanangamudi
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Gwalior, Gwalior, Madhya Pradesh, India
| | - Pramod C Nair
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
13
|
Ashford MW, Xu C, Molloy JJ, Carpenter‐Warren C, Slawin AMZ, Leach AG, Watson AJB. Catalytic Enantioselective Synthesis of Heterocyclic Vicinal Fluoroamines by Using Asymmetric Protonation: Method Development and Mechanistic Study. Chemistry 2020; 26:12249-12255. [PMID: 32539163 PMCID: PMC7540707 DOI: 10.1002/chem.202002543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 01/02/2023]
Abstract
A catalytic enantioselective synthesis of heterocyclic vicinal fluoroamines is reported. A chiral Brønsted acid promotes aza-Michael addition to fluoroalkenyl heterocycles to give a prochiral enamine intermediate that undergoes asymmetric protonation upon rearomatization. The reaction accommodates a range of azaheterocycles and nucleophiles, generating the C-F stereocentre in high enantioselectivity, and is also amenable to stereogenic C-CF3 bonds. Extensive DFT calculations provided evidence for stereocontrolled proton transfer from catalyst to substrate as the rate-determining step, and showed the importance of steric interactions from the catalyst's alkyl groups in enforcing the high enantioselectivity. Crystal structure data show the dominance of noncovalent interactions in the core structure conformation, enabling modulation of the conformational landscape. Ramachandran-type analysis of conformer distribution and Protein Data Bank mining indicated that benzylic fluorination by this approach has the potential to improve the potency of several marketed drugs.
Collapse
Affiliation(s)
- Matthew W. Ashford
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Chao Xu
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - John J. Molloy
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | | | | | - Andrew G. Leach
- School of Health SciencesUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| |
Collapse
|
14
|
Small Conformational Changes Underlie Evolution of Resistance to NNRTI in HIV Reverse Transcriptase. Biophys J 2020; 118:2489-2501. [PMID: 32348721 DOI: 10.1016/j.bpj.2020.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 11/23/2022] Open
Abstract
Despite achieving considerable success in reducing the number of fatalities due to acquired immunodeficiency syndrome, emergence of resistance against the reverse transcriptase (RT) inhibitor drugs remains one of the biggest challenges of the human immunodeficiency virus antiretroviral therapy (ART). Non-nucleoside reverse transcriptase inhibitors (NNRTIs) form a large class of drugs and a crucial component of ART. In NNRTIs, even a single resistance mutation is known to make the drugs completely ineffective. Additionally, several inhibitor-bound RTs with single resistance mutations do not exhibit any significant variations in their three-dimensional structures compared with the inhibitor-bound RT but completely nullify their inhibitory functions. This makes understanding the structural mechanism of these resistance mutations crucial for drug development. Here, we study several single resistance mutations in the allosteric inhibitor (nevirapine)-bound RT to analyze the mechanism of small structural changes leading to these large functional effects. In this study, we have shown that in absence of significant conformational variations in the inhibitor-bound wild-type RT and RT with single resistance mutations, the protein contact network analysis of their static structures, along with molecular dynamics simulations, can be a useful approach to understand the functional effect of small local conformational variations. The simple network analysis exposes the localized contact changes that lead to global rearrangement in the communication pattern within RT. Furthermore, these conformational changes have implications on the overall dynamics of RT. Using various measures, we show that a single resistance mutation can change the network structure and dynamics of RT to behave more like unbound RT, even in the presence of the inhibitor. This combined coarse-grained contact network and molecular dynamics approach promises to be a useful tool to analyze structure-function studies of proteins that show large functional changes with negligible variations in their overall conformation.
Collapse
|
15
|
Xu C, Xin Y, Chen M, Ba M, Guo Q, Zhu C, Guo Y, Shi J. Discovery, synthesis, and optimization of an N-alkoxy indolylacetamide against HIV-1 carrying NNRTI-resistant mutations from the Isatis indigotica root. Eur J Med Chem 2020; 189:112071. [PMID: 32004936 PMCID: PMC7111291 DOI: 10.1016/j.ejmech.2020.112071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
From an aqueous decoction of the traditional Chinese medicine "ban lan gen" (the Isatis indigotica root), an antiviral natural product CI - 39 was isolated as an NNRTI (non-nucleoside reverse transcriptase inhibitor) (EC50 = 3.40 μM). Its novel structure was determined as methyl (1-methoxy-1H-indol-3-yl)acetamidobenzoate by spectroscopic data and confirmed by single crystal X-ray diffraction. Through synthesis and structure-activity relationship (SAR) investigation of CI - 39 and 57 new derivatives (24 with EC50 values of 0.06-8.55 μM), two optimized derivatives 10f and 10i (EC50: 0.06 μM and 0.06 μM) having activity comparable to that of NVP (EC50 = 0.03 μM) were obtained. Further evaluation verified that 10f and 10i were RT DNA polymerase inhibitors and exhibited better activities and drug resistance folds compared to NVP against seven NNRTI-resistant strains carrying different mutations. Especially, 10i (EC50 = 0.43 μM) was more active to the L100I/K103N double-mutant strain as compared to both NVP (EC50 = 0.76 μM) and EFV (EC50 = 1.08 μM). The molecular docking demonstrated a possible binding pattern between 10i and RT and revealed activity mechanism of 10i against the NNRTI-resistant strains.
Collapse
Affiliation(s)
- Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yijing Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Minghua Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingyu Ba
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chenggen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
16
|
Collier DA, Monit C, Gupta RK. The Impact of HIV-1 Drug Escape on the Global Treatment Landscape. Cell Host Microbe 2019; 26:48-60. [PMID: 31295424 DOI: 10.1016/j.chom.2019.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rising prevalence of HIV drug resistance (HIVDR) could threaten gains made in combating the HIV epidemic and compromise the 90-90-90 target proposed by United Nations Programme on HIV/AIDS (UNAIDS) to have achieved virological suppression in 90% of all persons receiving antiretroviral therapy (ART) by the year 2020. HIVDR has implications for the persistence of HIV, the selection of current and future ART drug regimens, and strategies of vaccine and cure development. Focusing on drug classes that are in clinical use, this Review critically summarizes what is known about the mechanisms the virus utilizes to escape drug control. Armed with this knowledge, strategies to limit the expansion of HIVDR are proposed.
