1
|
Mondal T, Ryan PM, Gupta K, Radovanovic G, Pugh E, Chan AKC, Hill S. Cord-Blood High-Sensitivity Troponin-I Reference Interval and Association with Early Neonatal Outcomes. Am J Perinatol 2022; 29:1548-1554. [PMID: 33548938 DOI: 10.1055/s-0041-1722944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study was aimed to establish a reference interval for high-sensitivity cardiac troponin I (hs-cTnI) in umbilical cord blood of infants and to assess its association with the risk of predetermined early neonatal outcomes in a high-acuity tertiary care hospital. STUDY DESIGN Umbilical cord-blood samples were collected and hs-cTnI was measured in all infants born between August 2015 and September 2015 at McMaster Children's Hospital (n = 256). Gestational age, birth weight, Apgar's scores, age in days at which feeding was established, neonatal intensive care unit (NICU) admission, and discharge in days after birth were recorded. RESULTS The 90th, 95th, and 99th percentiles for the term infant subcohort were 19.75, 41.45, and 166.30 ng/L, respectively. We observed decreased mean gestational ages and birth weights in both the 90th (37.7 weeks; 2,961.4 g) and 95th percentiles (37.1 weeks; 2,709.9 g) when compared with the remaining infants. Moreover, levels of hs-cTnI were significantly higher in infants with respiratory distress requiring intervention (p < 0.05), low birth weight infants (p < 0.01), preterm infants (p < 0.001), and those requiring NICU admission (p < 0.01). Multiple linear regression of the recorded demographic factors revealed prematurity (gestational age <35 weeks: coefficient 0.346 ± 0.160, p < 0.05; gestational age <37 weeks: coefficient 0.253 ± 0.105, p < 0.05) and male sex (coefficient 0.138 ± 0.047; p < 0.01) to be most predictive of log-hs-cTnI levels. CONCLUSION This study establishes the reference values for cord-blood hs-cTnI in infants at a tertiary care center. Premature and sick infants requiring NICU admission had significantly higher levels of hs-cTnI. KEY POINTS · Established the 90th, 95th, and 99th percentiles of neonatal cord-blood hs-cTnI in term infants as 19.75, 41.45, and 166.30 ng/L, respectively.. · Infants with hs-cTnI levels exceeding the 90th percentile had lower gestational ages and birth weights with higher rates of NICU admissions.. · Infants with respiratory distress or requiring NICU admission were found to have higher levels of hs-cTnI..
Collapse
Affiliation(s)
- Tapas Mondal
- Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Paul M Ryan
- Brookfield School of Medicine and Health Sciences, University College Cork, Cork, Ireland
| | - Kaaran Gupta
- Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - George Radovanovic
- Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Edward Pugh
- Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Anthony K C Chan
- Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Stephen Hill
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Laboratory Medicine, Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Guo S, Schlecht W, Li L, Dong WJ. Paper-based cascade cationic isotachophoresis: Multiplex detection of cardiac markers. Talanta 2019; 205:120112. [PMID: 31450472 PMCID: PMC6858795 DOI: 10.1016/j.talanta.2019.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 01/03/2023]
Abstract
Paper-based analytical devices (PADs) are widely used in point-of-care testing (POCT) as they are cost-effective, simple and straightforward. However, poor sensitivity hinders their use in detecting diseases with low abundance biomarkers. The poor detection limit of PADs is mainly attributed to the low concentration of analytes, and the complexity of biological fluid, leading to insufficient interactions between analytes and capture antibodies. This study aims to overcome these difficulties by developing a paper-based cationic isotachophoresis (ITP) approach for simultaneously detecting pico-molar levels of two essential cardiac protein markers: acidic troponin T (cTnT) and basic troponin I (cTnI) spiked into human serum samples. The approach utilizes 3-aminopropyltrimethoxysilane (APTMS) treated glass fiber papers with decreasing cross-sectional area assembled on a 3D printed cartridge device. Our results showed that in the presence of cTnT monoclonal antibody (mAb), fluorescently labeled cTnI and cTnT could be effectively enriched in cationic ITP. Each individual target was captured subsequently by a test line in the detection zone where the capture mAb was immobilized. Detailed analysis suggests that the technology is capable of simultaneous on-board depletion of abundant plasma proteins and enrichment of cTnI/cTnT by ~1300-fold with a sensitivity of 0.6 pmol/L for cTnT and a sensitivity of 1.5 pmol/L for cTnI in less than 6 min. The results demonstrate the potential of this technology for rapid, ultra-sensitive and cost-effective analysis of multiplex protein markers in clinical serum samples at point of care.
Collapse
Affiliation(s)
- Shuang Guo
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - William Schlecht
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Lei Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA
| | - Wen-Ji Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
3
|
Kachooei E, Cordina NM, Brown LJ. Constructing a structural model of troponin using site-directed spin labeling: EPR and PRE-NMR. Biophys Rev 2019; 11:621-639. [PMID: 31321733 PMCID: PMC6682194 DOI: 10.1007/s12551-019-00568-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023] Open
Abstract
The relative ease of introducing a paramagnetic species onto a protein, and advances in electron paramagnetic resonance (EPR) over the past two decades, have established spin labeling as a vital structural biology technique for revealing the functional workings of the troponin muscle regulatory complex-an ~80 kDa heterotrimeric protein switch for turning on striated muscle contraction. Through the site-directed spin labeling (SDSL) of cysteine residues at key sites in troponin, a molecular-level understanding of the troponin muscle regulatory system across all levels of structural hierarchy has been achieved. Through the application of EPR, mobility and accessibility trends in the EPR signals of the spin labels attached to consecutive residues can reveal the secondary structure of troponin elements and also help map the interaction between subunits. Distance restraints calculated from the interspin interactions between spin label pairs have helped with building a structural model of the troponin complex. Further, when SDSL is paired with NMR, paramagnetic relaxation enhancement (PRE)-NMR has been used to obtain high-resolution structural detail for both intra- and interdomain interactions in troponin and revealed details of protein conformational changes and dynamics accompanying troponin function. In this review, we provide an overview of the SDSL labeling methodology and its application towards building a dynamic structural model of the multi-subunit troponin complex which details the calcium-induced conformational changes intimately linked to muscle regulation. We also describe how the SDSL method, in conjunction with EPR or NMR, can be used to obtain insights into structural perturbations to troponin caused by disease-causing mutations.
Collapse
Affiliation(s)
- Ehsan Kachooei
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Nicole M Cordina
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.
| |
Collapse
|
4
|
Guo S, Jacroux T, Ivory CF, Li L, Dong WJ. Immunobinding-induced alteration in the electrophoretic mobility of proteins: An approach to studying the preconcentration of an acidic protein under cationic isotachophoresis. Electrophoresis 2019; 40:1314-1321. [PMID: 30656700 DOI: 10.1002/elps.201800441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 01/28/2023]
Abstract
The objective of this study is to explore an approach for analyzing negatively charged proteins using paper-based cationic ITP. The rationale of electrophoretic focusing the target protein with negative charges under unfavorable cationic ITP condition is to modify the electrophoretic mobility of the target protein through antigen-antibody immunobinding. Cationic ITP was performed on a paper-based analytical device that was fabricated using fiberglass paper. The paper matrix was modified with (3-aminopropyl)trimethoxysilane to minimize sample attraction to the surface for cationic ITP. Negatively charged BSA was used as the model target protein for the cationic ITP experiments. No electrophoretic mobility was observed for BSA-only samples during cationic ITP experimental condition. However, the presence of a primary antibody to BSA significantly improved the electrokinetic behavior of the target protein. Adding a secondary antibody conjugated with amine-rich quantum dots to the sample further facilitated the concentrating effect of ITP, reduced experiment time, and elevated the stacking ratio. Under our optimized experimental conditions, the cationic ITP-based paper device electrophoretically stacked 94% of loaded BSA in less than 7 min. Our results demonstrate that the technique has a broad potential for rapid and cost-effective isotachphoretic analysis of multiplex protein biomarkers in serum samples at the point of care.