Collapse
Affiliation(s)
- D A Collier
- Division of Infection and Immunity, University College London, London, UK
| | - C Monit
- Division of Infection and Immunity, University College London, London, UK
| | - R K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Sang Y, Han S, Pannecouque C, De Clercq E, Zhuang C, Chen F. Conformational restriction design of thiophene-biphenyl-DAPY HIV-1 non-nucleoside reverse transcriptase inhibitors. Eur J Med Chem 2019; 182:111603. [DOI: 10.1016/j.ejmech.2019.111603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
|
18
|
Zhang R, Zhang F, Sun Z, Liu P, Zhang X, Ye Y, Cai B, Walsh MJ, Ren X, Hao X, Zhang W, Yu J. LINE-1 Retrotransposition Promotes the Development and Progression of Lung Squamous Cell Carcinoma by Disrupting the Tumor-Suppressor Gene FGGY. Cancer Res 2019; 79:4453-4465. [PMID: 31289132 DOI: 10.1158/0008-5472.can-19-0076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/07/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
Abstract
Somatic long interspersed element-1 (LINE-1) retrotransposition is a genomic process that relates to gene disruption and tumor occurrence. However, the expression and function of LINE-1 retrotransposition in lung squamous cell carcinoma (LUSC) remain unclear. We analyzed the transcriptomes of LUSC samples in The Cancer Genome Atlas and observed LINE-1 retrotransposition in 90% of tumor samples. Thirteen LINE-1 retrotranspositions of high occurrence were identified and further validated from an independent Chinese LUSC cohort. Among them, LINE-1-FGGY (L1-FGGY) was identified as the most frequent LINE-1 retrotransposition in the Chinese cohort and significantly correlated with poor clinical outcome. L1-FGGY occurred with smoke-induced hypomethylation of the LINE-1 promoter and contributed to the development of local immune evasion and dysfunctional metabolism. Overexpression of L1-FGGY or knockdown of FGGY promoted cell proliferation and invasion in vitro, facilitated tumorigenesis in vivo, and dysregulated cell energy metabolism and cytokine/chemotaxin transcription. Importantly, specific reverse transcription inhibitors, nevirapine and efavirenz, dramatically countered L1-FGGY abundance, inhibited tumor growth, recovered metabolism dysfunction, and improved the local immune evasion. In conclusion, hypomethylation-induced L1-FGGY expression is a frequent genomic event that promotes the development and progression of LUSC and represents a promising predictive biomarker and therapeutic target in LUSC. SIGNIFICANCE: LINE-1-FGGY is a prognosis predictive biomarker and potential therapeutic target to overcome local immune evasion in lung squamous cell carcinoma.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/surgery
- Cell Line, Tumor
- Cohort Studies
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Lipid Metabolism/genetics
- Long Interspersed Nucleotide Elements/genetics
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Male
- Mice, SCID
- Middle Aged
- Promoter Regions, Genetic
- Proteins/genetics
- Smoking/genetics
- Tumor Escape
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fan Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zeguo Sun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Beiqi Cai
- Department of Imaging, Nanjing Bayi Hospital, Nanjing, China
| | - Martin J Walsh
- Departments of Pharmacological Sciences, Genetics and Genomic Sciences and the Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xiubao Ren
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Immunology, Biotherapy Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xishan Hao
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Immunology, Biotherapy Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Weijia Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
19
|
Nonnucleoside Reverse Transcriptase Inhibitor Hypersusceptibility and Resistance by Mutation of Residue 181 in HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2019; 63:AAC.00676-19. [PMID: 31160281 DOI: 10.1128/aac.00676-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/27/2019] [Indexed: 11/20/2022] Open
Abstract
Substitutions at residue Y181 in HIV-1 reverse transcriptase (RT), in particular, Y181C, Y181I, and Y181V, are associated with nonnucleoside RT inhibitor (NNRTI) cross-resistance. In this study, we used kinetic and thermodynamic approaches, in addition to molecular modeling, to gain insight into the mechanisms by which these substitutions confer resistance to nevirapine (NVP), efavirenz (EFV), and rilpivirine (RPV). Using pre-steady-state kinetics, we found that the dissociation constant (Kd ) values for inhibitor binding to the Y181C and Y181I RT-template/primer (T/P) complexes were significantly reduced. In the presence of saturating concentrations of inhibitor, the Y181C RT-T/P complex incorporated the next correct deoxynucleoside triphosphate (dNTP) more efficiently than the wild-type (WT) complex, and this phenotype correlated with decreased mobility of the RT on the T/P substrate. Interestingly, we found that the Y181F substitution in RT-which represents a transitional mutation between Y181 and Y181I/V, or a partial revertant-conferred hypersusceptibility to EFV and RPV at both the virus and enzyme levels. EFV and RPV bound more tightly to Y181F RT-T/P. Furthermore, inhibitor-bound Y181F RT-T/P was less efficient than the WT complex in incorporating the next correct dNTP, and this could be attributed to increased mobility of Y181F RT on the T/P substrate. Collectively, our data highlight the key role that Y181 in RT plays in NNRTI binding.
Collapse
|
20
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. A Structural View on Medicinal Chemistry Strategies against Drug Resistance. Angew Chem Int Ed Engl 2019; 58:3300-3345. [PMID: 29846032 DOI: 10.1002/anie.201802416] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Indexed: 12/31/2022]
Abstract
The natural phenomenon of drug resistance is a widespread issue that hampers the performance of drugs in many major clinical indications. Antibacterial and antifungal drugs are affected, as well as compounds for the treatment of cancer, viral infections, or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, the underlying molecular mechanisms have been identified to understand the emergence of resistance and to overcome this detrimental process. Detailed structural information on the root causes for drug resistance is nowadays frequently available, so next-generation drugs can be designed that are anticipated to suffer less from resistance. This knowledge-based approach is essential for fighting the inevitable occurrence of drug resistance.
Collapse
Affiliation(s)
- Stefano Agnello
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Michael Brand
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Silvia Gazzola
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| |
Collapse
|
21
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. Eine strukturelle Evaluierung medizinalchemischer Strategien gegen Wirkstoffresistenzen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201802416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Agnello
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Michael Brand
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Mathieu F. Chellat
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Silvia Gazzola
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
22
|
Namasivayam V, Vanangamudi M, Kramer VG, Kurup S, Zhan P, Liu X, Kongsted J, Byrareddy SN. The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. J Med Chem 2018; 62:4851-4883. [PMID: 30516990 DOI: 10.1021/acs.jmedchem.8b00843] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) infection is now pandemic. Targeting HIV-1 reverse transcriptase (HIV-1 RT) has been considered as one of the most successful targets for the development of anti-HIV treatment. Among the HIV-1 RT inhibitors, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity, and low toxicity in antiretroviral combination therapies used to treat HIV. Until now, >50 structurally diverse classes of compounds have been reported as NNRTIs. Among them, six NNRTIs were approved for HIV-1 treatment, namely, nevirapine (NVP), delavirdine (DLV), efavirenz (EFV), etravirine (ETR), rilpivirine (RPV), and doravirine (DOR). In this perspective, we focus on the six NNRTIs and lessons learned from their journey through development to clinical studies. It demonstrates the obligatory need of understanding the physicochemical and biological principles (lead optimization), resistance mutations, synthesis, and clinical requirements for drugs.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Murugesan Vanangamudi
- Department of Medicinal and Pharmaceutical Chemistry , Sree Vidyanikethan College of Pharmacy , Tirupathi , Andhra Pradesh 517102 , India
| | | | - Sonali Kurup
- College of Pharmacy , Roosevelt University , Schaumburg , Illinois 60173 , United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 , Odense M , Denmark
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha 68198-5880 , United States
| |
Collapse
|
23
|
Kamil R, Debnath U, Verma S, Prabhakar Y. Identification of Adjacent NNRTI Binding Pocket in Multi-mutated HIV1- RT Enzyme Model: An in silico Study. Curr HIV Res 2018; 16:121-129. [DOI: 10.2174/1570162x16666180412165004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/25/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022]
Abstract
Introduction:
A possible strategy to combat mutant strains is to have a thorough structural
evaluation before and after mutations to identify the diversity in the non-nucleoside inhibitor binding
pocket and their effects on enzyme-ligand interactions to generate novel NNRTI’s accordingly.