Collapse
Affiliation(s)
- Shuang Guo
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Thomas Jacroux
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Cornelius F Ivory
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Lei Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA
| | - Wen-Ji Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Ly T, Pappas CT, Johnson D, Schlecht W, Colpan M, Galkin VE, Gregorio CC, Dong WJ, Kostyukova AS. Effects of cardiomyopathy-linked mutations K15N and R21H in tropomyosin on thin-filament regulation and pointed-end dynamics. Mol Biol Cell 2018; 30:268-281. [PMID: 30462572 PMCID: PMC6589558 DOI: 10.1091/mbc.e18-06-0406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Missense mutations K15N and R21H in striated muscle tropomyosin are linked to dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), respectively. Tropomyosin, together with the troponin complex, regulates muscle contraction and, along with tropomodulin and leiomodin, controls the uniform thin-filament lengths crucial for normal sarcomere structure and function. We used Förster resonance energy transfer to study effects of the tropomyosin mutations on the structure and kinetics of the cardiac troponin core domain associated with the Ca2+-dependent regulation of cardiac thin filaments. We found that the K15N mutation desensitizes thin filaments to Ca2+ and slows the kinetics of structural changes in troponin induced by Ca2+ dissociation from troponin, while the R21H mutation has almost no effect on these parameters. Expression of the K15N mutant in cardiomyocytes decreases leiomodin’s thin-filament pointed-end assembly but does not affect tropomodulin’s assembly at the pointed end. Our in vitro assays show that the R21H mutation causes a twofold decrease in tropomyosin’s affinity for F-actin and affects leiomodin’s function. We suggest that the K15N mutation causes DCM by altering Ca2+-dependent thin-filament regulation and that one of the possible HCM-causing mechanisms by the R21H mutation is through alteration of leiomodin’s function.
Collapse
Affiliation(s)
- Thu Ly
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Dylan Johnson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834
| | - William Schlecht
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Wen-Ji Dong
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| |
Collapse
|
6
|
Bohlooli Ghashghaee N, Li KL, Solaro RJ, Dong WJ. Role of the C-terminus mobile domain of cardiac troponin I in the regulation of thin filament activation in skinned papillary muscle strips. Arch Biochem Biophys 2018; 648:27-35. [PMID: 29704484 DOI: 10.1016/j.abb.2018.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/18/2018] [Accepted: 04/21/2018] [Indexed: 11/19/2022]
Abstract
The C-terminus mobile domain of cTnI (cTnI-MD) is a highly conserved region which stabilizes the actin-cTnI interaction during the diastole. Upon Ca2+-binding to cTnC, cTnI-MD participates in a regulatory switching that involves cTnI to switch from interacting with actin toward interacting with the Ca2+-regulatory domain of cTnC. Despite many studies targeting the cTnI-MD, the role of this region in the length-dependent activation of cardiac contractility is yet to be determined. The present study investigated the functional consequences of losing the entire cTnI-MD in cTnI(1-167) truncation mutant, as it was exchanged for endogenous cTnI in skinned rat papillary muscle fibers. The influence of cTnI-MD truncation on the extent of the N-domain of cTnC hydrophobic cleft opening and the steady-state force as a function of sarcomere length (SL), cross-bridge state, and [Ca2+] was assessed using the simultaneous in situ time-resolved FRET and force measurements at short (1.8 μm) and long (2.2 μm) SLs. Our results show the significant role of cTnI-MD in the length dependent thin filament activation and the coupling between thin and thick filament regulations affected by SL. Our results also suggest that cTnI-MD transmits the effects of SL change to the core of troponin complex.
Collapse
Affiliation(s)
- Nazanin Bohlooli Ghashghaee
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - King-Lun Li
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - R John Solaro
- The Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wen-Ji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; The Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
7
|
Schlecht W, Dong WJ. Dynamic Equilibrium of Cardiac Troponin C's Hydrophobic Cleft and Its Modulation by Ca 2+ Sensitizers and a Ca 2+ Sensitivity Blunting Phosphomimic, cTnT(T204E). Bioconjug Chem 2017; 28:2581-2590. [PMID: 28876897 DOI: 10.1021/acs.bioconjchem.7b00418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have suggested that conformational dynamics are important in the regulation of thin filament activation in cardiac troponin C (cTnC); however, little direct evidence has been offered to support these claims. In this study, a dye homodimerization approach is developed and implemented that allows the determination of the dynamic equilibrium between open and closed conformations in cTnC's hydrophobic cleft. Modulation of this equilibrium by Ca2+, cardiac troponin I (cTnI), cardiac troponin T (cTnT), Ca2+-sensitizers, and a Ca2+-desensitizing phosphomimic of cTnT (cTnT(T204E) is characterized. Isolated cTnC contained a small open conformation population in the absence of Ca2+ that increased significantly upon the addition of saturating levels of Ca2+. This suggests that the Ca2+-induced activation of thin filament arises from an increase in the probability of hydrophobic cleft opening. The inclusion of cTnI increased the population of open cTnC, and the inclusion of cTnT had the opposite effect. Samples containing Ca2+-desensitizing cTnT(T204E) showed a slight but insignificant decrease in open conformation probability compared to samples with cardiac troponin T, wild type [cTnT(wt)], while Ca2+ sensitizer treated samples generally increased open conformation probability. These findings show that an equilibrium between the open and closed conformations of cTnC's hydrophobic cleft play a significant role in tuning the Ca2+ sensitivity of the heart.
Collapse
Affiliation(s)
- William Schlecht
- The Voiland School of Chemical Engineering and Bioengineering and ‡The Department of Integrated Neuroscience and Physiology, Washington State University , Pullman, Washington 99164, United States
| | - Wen-Ji Dong
- The Voiland School of Chemical Engineering and Bioengineering and ‡The Department of Integrated Neuroscience and Physiology, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
8
|
Bohlooli Ghashghaee N, Tanner BCW, Dong WJ. Functional significance of C-terminal mobile domain of cardiac troponin I. Arch Biochem Biophys 2017; 634:38-46. [PMID: 28958680 DOI: 10.1016/j.abb.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 01/22/2023]
Abstract
Ca2+-regulation of cardiac contractility is mediated through the troponin complex, which comprises three subunits: cTnC, cTnI, and cTnT. As intracellular [Ca2+] increases, cTnI reduces its binding interactions with actin to primarily interact with cTnC, thereby enabling contraction. A portion of this regulatory switching involves the mobile domain of cTnI (cTnI-MD), the role of which in muscle contractility is still elusive. To study the functional significance of cTnI-MD, we engineered two cTnI constructs in which the MD was truncated to various extents: cTnI(1-167) and cTnI(1-193). These truncations were exchanged for endogenous cTnI in skinned rat papillary muscle fibers, and their influence on Ca2+-activated contraction and cross-bridge cycling kinetics was assessed at short (1.9 μm) and long (2.2 μm) sarcomere lengths (SLs). Our results show that the cTnI(1-167) truncation diminished the SL-induced increase in Ca2+-sensitivity of contraction, but not the SL-dependent increase in maximal tension, suggesting an uncoupling between the thin and thick filament contributions to length dependent activation. Compared to cTnI(WT), both truncations displayed greater Ca2+-sensitivity and faster cross-bridge attachment rates at both SLs. Furthermore, cTnI(1-167) slowed MgADP release rate and enhanced cross-bridge binding. Our findings imply that cTnI-MD truncations affect the blocked-to closed-state transition(s) and destabilize the closed-state position of tropomyosin.