Objective:
The primary objective of this study was to find effects of multiple point mutations on
NNRTI binding pocket. This study included the contribution of each individual mutation in NNIBP
that propose an adjacent binding pocket which can be used to discover novel NNRTI derivatives.
Methods:
An in Silico model of HIV-1 RT enzyme with multiple mutations K103N, Y181C and
Y188L was developed and evaluated. Two designed NNRTI pyridinone derivatives were selected as
ligands for docking studies with the homology model through alignment based docking and residue
based docking approaches. Binding pockets of wild type HIV-1 RT and multi-mutated homology
model were compared thoroughly.
Result and Discussion:
K103N mutation narrowed the entrance of NNRTI binding pocket and forbade
electrostatic interaction with α amino group of LYS103. Mutations Y181C and Y188L prevented
NNRTI binding by eliminating aromatic π interactions offered by tyrosine rings. Docking
study against new homology model suggested an adjacent binding pocket with combination of residues
in palm and connection domains. This pocket is approximately 14.46Å away from conventional
NNRTI binding site.
Conclusion:
Increased rigidity, steric hindrance and losses of important interactions cumulatively
prompt ligands to adapt adjacent NNRTI binding pocket. The proposed new and adjacent binding
pocket is identified by this study which can further be evaluated to generate novel derivatives.
Collapse
Affiliation(s)
- R.F. Kamil
- R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - U. Debnath
- Department of Pharmaceutical Chemistry, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata 700114, India
| | - S. Verma
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute Lucknow 226031, India
| | - Y.S. Prabhakar
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute Lucknow 226031, India
| |
Collapse
|
24
|
Yang Y, Kang D, Nguyen LA, Smithline ZB, Pannecouque C, Zhan P, Liu X, Steitz TA. Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2- d]pyrimidine non-nucleoside inhibitors. eLife 2018; 7:e36340. [PMID: 30044217 PMCID: PMC6080946 DOI: 10.7554/elife.36340] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022] Open
Abstract
Rapid generation of drug-resistant mutations in HIV-1 reverse transcriptase (RT), a prime target for anti-HIV therapy, poses a major impediment to effective anti-HIV treatment. Our previous efforts have led to the development of two novel non-nucleoside reverse transcriptase inhibitors (NNRTIs) with piperidine-substituted thiophene[3,2-d]pyrimidine scaffolds, compounds K-5a2 and 25a, which demonstrate highly potent anti-HIV-1 activities and improved resistance profiles compared with etravirine and rilpivirine, respectively. Here, we have determined the crystal structures of HIV-1 wild-type (WT) RT and seven RT variants bearing prevalent drug-resistant mutations in complex with K-5a2 or 25a at ~2 Å resolution. These high-resolution structures illustrate the molecular details of the extensive hydrophobic interactions and the network of main chain hydrogen bonds formed between the NNRTIs and the RT inhibitor-binding pocket, and provide valuable insights into the favorable structural features that can be employed for designing NNRTIs that are broadly active against drug-resistant HIV-1 variants.
Collapse
Affiliation(s)
- Yang Yang
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteYale UniversityNew HavenUnited States
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Laura A Nguyen
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | - Zachary B Smithline
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | | | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Thomas A Steitz
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteYale UniversityNew HavenUnited States
- Department of ChemistryYale UniversityNew HavenUnited States
| |
Collapse
|
25
|
Abstract
INTRODUCTION There are 36.7 million people living with HIV with 20.9 million having access to antiretroviral therapy (ART). Nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) remain the 'backbone' of ART. However, the currently available nine NRTIs and five non-nucleoside reverse transcriptase inhibitors (NNRTIs) have significant side effects and resistance profiles. Areas covered: We summarize the mechanisms of resistance and other limitations of the existing NRTIs/NNRTIs. GS-9131, MK-8591, Elsulfavirine and Doravirine are four new agents that are furthest along in development. Expert opinion: ART development has evolved with several new promising agents. Longer-acting agents, like MK-8591 are extremely attractive to enhance drug adherence and patient satisfaction. Doravirine offers an NNRTI effective against common mutations that has fewer side effects, limitations on dosing and drug interactions. GS-9131 is very potent and active against a variety of NRTI mutants but it is too early in its development to understand its full risks and benefits. Finally, Elsulfavirine has a long half-life and preliminary data suggests fewer side effects than the most commonly used NNRTI, efavirenz. Each of these new agents shows promise and potential to improve ART in the future. The newer generation of reverse transcriptase inhibitors have longer half-lives, more favorable adverse effect profiles, and fewer drug interactions.
Collapse
Affiliation(s)
- Mohammad A Rai
- a Department of Internal Medicine , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Sam Pannek
- a Department of Internal Medicine , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Carl J Fichtenbaum
- a Department of Internal Medicine , University of Cincinnati Medical Center , Cincinnati , OH , USA
| |
Collapse
|
26
|
Hajiebrahimi A, Ghasemi Y, Sakhteman A. FLIP: An assisting software in structure based drug design using fingerprint of protein-ligand interaction profiles. J Mol Graph Model 2017; 78:234-244. [PMID: 29121561 DOI: 10.1016/j.jmgm.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 11/29/2022]
Abstract
With the growing number of labor-intensive data in the pharmaceutical industries and public domain for protein-ligand complexes, a significant challenge is still remaining in managing and leveraging this vast information. Here, a standalone application is presented for analysis, organization, and illustration of structural data and molecular interactions for exploiting 3D-structures into simple 1D fingerprints. The utility of the approach was shown in unraveling a feasible solution for post-processing of docking results in parallel with providing fruitful analysis for users in order to investigate molecular interactions. Remarkably, all interaction possibilities including (hydrogen bond, water-bridged, electrostatic, and hydrophobic as well as π- π and cation-π interactions) are supported both in the form of fingerprints and compelling reports. These investigations are mainly considered based on right orientation, location, and geometry of the interacting pairs rather than the acquisition of the energy terms. The reasonable efficiency of our application in different models was comparable to recent methods It is clearly presented that FLIP provides a faster way to generate usable fingerprints for ligand and protein binding modes. FLIP is free for academic use and is available at: http://zistrayan.com/development/download/flip/package.zip.
Collapse
Affiliation(s)
- Ali Hajiebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Meyder A, Nittinger E, Lange G, Klein R, Rarey M. Estimating Electron Density Support for Individual Atoms and Molecular Fragments in X-ray Structures. J Chem Inf Model 2017; 57:2437-2447. [PMID: 28981269 DOI: 10.1021/acs.jcim.7b00391] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Macromolecular structures resolved by X-ray crystallography are essential for life science research. While some methods exist to automatically quantify the quality of the electron density fit, none of them is without flaws. Especially the question of how well individual parts like atoms, small fragments, or molecules are supported by electron density is difficult to quantify. While taking experimental uncertainties correctly into account, they do not offer an answer on how reliable an individual atom position is. A rapid quantification of this atomic position reliability would be highly valuable in structure-based molecular design. To overcome this limitation, we introduce the electron density score EDIA for individual atoms and molecular fragments. EDIA assesses rapidly, automatically, and intuitively the fit of individual as well as multiple atoms (EDIAm) into electron density accompanied by an integrated error analysis. The computation is based on the standard 2fo - fc electron density map in combination with the model of the molecular structure. For evaluating partial structures, EDIAm shows significant advantages compared to the real-space R correlation coefficient (RSCC) and the real-space difference density Z score (RSZD) from the molecular modeler's point of view. Thus, EDIA abolishes the time-consuming step of visually inspecting the electron density during structure selection and curation. It supports daily modeling tasks of medicinal and computational chemists and enables a fully automated assembly of large-scale, high-quality structure data sets. Furthermore, EDIA scores can be applied for model validation and method development in computer-aided molecular design. In contrast to measuring the deviation from the structure model by root-mean-squared deviation, EDIA scores allow comparison to the underlying experimental data taking its uncertainty into account.
Collapse
Affiliation(s)
- Agnes Meyder
- ZBH-Center for Bioinformatics, Universität Hamburg , Hamburg 20146, Germany
| | - Eva Nittinger
- ZBH-Center for Bioinformatics, Universität Hamburg , Hamburg 20146, Germany
| | | | | | - Matthias Rarey
- ZBH-Center for Bioinformatics, Universität Hamburg , Hamburg 20146, Germany
| |
Collapse
|
28
|
Samanta PN, Das KK. Inhibition activities of catechol diether based non-nucleoside inhibitors against the HIV reverse transcriptase variants: Insights from molecular docking and ONIOM calculations. J Mol Graph Model 2017. [DOI: 10.1016/j.jmgm.2017.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Mechanistic Study of Common Non-Nucleoside Reverse Transcriptase Inhibitor-Resistant Mutations with K103N and Y181C Substitutions. Viruses 2016; 8:v8100263. [PMID: 27669286 PMCID: PMC5086599 DOI: 10.3390/v8100263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/30/2022] Open
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a mainstay of therapy for human immunodeficiency type 1 virus (HIV-1) infections. However, their effectiveness can be hampered by the emergence of resistant mutations. To aid in designing effective NNRTIs against the resistant mutants, it is important to understand the resistance mechanism of the mutations. Here, we investigate the mechanism of the two most prevalent NNRTI-associated mutations with K103N or Y181C substitution. Virus and reverse transcriptase (RT) with K103N/Y188F, K103A, or K103E substitutions and with Y181F, Y188F, or Y181F/Y188F substitutions were employed to study the resistance mechanism of the K103N and Y181C mutants, respectively. Results showed that the virus and RT with K103N/Y188F substitutions displayed similar resistance levels to the virus and RT with K103N substitution versus NNRTIs. Virus and RT containing Y181F, Y188F, or Y181F/Y188F substitution exhibited either enhanced or similar susceptibility to NNRTIs compared with the wild type (WT) virus. These results suggest that the hydrogen bond between N103 and Y188 may not play an important role in the resistance of the K103N variant to NNRTIs. Furthermore, the results from the studies with the Y181 or Y188 variant provide the direct evidence that aromatic π-π stacking plays a crucial role in the binding of NNRTIs to RT.
Collapse
|
30
|
Santos LH, Ferreira RS, Caffarena ER. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors. Mem Inst Oswaldo Cruz 2016; 110:847-64. [PMID: 26560977 PMCID: PMC4660614 DOI: 10.1590/0074-02760150239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023] Open
Abstract
Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency
virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts
against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors
(NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the
highly active antiretroviral therapy in combination with other anti-HIV drugs.
However, the rapid emergence of drug-resistant viral strains has limited the
successful rate of the anti-HIV agents. Computational methods are a significant part
of the drug design process and indispensable to study drug resistance. In this
review, recent advances in computer-aided drug design for the rational design of new
compounds against HIV-1 RT using methods such as molecular docking, molecular
dynamics, free energy calculations, quantitative structure-activity relationships,
pharmacophore modelling and absorption, distribution, metabolism, excretion and
toxicity prediction are discussed. Successful applications of these methodologies are
also highlighted.
Collapse
Affiliation(s)
| | - Rafaela Salgado Ferreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | |
Collapse
|
31
|
De Martino G, La Regina G, Ragno R, Coluccia A, Bergamini A, Ciaprini C, Sinistro A, Maga G, Crespan E, Artico M, Silvestri R. Indolyl Aryl Sulphones as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Synthesis, Biological Evaluation and Binding Mode Studies of New Derivatives at Indole-2-carboxamide. ACTA ACUST UNITED AC 2016; 17:59-77. [PMID: 17042328 DOI: 10.1177/095632020601700202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New non-nucleoside reverse transcriptase inhibitors (NNRTIs) that are active against the commonly occurring mutations of HIV are urgently needed for the treatment of AIDS. We synthesized new NNRTIs of the indolyl aryl sulphone (IAS) family, which are endowed with high antiviral potency against HIV-1 wt (wild-type), and the Y181C and K103N-Y181C drug resistant mutant strains. Several new compounds were highly active in lymphocytes infected with primary isolates carrying the K103N-V108I-M184V and L100I-V108I mutations. The design of new IASs was based on three-dimensional quantitative structure-activity relationship (3D QSAR) studies and docking simulations. A cross-docking study was also undertaken to gain some insights in to the binding mode of the newly synthesized IASs in the wt and mutated isoforms of reverse transcriptase.
Collapse
Affiliation(s)
- Gabriella De Martino
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Studi Farmaceutici, Università di Roma 'La Sapienza', Roma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang Z, Hamatake R, Hong Z. Clinical Utility of Current NNRTIs and Perspectives of New Agents in This Class under Development. ACTA ACUST UNITED AC 2016; 15:121-34. [PMID: 15266894 DOI: 10.1177/095632020401500302] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Highly active antiretroviral therapy (HAART) has significantly reduced the number of deaths caused by AIDS. However, the antiviral efficacy of HAART comprising protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs) is frequently accompanied by a decrease in patients' quality of life. PI-based therapies often fail due to poor adherence caused by heavy pill burden, complex dosing schedules and undesirable side effects. The current trend is to switch from PI-based to PI-sparing regimens consisting of non-nucleoside reverse transcriptase inhibitors (NNRTIs) and NRTIs. Despite some encouraging results from NNRTI-containing therapies, two major concerns in using the currently available NNRTIs remain: 1) low genetic barrier to the emergence of resistance and 2) cross-resistance due to single mutations that often render the whole class of NNRTIs ineffective. Clearly, new and improved NNRTIs are needed to address these concerns.