Collapse
Affiliation(s)
- Nazanin Bohlooli Ghashghaee
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Bertrand C W Tanner
- The Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Wen-Ji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; The Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
9
|
Ghashghaee NB, Li KL, Dong WJ. Direct interaction between troponin and myosin enhances the ATPase activity of heavy meromyosin. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Li KL, Ghashghaee NB, Solaro RJ, Dong W. Sarcomere length dependent effects on the interaction between cTnC and cTnI in skinned papillary muscle strips. Arch Biochem Biophys 2016; 601:69-79. [PMID: 26944554 PMCID: PMC4899114 DOI: 10.1016/j.abb.2016.02.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/21/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
Sarcomere length dependent activation (LDA) of myocardial force development is the cellular basis underlying the Frank-Starling law of the heart, but it is still elusive how the sarcomeres detect the length changes and convert them into altered activation of thin filament. In this study we investigated how the C-domain of cardiac troponin I (cTnI) functionally and structurally responds to the comprehensive effects of the Ca(2+), crossbridge, and sarcomere length of chemically skinned myocardial preparations. Using our in situ technique which allows for simultaneous measurements of time-resolved FRET and mechanical force of the skinned myocardial preparations, we measured changes in the FRET distance between cTnI(167C) and cTnC(89C), labeled with FRET donor and acceptor, respectively, as a function of [Ca(2+)], crossbridge state and sarcomere length of the skinned muscle preparations. Our results show that [Ca(2+)], cross-bridge feedback and sarcomere length have different effects on the structural transition of the C-domain cTnI. In particular, the interplay between crossbridges and sarcomere length has significant impacts on the functional structural change of the C-domain of cTnI in the relaxed state. These novel observations suggest the importance of the C-domain of cTnI and the dynamic and complex interplay between various components of myofilament in the LDA mechanism.
Collapse
Affiliation(s)
- King-Lun Li
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Nazanin Bohlooli Ghashghaee
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - R John Solaro
- The Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wenji Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; Integrative Neuroscience Physiology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
11
|
Schlecht W, Li KL, Hu D, Dong W. Fluorescence Based Characterization of Calcium Sensitizer Action on the Troponin Complex. Chem Biol Drug Des 2015; 87:171-81. [PMID: 26375298 DOI: 10.1111/cbdd.12651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/15/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
Calcium sensitizers enhance the transduction of the Ca(2+) signal into force within the heart and have found use in treating heart failure. However the mechanisms of action for most Ca(2+) sensitizers remain unclear. To address this issue an efficient fluorescence based approach to Ca(2+) sensitizer screening was developed which monitors cardiac troponin C's (cTnC's) hydrophobic cleft. This approach was tested on four common Ca(2+) -sensitizers, EMD 57033, levosimendan, bepridil and pimobendan with the aim of elucidating the mechanisms of action for each as well as proving the efficacy of the new screening method. Ca(2+) -titration experiments were employed to determine the effect on Ca(2+) sensitivity and cooperativity of cTnC opening, while stopped flow experiments were used to investigate the impact on cTnC relaxation kinetics. Bepridil was shown to increase the sensitivity of cTnC for Ca(2+) under all reconstitution conditions, sensitization by the other drugs was context dependent. Levosimendan and pimobendan reduced the rate of cTnC closing consistent with a stabilization of cTnC's open conformation while bepridil increased the rate of relaxation. Experiments were also run on samples containing cTnT(T204E), a known Ca(2+) -desensitizing phosphorylation mimic. Levosimendan, bepridil, and pimobendan were found to elevate the Ca(2+) -sensitivity of cTnT(T204E) containing samples in this context.
Collapse
Affiliation(s)
- William Schlecht
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, PO Box 646515, Washington State University, Pullman, WA 99164-6515, USA
| | - King-Lun Li
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, PO Box 646515, Washington State University, Pullman, WA 99164-6515, USA
| | - Dehong Hu
- The Environmental and Molecular Science Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard Richland, WA 99354, USA
| | - Wenji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, PO Box 646515, Washington State University, Pullman, WA 99164-6515, USA
| |
Collapse
|
12
|
In situ time-resolved FRET reveals effects of sarcomere length on cardiac thin-filament activation. Biophys J 2015; 107:682-693. [PMID: 25099807 DOI: 10.1016/j.bpj.2014.05.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023] Open
Abstract
During cardiac thin-filament activation, the N-domain of cardiac troponin C (N-cTnC) binds to Ca(2+) and interacts with the actomyosin inhibitory troponin I (cTnI). The interaction between N-cTnC and cTnI stabilizes the Ca(2+)-induced opening of N-cTnC and is presumed to also destabilize cTnI-actin interactions that work together with steric effects of tropomyosin to inhibit force generation. Recently, our in situ steady-state FRET measurements based on N-cTnC opening suggested that at long sarcomere length, strongly bound cross-bridges indirectly stabilize this Ca(2+)-sensitizing N-cTnC-cTnI interaction through structural effects on tropomyosin and cTnI. However, the method previously used was unable to determine whether N-cTnC opening depends on sarcomere length. In this study, we used time-resolved FRET to monitor the effects of cross-bridge state and sarcomere length on the Ca(2+)-dependent conformational behavior of N-cTnC in skinned cardiac muscle fibers. FRET donor (AEDANS) and acceptor (DDPM)-labeled double-cysteine mutant cTnC(T13C/N51C)AEDANS-DDPM was incorporated into skinned muscle fibers to monitor N-cTnC opening. To study the structural effects of sarcomere length on N-cTnC, we monitored N-cTnC opening at relaxing and saturating levels of Ca(2+) and 1.80 and 2.2-μm sarcomere length. Mg(2+)-ADP and orthovanadate were used to examine the structural effects of noncycling strong-binding and weak-binding cross-bridges, respectively. We found that the stabilizing effect of strongly bound cross-bridges on N-cTnC opening (which we interpret as transmitted through related changes in cTnI and tropomyosin) become diminished by decreases in sarcomere length. Additionally, orthovanadate blunted the effect of sarcomere length on N-cTnC conformational behavior such that weak-binding cross-bridges had no effect on N-cTnC opening at any tested [Ca(2+)] or sarcomere length. Based on our findings, we conclude that the observed sarcomere length-dependent positive feedback regulation is a key determinant in the length-dependent Ca(2+) sensitivity of myofilament activation and consequently the mechanism underlying the Frank-Starling law of the heart.