Collapse
Affiliation(s)
- Zhijun Zhang
- Drug Discovery, Valeant Pharmaceuticals International, Costa Mesa, Calif., USA.
| | | | | |
Collapse
|
33
|
Geisman AN, Valuev-Elliston VT, Ozerov AA, Khandazhinskaya AL, Chizhov AO, Kochetkov SN, Pannecouque C, Naesens L, Seley-Radtke KL, Novikov MS. 1,6-Bis[(benzyloxy)methyl]uracil derivatives-Novel antivirals with activity against HIV-1 and influenza H1N1 virus. Bioorg Med Chem 2016; 24:2476-2485. [PMID: 27112451 DOI: 10.1016/j.bmc.2016.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
A series of 1,6-bis[(benzyloxy)methyl]uracil derivatives combining structural features of both diphenyl ether and pyridone types of NNRTIs were synthesized. Target compounds were found to inhibit HIV-1 reverse transcriptase at micro- and submicromolar levels of concentrations and exhibited anti-HIV-1 activity in MT-4 cell culture, demonstrating resistance profile similar to first generation NNRTIs. The synthesized compounds also showed profound activity against influenza virus (H1N1) in MDCK cell culture without detectable cytotoxicity. The lead compound of this assay appeared to exceed rimantadine, amantadine, ribavirin and oseltamivir carboxylate in activity. The mechanism of action of 1,6-bis[(benzyloxy)methyl]uracils against influenza virus is currently under investigation.
Collapse
Affiliation(s)
- Alexander N Geisman
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Pavshikh Bortsov Sq., 1, Volgograd 400131, Russia
| | - Vladimir T Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Vavilov Str., 32, Moscow 119991, Russia
| | - Alexander A Ozerov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Pavshikh Bortsov Sq., 1, Volgograd 400131, Russia
| | - Anastasia L Khandazhinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Vavilov Str., 32, Moscow 119991, Russia
| | - Alexander O Chizhov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky pr., 47, Moscow 119991, Russia
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Vavilov Str., 32, Moscow 119991, Russia
| | - Christophe Pannecouque
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Lieve Naesens
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Mikhail S Novikov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Pavshikh Bortsov Sq., 1, Volgograd 400131, Russia
| |
Collapse
|
34
|
Abstract
The enzyme reverse transcriptase (RT) was discovered in retroviruses almost 50 years ago. The demonstration that other types of viruses, and what are now called retrotransposons, also replicated using an enzyme that could copy RNA into DNA came a few years later. The intensity of the research in both the process of reverse transcription and the enzyme RT was greatly stimulated by the recognition, in the mid-1980s, that human immunodeficiency virus (HIV) was a retrovirus and by the fact that the first successful anti-HIV drug, azidothymidine (AZT), is a substrate for RT. Although AZT monotherapy is a thing of the past, the most commonly prescribed, and most successful, combination therapies still involve one or both of the two major classes of anti-RT drugs. Although the basic mechanics of reverse transcription were worked out many years ago, and the first high-resolution structures of HIV RT are now more than 20 years old, we still have much to learn, particularly about the roles played by the host and viral factors that make the process of reverse transcription much more efficient in the cell than in the test tube. Moreover, we are only now beginning to understand how various host factors that are part of the innate immunity system interact with the process of reverse transcription to protect the host-cell genome, the host cell, and the whole host, from retroviral infection, and from unwanted retrotransposition.
Collapse
|
35
|
Vite-Caritino H, Méndez-Lucio O, Reyes H, Cabrera A, Chávez D, Medina-Franco JL. Advances in the development of pyridinone derivatives as non-nucleoside reverse transcriptase inhibitors. RSC Adv 2016. [DOI: 10.1039/c5ra25722k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Medicinal chemistry, computational design and biological screening have advanced pyridin-2(1H)-one derivatives as a promising class of non-nucleoside reverse transcriptase inhibitors for the treatment of HIV/AIDS.
Collapse
Affiliation(s)
- Hugo Vite-Caritino
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Mexico City 04510
- Mexico
| | - Oscar Méndez-Lucio
- Unilever Centre for Molecular Science Informatics
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Héctor Reyes
- Centro de Graduados e Investigación en Química del Instituto Tecnológico de Tijuana
- Tijuana
- Mexico
| | - Alberto Cabrera
- Centro de Graduados e Investigación en Química del Instituto Tecnológico de Tijuana
- Tijuana
- Mexico
| | - Daniel Chávez
- Centro de Graduados e Investigación en Química del Instituto Tecnológico de Tijuana
- Tijuana
- Mexico
| | - José L. Medina-Franco
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Mexico City 04510
- Mexico
| |
Collapse
|
36
|
Frey KM. Structure-enhanced methods in the development of non-nucleoside inhibitors targeting HIV reverse transcriptase variants. Future Microbiol 2015; 10:1767-72. [PMID: 26517310 DOI: 10.2217/fmb.15.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Resistance continues to emerge as a leading cause for antiretroviral treatment failure. Several mutations in HIV reverse transcriptase (RT) confer resistance to non-nucleoside inhibitors (NNRTIs), vital components of antiretroviral combination therapies. Since the majority of mutations are located in the NNRTI binding pocket, crystal structures of RT variants in complex with NNRTIs have provided ideas for new drug design strategies. This article reviews the impact of RT crystal structures on the multidisciplinary design and development of new inhibitors with improved resistance profiles.
Collapse
Affiliation(s)
- Kathleen M Frey
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy & Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA
| |
Collapse
|
37
|
Li W, Li X, De Clercq E, Zhan P, Liu X. Discovery of potent HIV-1 non-nucleoside reverse transcriptase inhibitors from arylthioacetanilide structural motif. Eur J Med Chem 2015; 102:167-79. [DOI: 10.1016/j.ejmech.2015.07.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 11/26/2022]
|
38
|
Frey KM, Puleo DE, Spasov KA, Bollini M, Jorgensen WL, Anderson KS. Structure-based evaluation of non-nucleoside inhibitors with improved potency and solubility that target HIV reverse transcriptase variants. J Med Chem 2015; 58:2737-45. [PMID: 25700160 PMCID: PMC4378236 DOI: 10.1021/jm501908a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
The
development of novel non-nucleoside inhibitors (NNRTIs) with
activity against variants of HIV reverse transcriptase (RT) is crucial
for overcoming treatment failure. The NNRTIs bind in an allosteric
pocket in RT ∼10 Å away from the active site. Earlier
analogues of the catechol diether compound series have picomolar activity
against HIV strains with wild-type RT but lose potency against variants
with single Y181C and double K103N/Y181C mutations. As guided by structure-based
and computational studies, removal of the 5-Cl substitution of compound 1 on the catechol aryl ring system led to a new analogue compound 2 that maintains greater potency against Y181C and K103N/Y181C
variants and better solubility (510 μg/mL). Crystal structures
were determined for wild-type, Y181C, and K103N/Y181C RT in complex
with both compounds 1 and 2 to understand
the structural basis for these findings. Comparison of the structures
reveals that the Y181C mutation destabilizes the binding mode of compound 1 and disrupts the interactions with residues in the pocket.
Compound 2 maintains the same conformation in wild-type
and mutant structures, in addition to several interactions with the
NNRTI binding pocket. Comparison of the six crystal structures will
assist in the understanding of compound binding modes and future optimization
of the catechol diether series.
Collapse
Affiliation(s)
- Kathleen M Frey
- †Department of Pharmacology, ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8066, United States
| | - David E Puleo
- †Department of Pharmacology, ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8066, United States
| | - Krasimir A Spasov
- †Department of Pharmacology, ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8066, United States
| | - Mariella Bollini
- †Department of Pharmacology, ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8066, United States
| | - William L Jorgensen
- †Department of Pharmacology, ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8066, United States
| | - Karen S Anderson
- †Department of Pharmacology, ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8066, United States
| |
Collapse
|
39
|
Famiglini V, La Regina G, Coluccia A, Pelliccia S, Brancale A, Maga G, Crespan E, Badia R, Riveira-Muñoz E, Esté JA, Ferretti R, Cirilli R, Zamperini C, Botta M, Schols D, Limongelli V, Agostino B, Novellino E, Silvestri R. Indolylarylsulfones carrying a heterocyclic tail as very potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors. J Med Chem 2014; 57:9945-57. [PMID: 25418038 DOI: 10.1021/jm5011622] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We synthesized new indolylarylsulfone (IAS) derivatives carrying a heterocyclic tail at the indole-2-carboxamide nitrogen as potential anti-HIV/AIDS agents. Several new IASs yielded EC50 values <1.0 nM against HIV-1 WT and mutant strains in MT-4 cells. The (R)-11 enantiomer proved to be exceptionally potent against the whole viral panel; in the reverse transcriptase (RT) screening assay, it was remarkably superior to NVP and EFV and comparable to ETV. The binding poses were consistent with the one previously described for the IAS non-nucleoside reverse transcriptase inhibitors. Docking studies showed that the methyl group of (R)-11 points toward the cleft created by the K103N mutation, different from the corresponding group of (S)-11. By calculating the solvent-accessible surface, we observed that the exposed area of RT in complex with (S)-11 was larger than the area of the (R)-11 complex. Compounds 6 and 16 and enantiomer (R)-11 represent novel robust lead compounds of the IAS class.
Collapse
Affiliation(s)
- Valeria Famiglini
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Singh K, Flores JA, Kirby KA, Neogi U, Sonnerborg A, Hachiya A, Das K, Arnold E, McArthur C, Parniak M, Sarafianos SG. Drug resistance in non-B subtype HIV-1: impact of HIV-1 reverse transcriptase inhibitors. Viruses 2014; 6:3535-62. [PMID: 25254383 PMCID: PMC4189038 DOI: 10.3390/v6093535] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 01/20/2023] Open
Abstract
Human immunodeficiency virus (HIV) causes approximately 2.5 million new infections every year, and nearly 1.6 million patients succumb to HIV each year. Several factors, including cross-species transmission and error-prone replication have resulted in extraordinary genetic diversity of HIV groups. One of these groups, known as group M (main) contains nine subtypes (A-D, F-H and J-K) and causes ~95% of all HIV infections. Most reported data on susceptibility and resistance to anti-HIV therapies are from subtype B HIV infections, which are prevalent in developed countries but account for only ~12% of all global HIV infections, whereas non-B subtype HIV infections that account for ~88% of all HIV infections are prevalent primarily in low and middle-income countries. Although the treatments for subtype B infections are generally effective against non-B subtype infections, there are differences in response to therapies. Here, we review how polymorphisms, transmission efficiency of drug-resistant strains, and differences in genetic barrier for drug resistance can differentially alter the response to reverse transcriptase-targeting therapies in various subtypes.
Collapse
Affiliation(s)
- Kamalendra Singh
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Jacqueline A Flores
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Karen A Kirby
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm 141 86, Sweden.
| | - Anders Sonnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm 141 86, Sweden.
| | - Atsuko Hachiya
- Clinical Research Center, Department of Infectious Diseases and Immunology, National Hospital Organization, Nagoya Medical Center, Nagoya 460-0001, Japan.
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA.
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA.
| | - Carole McArthur
- Department of Oral and Craniofacial Science , School of Dentistry, University of Missouri, Kansas City, MO 64108, USA.
| | - Michael Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Stefan G Sarafianos
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
41
|
Increased expression and copy number amplification of LINE-1 and SINE B1 retrotransposable elements in murine mammary carcinoma progression. Oncotarget 2014; 4:1882-93. [PMID: 24231191 PMCID: PMC3875756 DOI: 10.18632/oncotarget.1188] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons and endogenous retroviruses represent large families of repeated elements encoding reverse transcriptase (RT) proteins. Short Interspersed Nuclear Element B1 (SINE B1) retrotrasposons do not encode RT, but use LINE-1-derived RT for their retrotransposition. We previously showed that many cancer types have an abundant endogenous RT activity. Inhibition of that activity, by either RNA interference-dependent silencing of active LINE-1 elements or by RT inhibitory drugs, reduced proliferation and promoted differentiation in cancer cells, indicating that LINE-1-encoded RT is required for tumor progression. Using MMTV-PyVT transgenic mice as a well-defined model of breast cancer progression, we now report that both LINE-1 and SINE B1 retrotransposons are up-regulated at a very early stage of tumorigenesis; LINE-1-encoded RT product and enzymatic activity were detected in tumor tissues as early as stage 1, preceding the widespread appearance of histological alterations and specific cancer markers, and further increased in later progression stages, while neither was present in non-pathological breast tissues. Importantly, both LINE-1 and SINE B1 retrotransposon families undergo copy number amplification during tumor progression. These findings therefore indicate that RT activity is distinctive of breast cancer cells and that, furthermore, LINE-1 and SINE B1 undergo copy number amplification during cancer progression.