Collapse
|
13
|
Brunet NM, Chase PB, Mihajlović G, Schoffstall B. Ca(2+)-regulatory function of the inhibitory peptide region of cardiac troponin I is aided by the C-terminus of cardiac troponin T: Effects of familial hypertrophic cardiomyopathy mutations cTnI R145G and cTnT R278C, alone and in combination, on filament sliding. Arch Biochem Biophys 2014; 552-553:11-20. [PMID: 24418317 PMCID: PMC4043889 DOI: 10.1016/j.abb.2013.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/10/2013] [Accepted: 12/28/2013] [Indexed: 01/10/2023]
Abstract
Investigations of cardiomyopathy mutations in Ca(2+) regulatory proteins troponin and tropomyosin provide crucial information about cardiac disease mechanisms, and also provide insights into functional domains in the affected polypeptides. Hypertrophic cardiomyopathy-associated mutations TnI R145G, located within the inhibitory peptide (Ip) of human cardiac troponin I (hcTnI), and TnT R278C, located immediately C-terminal to the IT arm in human cardiac troponin T (hcTnT), share some remarkable features: structurally, biochemically, and pathologically. Using bioinformatics, we find compelling evidence that TnI and TnT, and more specifically the affected regions of hcTnI and hcTnT, may be related not just structurally but also evolutionarily. To test for functional interactions of these mutations on Ca(2+)-regulation, we generated and characterized Tn complexes containing either mutation alone, or both mutations simultaneously. The most important results from in vitro motility assays (varying [Ca(2+)], temperature or HMM density) show that the TnT mutant "rescued" some deleterious effects of the TnI mutant at high Ca(2+), but exacerbated the loss of function, i.e., switching off the actomyosin interaction, at low Ca(2+). Taken together, our experimental results suggest that the C-terminus of cTnT aids Ca(2+)-regulatory function of cTnI Ip within the troponin complex.
Collapse
Affiliation(s)
- Nicolas M Brunet
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - P Bryant Chase
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Goran Mihajlović
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Brenda Schoffstall
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
14
|
Schlecht W, Zhou Z, Li KL, Rieck D, Ouyang Y, Dong WJ. FRET study of the structural and kinetic effects of PKC phosphomimetic cardiac troponin T mutants on thin filament regulation. Arch Biochem Biophys 2014; 550-551:1-11. [PMID: 24708997 DOI: 10.1016/j.abb.2014.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/31/2023]
Abstract
FRET was used to investigate the structural and kinetic effects that PKC phosphorylations exert on Ca(2+) and myosin subfragment-1 dependent conformational transitions of the cardiac thin filament. PKC phosphorylations of cTnT were mimicked by glutamate substitution. Ca(2+) and S1-induced distance changes between the central linker of cTnC and the switch region of cTnI (cTnI-Sr) were monitored in reconstituted thin filaments using steady state and time resolved FRET, while kinetics of structural transitions were determined using stopped flow. Thin filament Ca(2+) sensitivity was found to be significantly blunted by the presence of the cTnT(T204E) mutant, whereas pseudo-phosphorylation at additional sites increased the Ca(2+)-sensitivity. The rate of Ca(2+)-dissociation induced structural changes was decreased in the C-terminal end of cTnI-Sr in the presence of pseudo-phosphorylations while remaining unchanged at the N-terminal end of this region. Additionally, the distance between cTnI-Sr and cTnC was decreased significantly for the triple and quadruple phosphomimetic mutants cTnT(T195E/S199E/T204E) and cTnT(T195E/S199E/T204E/T285E), which correlated with the Ca(2+)-sensitivity increase seen in these same mutants. We conclude that significant changes in thin filament Ca(2+)-sensitivity, structure and kinetics are brought about through PKC phosphorylation of cTnT. These changes can either decrease or increase Ca(2+)-sensitivity and likely play an important role in cardiac regulation.
Collapse
Affiliation(s)
- William Schlecht
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Zhiqun Zhou
- The Department of Integrated Neuroscience and Physiology, Washington State University, Pullman, WA 99164, USA
| | - King-Lun Li
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Daniel Rieck
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Yexin Ouyang
- The Department of Integrated Neuroscience and Physiology, Washington State University, Pullman, WA 99164, USA
| | - Wen-Ji Dong
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; The Department of Integrated Neuroscience and Physiology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
15
|
Jayasundar JJ, Xing J, Robinson JM, Cheung HC, Dong WJ. Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints. PLoS One 2014; 9:e87135. [PMID: 24558365 PMCID: PMC3928104 DOI: 10.1371/journal.pone.0087135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/18/2013] [Indexed: 11/22/2022] Open
Abstract
Cardiac troponin (cTn) is the Ca2+-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca2+ signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca2+-free and saturating Ca2+ conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca2+-saturated structure, the absence of regulatory Ca2+ perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca2+, induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca2+ the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.
Collapse
Affiliation(s)
- Jayant James Jayasundar
- Voiland School of Chemical Engineering and Bioengineering and The Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Jun Xing
- Voiland School of Chemical Engineering and Bioengineering and The Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - John M. Robinson
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, United States of America
| | - Herbert C. Cheung
- The Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Wen-Ji Dong
- Voiland School of Chemical Engineering and Bioengineering and The Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Katrukha IA. Human cardiac troponin complex. Structure and functions. BIOCHEMISTRY (MOSCOW) 2014; 78:1447-65. [DOI: 10.1134/s0006297913130063] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zhou Z, Rieck D, Li KL, Ouyang Y, Dong WJ. Structural and kinetic effects of hypertrophic cardiomyopathy related mutations R146G/Q and R163W on the regulatory switching activity of rat cardiac troponin I. Arch Biochem Biophys 2012; 535:56-67. [PMID: 23246786 DOI: 10.1016/j.abb.2012.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 11/16/2022]
Abstract
Mutations in cardiac troponin I (cTnI) that cause hypertrophic cardiomyopathy (HCM) have been reported to change the contractility of cardiac myofilaments, but the underlying molecular mechanism remains elusive. In this study, Förster resonance energy transfer (FRET) was used to investigate the specific structural and kinetic effects that HCM related rat cTnI mutations R146G/Q and R163W exert on Ca(2+) and myosin S1 dependent conformational transitions in rat cTn structure. Ca(2+)-induced changes in interactions between cTnC and cTnI were individually monitored in reconstituted thin filaments using steady state and time resolved FRET, and kinetics were determined using stopped flow. R146G/Q and R163W all changed the FRET distances between cTnC and cTnI in unique and various ways. However, kinetic rates of conformational transitions induced by Ca(2+)-dissociation were universally slowed when R146G/Q and R163W were present. Interestingly, the kinetic rates of changes in the inhibitory region of cTnI were always slower than that of the regulatory region, suggesting that the fly casting mechanism that normally underlies deactivation is preserved in spite of mutation. In situ rat myocardial fiber studies also revealed that FRET distance changes indicating mutation specific disruption of the cTnIIR-actin interaction were consistent with increased passive tension.
Collapse
Affiliation(s)
- Zhiqun Zhou
- Department of Veterinary and Comparative Anatomy Pharmacology and Physiology, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
18
|
Zhou Z, Li KL, Rieck D, Ouyang Y, Chandra M, Dong WJ. Structural dynamics of C-domain of cardiac troponin I protein in reconstituted thin filament. J Biol Chem 2011; 287:7661-74. [PMID: 22207765 DOI: 10.1074/jbc.m111.281600] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulatory function of cardiac troponin I (cTnI) involves three important contiguous regions within its C-domain: the inhibitory region (IR), the regulatory region (RR), and the mobile domain (MD). Within these regions, the dynamics of regional structure and kinetics of transitions in dynamic state are believed to facilitate regulatory signaling. This study was designed to use fluorescence anisotropy techniques to acquire steady-state and kinetic information on the dynamic state of the C-domain of cTnI in the reconstituted thin filament. A series of single cysteine cTnI mutants was generated, labeled with the fluorophore tetramethylrhodamine, and subjected to various anisotropy experiments at the thin filament level. The structure of the IR was found to be less dynamic than that of the RR and the MD, and Ca(2+) binding induced minimal changes in IR dynamics: the flexibility of the RR decreased, whereas the MD became more flexible. Anisotropy stopped-flow experiments showed that the kinetics describing the transition of the MD and RR from the Ca(2+)-bound to the Ca(2+)-free dynamic states were significantly faster (53.2-116.8 s(-1)) than that of the IR (14.1 s(-1)). Our results support the fly casting mechanism, implying that an unstructured MD with rapid dynamics and kinetics plays a critical role to initiate relaxation upon Ca(2+) dissociation by rapidly interacting with actin to promote the dissociation of the RR from the N-domain of cTnC. In contrast, the IR responds to Ca(2+) signals with slow structural dynamics and transition kinetics. The collective findings suggested a fourth state of activation.