Collapse
|
42
|
Yu X, Weber IT, Harrison RW. Prediction of HIV drug resistance from genotype with encoded three-dimensional protein structure. BMC Genomics 2014; 15 Suppl 5:S1. [PMID: 25081370 PMCID: PMC4120140 DOI: 10.1186/1471-2164-15-s5-s1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Drug resistance has become a severe challenge for treatment of HIV infections. Mutations accumulate in the HIV genome and make certain drugs ineffective. Prediction of resistance from genotype data is a valuable guide in choice of drugs for effective therapy. RESULTS In order to improve the computational prediction of resistance from genotype data we have developed a unified encoding of the protein sequence and three-dimensional protein structure of the drug target for classification and regression analysis. The method was tested on genotype-resistance data for mutants of HIV protease and reverse transcriptase. Our graph based sequence-structure approach gives high accuracy with a new sparse dictionary classification method, as well as support vector machine and artificial neural networks classifiers. Cross-validated regression analysis with the sparse dictionary gave excellent correlation between predicted and observed resistance. CONCLUSION The approach of encoding the protein structure and sequence as a 210-dimensional vector, based on Delaunay triangulation, has promise as an accurate method for predicting resistance from sequence for drugs inhibiting HIV protease and reverse transcriptase.
Collapse
Affiliation(s)
- Xiaxia Yu
- Department of Computer Science, Georgia State University, 34 Peachtree Street, Atlanta, GA 30303, USA
| | - Irene T Weber
- Department of Biology, Georgia State University, Petit Science Center, Atlanta, GA 30303, USA
| | - Robert W Harrison
- Department of Computer Science, Georgia State University, 34 Peachtree Street, Atlanta, GA 30303, USA
- Department of Biology, Georgia State University, Petit Science Center, Atlanta, GA 30303, USA
| |
Collapse
|
43
|
Altered viral fitness and drug susceptibility in HIV-1 carrying mutations that confer resistance to nonnucleoside reverse transcriptase and integrase strand transfer inhibitors. J Virol 2014; 88:9268-76. [PMID: 24899199 DOI: 10.1128/jvi.00695-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTI) and integrase (IN) strand transfer inhibitors (INSTI) are key components of antiretroviral regimens. To explore potential interactions between NNRTI and INSTI resistance mutations, we investigated the combined effects of these mutations on drug susceptibility and fitness of human immunodeficiency virus type 1 (HIV-1). In the absence of drug, single-mutant viruses were less fit than the wild type; viruses carrying multiple mutations were less fit than single-mutant viruses. These findings were explained in part by the observation that mutant viruses carrying NNRTI plus INSTI resistance mutations had reduced amounts of virion-associated RT and/or IN protein. In the presence of efavirenz (EFV), a virus carrying RT-K103N together with IN-G140S and IN-Q148H (here termed IN-G140S/Q148H) mutations was fitter than a virus with a RT-K103N mutation alone. Similarly, in the presence of EFV, the RT-E138K plus IN-G140S/Q148H mutant virus was fitter than one with the RT-E138K mutation alone. No effect of INSTI resistance mutations on the fitness of RT-Y181C mutant viruses was observed. Conversely, RT-E138K and -Y181C mutations improved the fitness of the IN-G140S/Q148H mutant virus in the presence of raltegravir (RAL); the RT-K103N mutation had no effect. The NNRTI resistance mutations had no effect on RAL susceptibility. Likewise, the IN-G140S/Q148H mutations had no effect on EFV or RPV susceptibility. However, both the RT-K103N plus IN-G140S/Q148H and the RT-E138K plus IN-G140S/Q148H mutant viruses had significantly greater fold increases in 50% inhibitory concentration (IC50) of EFV than viruses carrying a single NNRTI mutation. Likewise, the RT-E138K plus IN-G140S/Q148H mutant virus had significantly greater fold increases in RAL IC50 than that of the IN-G140S/Q148H mutant virus. These results suggest that interactions between RT and IN mutations are important for NNRTI and INSTI resistance and viral fitness. IMPORTANCE Nonnucleoside reverse transcriptase inhibitors and integrase inhibitors are used to treat infection with HIV-1. Mutations that confer resistance to these drugs reduce the ability of HIV-1 to reproduce (that is, they decrease viral fitness). It is known that reverse transcriptase and integrase interact and that some mutations can disrupt their interaction, which is necessary for proper functioning of these two enzymes. To determine whether resistance mutations in these enzymes interact, we investigated their effects on drug sensitivity and viral fitness. Although individual drug resistance mutations usually reduced viral fitness, certain combinations of mutations increased fitness. When present in certain combinations, some integrase inhibitor resistance mutations increased resistance to nonnucleoside reverse transcriptase inhibitors and vice versa. Because these drugs are sometimes used together in the treatment of HIV-1 infection, these interactions could make viruses more resistant to both drugs, further limiting their clinical benefit.
Collapse
|
44
|
Impact of Y181C and/or H221Y mutation patterns of HIV-1 reverse transcriptase on phenotypic resistance to available non-nucleoside and nucleoside inhibitors in China. BMC Infect Dis 2014; 14:237. [PMID: 24885612 PMCID: PMC4024112 DOI: 10.1186/1471-2334-14-237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 04/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of K101Q, Y181C and H221Y emerging in HIV-1 reverse transcriptase with different mutations patterns in phenotypic susceptibility to currently available NNRTIs (nevirapine NVP, efavirenz EFV) and NRTIs (zidovudine AZT, lamivudine 3TC, stavudine d4T) in China. METHODS Phenotype testing of currently available NNRTIs (NVP, EFV) and NRTIs (AZT, 3TC, d4T) was performed on TZM-b1 cells using recombined virus strains. P ≤ 0.05 was defined significant considering the change of 50% inhibitory drug concentration (IC50) compared with the reference, while P ≤ 0.01 was considered to be statistically significant considering multiple comparisons. RESULTS Triple-mutation K101Q/Y181C/H221Y and double-mutation K101Q/Y181C resulted in significant increase in NVP resistance (1253.9-fold and 986.4-fold), while only K101Q/Y181C/H221Y brought a 5.00-fold significant increase in EFV resistance. Remarkably, K101Q/H221Y was hypersusceptible to EFV (FC = 0.04), but was significantly resistant to the three NRTIs. Then, the interaction analysis suggested the interaction was not significant to NVP (F = 0.77, P = 0.4061) but significant to EFV and other three NRTIs. CONCLUSION Copresence of mutations reported to be associated with NNRTIs confers significant increase to NVP resistance. Interestingly, some may increase the susceptibility to EFV. Certainly, the double mutation (K101Q/H221Y) also changes the susceptibility of viruses to NRTIs. Interaction between two different sites makes resistance more complex.
Collapse
|
45
|
Jiang HX, Zhuang DM, Huang Y, Cao XX, Yao JH, Li JY, Wang JY, Zhang C, Jiang B. Design, synthesis, and biological evaluation of novel trifluoromethyl indoles as potent HIV-1 NNRTIs with an improved drug resistance profile. Org Biomol Chem 2014; 12:3446-58. [PMID: 24752610 DOI: 10.1039/c3ob42186d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel series of trifluoromethyl indole derivatives have been designed, synthesized and evaluated for anti-HIV-1 activities in MT-2 cells. The hydrophobic constant, acute toxicity, carcinogenicity and mutagenicity were predicted. Trifluoromethyl indoles 10i and 10k showed extremely promising activities against WT HIV-1 with IC50 values at the low nanomolar level, similar to efavirenz, better than nevirapine, and also possessed higher potency towards the drug-resistant mutant strain Y181C than nevirapine. Preliminary SAR and docking studies of detailed binding mode provided some insights for discovery of more potent NNRTIs.