Collapse
Affiliation(s)
- Zhiqun Zhou
- Department of Veterinary and Comparative Anatomy Pharmacology and Physiology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | | | |
Collapse
|
19
|
Akhter S, Zhang Z, Jin JP. The heart-specific NH2-terminal extension regulates the molecular conformation and function of cardiac troponin I. Am J Physiol Heart Circ Physiol 2011; 302:H923-33. [PMID: 22140044 DOI: 10.1152/ajpheart.00637.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In addition to the core structure conserved in all troponin I isoforms, cardiac troponin I (cTnI) has an ∼30 amino acids NH(2)-terminal extension. This peptide segment is a heart-specific regulatory structure containing two Ser residues that are substrates of PKA. Under β-adrenergic regulation, phosphorylation of cTnI in the NH(2)-terminal extension increases the rate of myocardial relaxation. The NH(2)-terminal extension of cTnI is also removable by restrictive proteolysis to produce functional adaptation to hemodynamic stresses. The molecular mechanism for the NH(2)-terminal modifications to regulate the function of cTnI is not fully understood. In the present study, we tested a hypothesis that the NH(2)-terminal extension functions by modulating the conformation of other regions of cTnI. Monoclonal antibody epitope analysis and protein binding experiments demonstrated that deletion of the NH(2)-terminal segment altered epitopic conformation in the middle, but not COOH-terminal, region of cTnI. PKA phosphorylation produced similar effects. This targeted long-range conformational modulation corresponded to changes in the binding affinities of cTnI for troponin T and for troponin C in a Ca(2+)-dependent manner. The data suggest that the NH(2)-terminal extension of cTnI regulates cardiac muscle function through modulating molecular conformation and function of the core structure of cTnI.
Collapse
Affiliation(s)
- Shirin Akhter
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
20
|
Lu Y, Jeffries CM, Trewhella J. Invited review: probing the structures of muscle regulatory proteins using small-angle solution scattering. Biopolymers 2011; 95:505-16. [PMID: 21442605 DOI: 10.1002/bip.21624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 11/09/2022]
Abstract
Small-angle X-ray and neutron scattering with contrast variation have made important contributions in advancing our understanding of muscle regulatory protein structures in the context of the dynamic molecular processes governing muscle action. The contributions of the scattering investigations have depended upon the results of key crystallographic, NMR, and electron microscopy experiments that have provided detailed structural information that has aided in the interpretation of the scattering data. This review will cover the advances made using small-angle scattering techniques, in combination with the results from these complementary techniques, in probing the structures of troponin and myosin binding protein C. A focus of the troponin work has been to understand the isoform differences between the skeletal and cardiac isoforms of this major calcium receptor in muscle. In the case of myosin binding protein C, significant data are accumulating, indicating that this protein may act to modulate the primary calcium signals from troponin, and interest in its biological role has grown because of linkages between gene mutations in the cardiac isoform and serious heart disease.
Collapse
Affiliation(s)
- Yanling Lu
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
21
|
Ouyang Y, Mamidi R, Jayasundar JJ, Chandra M, Dong WJ. Structural and kinetic effects of PAK3 phosphorylation mimic of cTnI(S151E) on the cTnC-cTnI interaction in the cardiac thin filament. J Mol Biol 2010; 400:1036-45. [PMID: 20540949 DOI: 10.1016/j.jmb.2010.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 05/29/2010] [Accepted: 06/03/2010] [Indexed: 12/01/2022]
Abstract
Residue Ser151 of cardiac troponin I (cTnI) is known to be phosphorylated by p21-activated kinase 3 (PAK3). It has been found that PAK3-mediated phosphorylation of cTnI induces an increase in the sensitivity of myofilament to Ca(2+), but the detailed mechanism is unknown. We investigated how the structural and kinetic effects mediated by pseudo-phosphorylation of cTnI (S151E) modulates Ca(2+)-induced activation of cardiac thin filaments. Using steady-state, time-resolved Förster resonance energy transfer (FRET) and stopped-flow kinetic measurements, we monitored Ca(2+)-induced changes in cTnI-cTnC interactions. Measurements were done using reconstituted thin filaments, which contained the pseudo-phosphorylated cTnI(S151E). We hypothesized that the thin filament regulation is modulated by altered cTnC-cTnI interactions due to charge modification caused by the phosphorylation of Ser151 in cTnI. Our results showed that the pseudo-phosphorylation of cTnI (S151E) sensitizes structural changes to Ca(2+) by shortening the intersite distances between cTnC and cTnI. Furthermore, kinetic rates of Ca(2+) dissociation-induced structural change in the regulatory region of cTnI were reduced significantly by cTnI (S151E). The aforementioned effects of pseudo-phosphorylation of cTnI were similar to those of strong crossbridges on structural changes in cTnI. Our results provide novel information on how cardiac thin filament regulation is modulated by PAK3 phosphorylation of cTnI.
Collapse
Affiliation(s)
- Yexin Ouyang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
22
|
Xing J, Jayasundar JJ, Ouyang Y, Dong WJ. Förster resonance energy transfer structural kinetic studies of cardiac thin filament deactivation. J Biol Chem 2009; 284:16432-16441. [PMID: 19369252 DOI: 10.1074/jbc.m808075200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac thin filament deactivation is initiated by Ca2+ dissociation from troponin C (cTnC), followed by multiple structural changes of thin filament proteins. These structural transitions are the molecular basis underlying the thin filament regulation of cardiac relaxation, but the detailed mechanism remains elusive. In this study Förster resonance energy transfer (FRET) was used to investigate the dynamics and kinetics of the Ca2+-induced conformational changes of the cardiac thin filaments, specifically the closing of the cTnC N-domain, the cTnC-cTnI (troponin I) interaction, and the cTnI-actin interaction. The cTnC N-domain conformational change was examined by monitoring FRET between a donor (AEDANS) attached to one cysteine residue and an acceptor (DDPM) attached the other cysteine of the mutant cTnC(L13C/N51C). The cTnC-cTnI interaction was investigated by monitoring the distance changes from residue 89 of cTnC to residues 151 and 167 of cTnI, respectively. The cTnI-actin interaction was investigated by monitoring the distance changes from residues 151 and 167 of cTnI to residue 374 of actin. FRET Ca2+ titrations and stopped-flow kinetic measurements show that different thin filament structural transitions have different Ca2+ sensitivities and Ca2+ dissociation-induced kinetics. The observed structural transitions involving the regulatory region and the mobile domain of cTnI occurred at fast kinetic rates, whereas the kinetics of the structural transitions involving the cTnI inhibitory region was slow. Our results suggest that the thin filament deactivation upon Ca2+ dissociation is a two-step process. One step involves rapid binding of the mobile domain of cTnI to actin, which is kinetically coupled with the conformational change of the N-domain of cTnC and the dissociation of the regulatory region of cTnI from cTnC. The other step involves switching the inhibitory region of cTnI from interacting with cTnC to interacting with actin. The latter processes may play a key role in regulating cross-bridge kinetics.
Collapse
Affiliation(s)
- Jun Xing
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Jayant J Jayasundar
- From the School of Chemical Engineering and Bioengineering, Pullman, Washington 99164
| | - Yexin Ouyang
- From the School of Chemical Engineering and Bioengineering, Pullman, Washington 99164
| | - Wen-Ji Dong
- From the School of Chemical Engineering and Bioengineering, Pullman, Washington 99164; Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164.
| |
Collapse
|
23
|
Xing J, Chinnaraj M, Zhang Z, Cheung HC, Dong WJ. Structural studies of interactions between cardiac troponin I and actin in regulated thin filament using Förster resonance energy transfer. Biochemistry 2009; 47:13383-93. [PMID: 19053249 DOI: 10.1021/bi801492x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Ca(2+)-induced interaction between cardiac troponin I (cTnI) and actin plays a key role in the regulation of cardiac muscle contraction and relaxation. In this report we have investigated changes of this interaction in response to strong cross-bridge formation between myosin S1 and actin and PKA phosphorylation of cTnI within reconstituted thin filament. The interaction was monitored by measuring Förster resonance energy transfer (FRET) between the fluorescent donor 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid (AEDANS) attached to the residues 131, 151, 160 167, 188, and 210 of cTnI and the nonfluorescent acceptor 4-(dimethylamino)phenylazophenyl-4'-maleimide (DABM) attached to cysteine 374 of actin. The FRET distance measurements showed that bound Ca(2+) induced large increases in the distances from actin to the cTnI sites, indicating a Ca(2+)-triggered separation of cTnI from actin. Strongly bound myosin S1 induced additional increases in these distances in the presence of bound Ca(2+). The two ligand-induced increases were independent of each other. These two-step changes in distances provide a direct link of structural changes at the interface between cTnI and actin to the three-state model of thin filament regulation of muscle contraction and relaxation. When cTnC was inactivated through mutations of key residues within the 12-residue Ca(2+)-binding loop, strongly bound S1 alone induced increases in the distances in spite of the fact that the filaments no longer bound regulatory Ca(2+). These results suggest bound Ca(2+) or strongly bound S1 alone can partially activate thin filament, but full activation requires both bound Ca(2+) and strongly bound S1. The distributions of the FRET distances revealed different structural dynamics associated with different regions of cTnI in different biochemical states. The second actin-binding region appears more rigid than the inhibitory/regulatory region. In the Mg(2+) state, the regulatory region appears more flexible than the inhibitory region, and in the Ca(2+) state the inhibitory region becomes more flexible. PKA phosphorylation of cTnI at Ser23 and Ser24 distance from actin to cTnI residue 131 by 2.2-5.2 A in different biochemical states and narrowed the distributions of the distances from actin to the inhibitory and regulatory regions of cTnI. The observed phosphorylation effects are likely due to an intramolecular interaction of the phosphorylated N-terminal segment and the inhibitory region of cTnI.
Collapse
Affiliation(s)
- Jun Xing
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 354294, USA
| | | | | | | | | |
Collapse
|
24
|
Dong WJ, Xing J, Ouyang Y, An J, Cheung HC. Structural kinetics of cardiac troponin C mutants linked to familial hypertrophic and dilated cardiomyopathy in troponin complexes. J Biol Chem 2007; 283:3424-3432. [PMID: 18063575 DOI: 10.1074/jbc.m703822200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The key events in regulating cardiac muscle contraction involve Ca(2+) binding to and release from cTnC (troponin C) and structural changes in cTnC and other thin filament proteins triggered by Ca(2+) movement. Single mutations L29Q and G159D in human cTnC have been reported to associate with familial hypertrophic and dilated cardiomyopathy, respectively. We have examined the effects of these individual mutations on structural transitions in the regulatory N-domain of cTnC triggered by Ca(2+) binding and dissociation. This study was carried out with a double mutant or triple mutants of cTnC, reconstituted into troponin with tryptophanless cTnI and cTnT. The double mutant, cTnC(L12W/N51C) labeled with 1,5-IAEDANS at Cys-51, served as a control to monitor Ca(2+)-induced opening and closing of the N-domain by Förster resonance energy transfer (FRET). The triple mutants contained both L12W and N51C labeled with 1,5-IAEDANS, and either L29Q or G159D. Both mutations had minimal effects on the equilibrium distance between Trp-12 and Cys-51-AEDANS in the absence or presence of bound Ca(2+). L29Q had no effect on the closing rate of the N-domain triggered by release of Ca(2+), but reduced the Ca(2+)-induced opening rate. G159D reduced both the closing and opening rates. Previous results showed that the closing rate of cTnC N-domain triggered by Ca(2+) dissociation was substantially enhanced by PKA phosphorylation of cTnI. This rate enhancement was abolished by L29Q or G159D. These mutations alter the kinetics of structural transitions in the regulatory N-domain of cTnC that are involved in either activation (L29Q) or deactivation (G159D). Both mutations appear to be antagonistic toward phosphorylation signaling between cTnI and cTnC.
Collapse
Affiliation(s)
- Wen-Ji Dong
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164; Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164.
| | - Jun Xing
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Alabama 35294
| | - Yexin Ouyang
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164
| | - Jianli An
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Alabama 35294
| | - Herbert C Cheung
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Alabama 35294
| |
Collapse
|
25
|
Dong WJ, Jayasundar JJ, An J, Xing J, Cheung HC. Effects of PKA phosphorylation of cardiac troponin I and strong crossbridge on conformational transitions of the N-domain of cardiac troponin C in regulated thin filaments. Biochemistry 2007; 46:9752-61. [PMID: 17676764 PMCID: PMC2547119 DOI: 10.1021/bi700574n] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regulation of cardiac muscle function is initiated by binding of Ca2+ to troponin C (cTnC) which induces a series of structural changes in cTnC and other thin filament proteins. These structural changes are further modulated by crossbridge formation and fine-tuned by phosphorylation of cTnI. The objective of the present study is to use a new Förster resonance energy transfer-based structural marker to distinguish structural and kinetic effects of Ca2+ binding, crossbridge interaction, and protein kinase A phosphorylation of cTnI on the conformational changes of the cTnC N-domain. The FRET-based structural marker was generated by attaching AEDANS to one cysteine of a double-cysteine mutant cTnC(13C/51C) as a FRET donor and attaching DDPM to the other cysteine as the acceptor. The doubly labeled cTnC mutant was reconstituted into the thin filament by adding cTnI, cTnT, tropomyosin, and actin. Changes in the distance between Cys13 and Cys51 induced by Ca2+ binding/dissociation were determined by FRET-sensed Ca2+ titration and stopped-flow studies, and time-resolved fluorescence measurements. The results showed that the presence of both Ca2+ and strong binding of myosin head to actin was required to achieve a fully open structure of the cTnC N-domain in regulated thin filaments. Equilibrium and stopped-flow studies suggested that strongly bound myosin head significantly increased the Ca2+ sensitivity and changed the kinetics of the structural transition of the cTnC N-domain. PKA phosphorylation of cTnI impacted the Ca2+ sensitivity and kinetics of the structural transition of the cTnC N-domain but showed no global structural effect on cTnC opening. These results provide an insight into the modulation mechanism of strong crossbridge and cTnI phosphorylation in cardiac thin filament activation/relaxation processes.