Collapse
Affiliation(s)
- Hai-Xia Jiang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Schauer G, Leuba S, Sluis-Cremer N. Biophysical Insights into the Inhibitory Mechanism of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors. Biomolecules 2013; 3:889-904. [PMID: 24970195 PMCID: PMC4030976 DOI: 10.3390/biom3040889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/16/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) plays a central role in HIV infection. Current United States Federal Drug Administration (USFDA)-approved antiretroviral therapies can include one of five approved non-nucleoside RT inhibitors (NNRTIs), which are potent inhibitors of RT activity. Despite their crucial clinical role in treating and preventing HIV-1 infection, their mechanism of action remains elusive. In this review, we introduce RT and highlight major advances from experimental and computational biophysical experiments toward an understanding of RT function and the inhibitory mechanism(s) of NNRTIs.
Collapse
Affiliation(s)
- Grant Schauer
- Program in Molecular Biophysics and Structural Biology, Hillman Cancer Center, University of Pittsburgh, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| | - Sanford Leuba
- Program in Molecular Biophysics and Structural Biology, Hillman Cancer Center, University of Pittsburgh, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| | - Nicolas Sluis-Cremer
- Department of Medicine, Division of Infectious Diseases, 3550 Terrace St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
47
|
Masso M, Vaisman II. Sequence and structure based models of HIV-1 protease and reverse transcriptase drug resistance. BMC Genomics 2013; 14 Suppl 4:S3. [PMID: 24268064 PMCID: PMC3849442 DOI: 10.1186/1471-2164-14-s4-s3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Successful management of chronic human immunodeficiency virus type 1 (HIV-1) infection with a cocktail of antiretroviral medications can be negatively affected by the presence of drug resistant mutations in the viral targets. These targets include the HIV-1 protease (PR) and reverse transcriptase (RT) proteins, for which a number of inhibitors are available on the market and routinely prescribed. Protein mutational patterns are associated with varying degrees of resistance to their respective inhibitors, with extremes that can range from continued susceptibility to cross-resistance across all drugs. RESULTS Here we implement statistical learning algorithms to develop structure- and sequence-based models for systematically predicting the effects of mutations in the PR and RT proteins on resistance to each of eight and eleven inhibitors, respectively. Employing a four-body statistical potential, mutant proteins are represented as feature vectors whose components quantify relative environmental perturbations at amino acid residue positions in the respective target structures upon mutation. Two approaches are implemented in developing sequence-based models, based on use of either relative frequencies or counts of n-grams, to generate vectors for representing mutant proteins. To the best of our knowledge, this is the first reported study on structure- and sequence-based predictive models of HIV-1 PR and RT drug resistance developed by implementing a four-body statistical potential and n-grams, respectively, to generate mutant attribute vectors. Performance of the learning methods is evaluated on the basis of tenfold cross-validation, using previously assayed and publicly available in vitro data relating mutational patterns in the targets to quantified inhibitor susceptibility changes. CONCLUSION Overall performance results are competitive with those of a previously published study utilizing a sequence-based strategy, while our structure- and sequence-based models provide orthogonal and complementary prediction methodologies, respectively. In a novel application, we describe a technique for identifying every possible pair of RT inhibitors as either potentially effective together as part of a cocktail, or a combination that is to be avoided.
Collapse
|
48
|
Liang X, Lee CJ, Zhao J, Toone EJ, Zhou P. Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors. J Med Chem 2013; 56:6954-6966. [PMID: 23914798 PMCID: PMC3941642 DOI: 10.1021/jm4007774] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The zinc-dependent deacetylase LpxC catalyzes the committed step of lipid A biosynthesis in Gram-negative bacteria and is a validated target for the development of novel antibiotics to combat multidrug-resistant Gram-negative infections. Many potent LpxC inhibitors contain an essential threonyl-hydroxamate headgroup for high-affinity interaction with LpxC. We report the synthesis, antibiotic activity, and structural and enzymatic characterization of novel LpxC inhibitors containing an additional aryl group in the threonyl-hydroxamate moiety, which expands the inhibitor-binding surface in LpxC. These compounds display enhanced potency against LpxC in enzymatic assays and superior antibiotic activity against Francisella novicida in cell culture. The comparison of the antibiotic activities of these compounds against a leaky Escherichia coli strain and the wild-type strain reveals the contribution of the formidable outer-membrane permeability barrier that reduces the compounds efficacy in cell culture and emphasizes the importance of maintaining a balanced hydrophobicity and hydrophilicity profile in developing effective LpxC-targeting antibiotics.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Chul-Jin Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Structural Biology & Biophysics Program, Duke University, Durham, NC 27710, USA
| | - Jinshi Zhao
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric J. Toone
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Pei Zhou
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Structural Biology & Biophysics Program, Duke University, Durham, NC 27710, USA
| |
Collapse
|
49
|
Seckler JM, Leioatts N, Miao H, Grossfield A. The interplay of structure and dynamics: insights from a survey of HIV-1 reverse transcriptase crystal structures. Proteins 2013; 81:1792-801. [PMID: 23720322 DOI: 10.1002/prot.24325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/12/2013] [Accepted: 04/19/2013] [Indexed: 11/07/2022]
Abstract
HIV-1 reverse transcriptase (RT) is a critical drug target for HIV treatment, and understanding the exact mechanisms of its function and inhibition would significantly accelerate the development of new anti-HIV drugs. It is well known that structure plays a critical role in protein function, but for RT, structural information has proven to be insufficient-despite enormous effort-to explain the mechanism of inhibition and drug resistance of non-nucleoside RT inhibitors. We hypothesize that the missing link is dynamics, information about the motions of the system. However, many of the techniques that give the best information about dynamics, such as solution nuclear magnetic resonance and molecular dynamics simulations, cannot be easily applied to a protein as large as RT. As an alternative, we combine elastic network modeling with simultaneous hierarchical clustering of structural and dynamic data. We present an extensive survey of the dynamics of RT bound to a variety of ligands and with a number of mutations, revealing a novel mechanism for drug resistance to non-nucleoside RT inhibitors. Hydrophobic core mutations restore active-state motion to multiple functionally significant regions of HIV-1 RT. This model arises out of a combination of structural and dynamic information, rather than exclusively from one or the other.
Collapse
Affiliation(s)
- James M Seckler
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York
| | | | | | | |
Collapse
|
50
|
Debnath U, Verma S, Jain S, Katti SB, Prabhakar YS. Pyridones as NNRTIs against HIV-1 mutants: 3D-QSAR and protein informatics. J Comput Aided Mol Des 2013; 27:637-54. [DOI: 10.1007/s10822-013-9667-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/14/2013] [Indexed: 11/27/2022]
|