Collapse
Affiliation(s)
- Wen-Ji Dong
- The School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA.
| | | | | | | | | |
Collapse
|
26
|
Sahoo H, Nau WM. Phosphorylation-Induced Conformational Changes in Short Peptides Probed by Fluorescence Resonance Energy Transfer in the 10 Å Domain. Chembiochem 2007; 8:567-73. [PMID: 17299825 DOI: 10.1002/cbic.200600466] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phosphorylation-induced conformational changes in short polypeptides were probed by a fluorescence resonance energy transfer (FRET) method by employing a short-distance FRET pair (R(0) approximately 10 A) based on tryptophan as natural donor and a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as synthetic acceptor. Two substrates for kinases, LeuArgArgTrpSerLeuGly-Dbo (peptide I) and TrpLysArgThrLeuArgArg-Dbo (peptide II), were investigated, with serine and threonine, respectively, as phosphorylation sites. Steady-state and time-resolved fluorescence experiments in H(2)O revealed a decrease in FRET efficiency for peptide I and an increase for peptide II; this suggested that the effective distances between donor and acceptor increased and decreased, respectively. The same trends and similar absolute variations in effective donor-acceptor distances were observed in propylene glycol, a less polar and highly viscous solvent; this suggested that the variations are due to intrinsic structural preferences. Fitting of the time-resolved decay traces according to a distribution function model (Gaussian distribution) provided the mean donor-acceptor distances, which showed an increase upon phosphorylation for peptide I (from 9.7 to 10.5 A) and a decrease for peptide II (from 10.9 to 9.3 A) in H(2)O. The broadness (half-width) of the distributions, which provides a measure of the rigidity of the peptides, remained similar upon phosphorylation of peptide I (3.0 versus 3.1 A), but decreased for peptide II (from 3.1 to 0.73 A in H(2)O); this suggests a more compact, structured conformation upon phosphorylation of the latter peptide. The elongation of the peptide backbone (by ca. 0.7 A) for peptide I is attributed to an increase in steric demand upon phosphorylation, which favors an extended conformation. The contraction (by ca. 1.4 A) and structural rigidification of peptide II is attributed to attractive Coulombic interactions and hydrogen bonding between the phosphate group and the arginine residues.
Collapse
Affiliation(s)
- Harekrushna Sahoo
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | |
Collapse
|
27
|
Dong WJ, An J, Xing J, Cheung HC. Structural transition of the inhibitory region of troponin I within the regulated cardiac thin filament. Arch Biochem Biophys 2006; 456:135-42. [PMID: 16962989 PMCID: PMC1776856 DOI: 10.1016/j.abb.2006.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 08/01/2006] [Accepted: 08/04/2006] [Indexed: 11/24/2022]
Abstract
Contraction and relaxation of cardiac muscle are regulated by the inhibitory and regulatory regions of troponin I (cTnI). Our previous FRET studies showed that the inhibitory region of cTnI in isolated troponin experiences a structural transition from a beta-turn/coil motif to an extended conformation upon Ca(2+) activation. During the relaxation process, the kinetics of the reversal of this conformation is coupled to the closing of the Ca(2+)-induced open conformation of the N-domain of troponin C (cTnC) and an interaction between cTnC and cTnI in their interface. We have since extended the structural kinetic study of the inhibitory region to fully regulated thin filament. Single-tryptophan and single-cysteine mutant cTnI(L129W/S151C) was labeled with 1,5-IAEDANS at Cys151, and the tryptophan-AEDANS pair served as a donor-acceptor pair. Labeled cTnI mutant was used to prepare regulated thin filaments. Ca(2+)-induced conformational changes in the segment of Trp129-Cys151 of cTnI were monitored by FRET sensitized acceptor (AEDANS) emission in Ca(2+) titration and stopped-flow measurements. Control experiments suggested energy transfer from endogenous tryptophan residues of actin and myosin S1 to AEDANS attached to Cys151 of cTnI was very small and Ca(2+) independent. The present results show that the rate of Ca(2+)-induced structural transition and Ca(2+) sensitivity of the inhibitory region of cTnI were modified by (1) thin filament formation, (2) the presence of strongly bound S1, and (3) PKA phosphorylation of the N-terminus of cTnI. Ca(2+) sensitivity was not significantly changed by the presence of cTm and actin. However, the cTn-cTm interaction decreased the cooperativity and kinetics of the structural transition within cTnI, while actin filaments elicited opposite effects. The strongly bound S1 significantly increased the Ca(2+) sensitivity and slowed down the kinetics of structural transition. In contrast, PKA phosphorylation of cTnI decreased the Ca(2+) sensitivity and accelerated the structural transition rate of the inhibitory region of cTnI on thin filaments. These results support the idea of a feedback mechanism by strong cross-bridge interaction with actin and provide insights on the molecular basis for the fine tuning of cardiac function by beta-adrenergic stimulation.
Collapse
Affiliation(s)
- Wen-Ji Dong
- School of Chemical Engineering and Bioengineering and Department of Veterinary and Comparative Anatomy Pharmacology and Physiology, Washington State University, Pullman, WA 99164, USA.
| | | | | | | |
Collapse
|
28
|
Musial-Siwek M, Rusch SL, Kendall DA. Probing the affinity of SecA for signal peptide in different environments. Biochemistry 2006; 44:13987-96. [PMID: 16229488 PMCID: PMC3094106 DOI: 10.1021/bi050882k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SecA, the peripheral subunit of the Escherichia coli preprotein translocase, interacts with a number of ligands during export, including signal peptides, membrane phospholipids, and nucleotides. Using fluorescence resonance energy transfer (FRET), we studied the interactions of wild-type (WT) and mutant SecAs with IAEDANS-labeled signal peptide, and how these interactions are modified in the presence of other transport ligands. We find that residues on the third alpha-helix in the preprotein cross-linking domain (PPXD) are important for the interaction of SecA and signal peptide. For SecA in aqueous solution, saturation binding data using FRET analysis fit a single-site binding model and yielded a Kd of 2.4 microM. FRET is inhibited for SecA in lipid vesicles relative to that in aqueous solution at a low signal peptide concentration. The sigmoidal nature of the binding curve suggests that SecA in lipids has two conformational states; our results do not support different oligomeric states of SecA. Using native gel electrophoresis, we establish signal peptide-induced SecA monomerization in both aqueous solution and lipid vesicles. Whereas the affinity of SecA for signal peptide in an aqueous environment is unaffected by temperature or the presence of nucleotides, in lipids the affinity decreases in the presence of ADP or AMP-PCP but increases at higher temperature. The latter finding is consistent with SecA existing in an elongated form while inserting the signal peptide into membranes.
Collapse
Affiliation(s)
| | | | - Debra A. Kendall
- To whom correspondence should be addressed: Department of Molecular and Cell Biology, 91 N. Eagleville Rd., University of Connecticut, Storrs, CT 06269-3125. Phone: (860) 486-1891. Fax: (860) 486-4331.
| |
Collapse
|
29
|
Abstract
Although well known as the location of the mechanism by which the cardiac sarcomere is activated by Ca2+ to generate force and shortening, the thin filament is now also recognized as a vital component determining the dynamics of contraction and relaxation. Molecular signaling in the thin filament involves steric, allosteric, and cooperative mechanisms that are modified by protein phosphorylation, sarcomere length and load, the chemical environment, and isoform composition. Approaches employing transgenesis and mutagenesis now permit investigation of these processes at the level of the systems biology of the heart. These studies reveal that the thin filaments are not merely slaves to the levels of Ca2+ determined by membrane channels, transporters and exchangers, but are actively involved in beat to beat control of cardiac function by neural and hormonal factors and by the Frank-Starling mechanism.
Collapse
Affiliation(s)
- Tomoyoshi Kobayashi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
30
|
Robinson JM, Dong WJ, Xing J, Cheung HC. Switching of Troponin I: Ca2+ and Myosin-induced Activation of Heart Muscle. J Mol Biol 2004; 340:295-305. [PMID: 15201053 DOI: 10.1016/j.jmb.2004.04.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 04/12/2004] [Accepted: 04/14/2004] [Indexed: 10/26/2022]
Abstract
The principal task of the Ca(2+) activation of striated muscle is the release of the troponin I (TnI) inhibitory region (TnI-I) from actin. TnI-I release facilitates the repositioning of tropomyosin across the actin surface and the formation of strong, force generating, actin-myosin cross-bridges. Full activation of the Ca(2+) regulatory switch (CRS) requires two switching steps in cTnI: binding of the TnI regulatory region to hydrophobic sites in the N-domain of Ca(2+)-bound troponin C and release of the adjacent TnI-I from actin. Using Förster resonance energy transfer, we have examined the requirements for full activation of the cardiac CRS. In the presence of actin, both Ca(2+) and strong cross-bridges are required for full activation. Actin desensitizes the CRS to Ca(2+) and produces cooperativity in the Ca(2+) activation of the CRS. Strong cross-bridges eliminate cooperativity and re-sensitize the CRS to Ca(2+). We propose a kinetic scheme and a structural model to account for these findings.
Collapse
Affiliation(s)
- John M Robinson
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-2041, USA.
| | | | | | | |
Collapse
|
31
|
Weljie AM, Robertson KM, Vogel HJ. Conformational changes in the Ca2+-regulatory region from soybean calcium-dependent protein kinase-alpha: fluorescence resonance energy transfer studies. J Biol Chem 2003; 278:43764-9. [PMID: 12941950 DOI: 10.1074/jbc.m306799200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium-dependent protein kinases are key proteins involved in plant and protozoal Ca2+ signaling. These unique molecules include a calcium regulatory calmodulin-like domain (CLD), which binds to another small regulatory domain named the junction domain (JD). Both CLD and JD are part of the same polypeptide as the protein kinase domain. The CLD consists of N- and C-terminal lobes, each having two helix-loop-helix Ca2+-binding motifs. In this study, fluorescence resonance energy transfer using a series of Trp and Cys site-directed mutants was undertaken to probe the relative motions of the two lobes of CLD between the apo- and Ca2+-saturated forms, as well as bound to a peptide encoding the JD sequence. Using an IAEDANS-modified Cys, a total of 15 Trp --> Cys distances were measured in these three states from the five donor-acceptor combinations F334W-Cys436, L371W-Cys436, L403W-Cys436, F334W-L403C, and L371W-L403C. Consistent with recently reported NMR diffusion measurements and with 1H,15N heteronuclear correlation NMR spectra, the distances derived from fluorescence resonance energy transfer measurements in apoCLD indicate partial unfolding and a subsequent contraction on binding Ca2+, which is maintained on addition of the JD peptide. Interpretation of the distances suggests that the Ca2+-saturated form is open with the two lobes sitting side-by-side although highly flexible. The transition to the JD-CLD state appears to be accompanied by a rotation of the N- and C-terminal domains with respect to each other inducing a slightly more closed overall complex. The observed differences between the behavior of CLD and the well studied related protein calmodulin are likely because of different physiological requirements for activation in vivo.
Collapse
Affiliation(s)
- Aalim M Weljie
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
32
|
Dong WJ, Robinson JM, Xing J, Cheung HC. Kinetics of conformational transitions in cardiac troponin induced by Ca2+ dissociation determined by Förster resonance energy transfer. J Biol Chem 2003; 278:42394-402. [PMID: 12909617 DOI: 10.1074/jbc.m304858200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon Ca2+ activation of cardiac muscle, several structural changes occur in the troponin subunits. These changes include the opening of the cardiac troponin C (cTnC) N-domain, the change of secondary structure of the inhibitory region of cardiac troponin I (cTnI), and the change in the separation between these two proteins in the cTnC-cTnI interface. We have used Förster resonance energy transfer in Ca2+ titration and stopped-flow experiments to delineate these transitions using a reconstituted cardiac troponin. Energy transfer results were quantified to yield time-dependent profiles of changes in intersite distances during Ca2+ dissociation. The closing of the cTnC N-domain induced by release of regulatory Ca2+ from cTnC occurs in one step (t1/2 approximately 5 ms), and this transition is not affected by Ca2+ release from the C-domain. The other two transitions triggered by Ca2+ dissociation are biphasic with the fast phase (t1/2 approximately 5 ms) correlated with Ca2+ release from the cTnC N-domain. These transitions are slower than the release of bound regulatory Ca2+ (t1/2 3.6 ms) and are coupled to one another in a cooperative manner in restoring their conformations in the deactivated state. The kinetic results define the magnitudes of structural changes relevant in Ca2+ switching between activation and deactivation of cardiac muscle contraction.
Collapse
Affiliation(s)
- Wen-Ji Dong
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL 35294-0005, USA.
| | | | | | | |
Collapse
|
33
|
Dong WJ, Robinson JM, Stagg S, Xing J, Cheung HC. Ca2+-induced conformational transition in the inhibitory and regulatory regions of cardiac troponin I. J Biol Chem 2003; 278:8686-92. [PMID: 12511564 DOI: 10.1074/jbc.m212886200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac muscle activation is initiated by the binding of Ca(2+) to the single N-domain regulatory site of cardiac muscle troponin C (cTnC). Ca(2+) binding causes structural changes between cTnC and two critical regions of cardiac muscle troponin I (cTnI): the regulatory region (cTnI-R, residues 150-165) and the inhibitory region (cTnI-I, residues130-149). These changes are associated with a decreased cTnI affinity for actin and a heightened affinity for cTnC. Using Förster resonance energy transfer, we have measured three intra-cTnI distances in the deactivated (Mg(2+)-saturated) and Ca(2+)-activated (Ca(2+)-saturated) states in reconstituted binary (cTnC-cTnI) and ternary (cTnC-cTnI-cTnT) troponin complexes. Distance A (spanning cTnI-R) was unaltered by Ca(2+). Distances B (spanning both cTnI-R and cTnI-I) and C (from a residue flanking cTnI-I to a residue in the center of cTnI-R) exhibited Ca(2+)-induced increases of >8 A. These results compliment our previous determination of the distance between residues flanking cTnI-I alone. Together, the data suggest that Ca(2+) activation causes residues within cTnI-I to switch from a beta-turn/coil to an extended quasi-alpha-helical conformation as the actin-contacts are broken, whereas cTnI-R remains alpha-helical in both Mg(2+)- and Ca(2+)-saturated states. We have used the data to construct a structural model of the cTnI inhibitory and regulatory regions in the Mg(2+)- and Ca(2+)-saturated states.
Collapse
Affiliation(s)
- Wen-Ji Dong
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham 35294-2041, USA
| | | | | | | | | |
Collapse
|
34
|
Sheldahl C, Xing J, Dong WJ, Harvey SC, Cheung HC. The calcium-saturated cTnI/cTnC complex: structure of the inhibitory region of cTnI. Biophys J 2003; 84:1057-64. [PMID: 12547787 PMCID: PMC1302683 DOI: 10.1016/s0006-3495(03)74922-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The contiguous inhibitory and regulatory regions of troponin I in the heterotrimeric troponin complex play a critical role in Ca(2+) activation of striated muscle. Knowledge of the structure of this critical region within the complex will enhance efforts toward understanding regulatory mechanisms. Toward this goal, we have used simulated annealing to study the structure of the inhibitory and regulatory regions of cardiac muscle troponin I in the calcium-saturated complex formed between cardiac troponin C and cardiac troponin I. We have incorporated distances determined experimentally by Förster resonance energy transfer in the full-length complex, rather than using peptides derived from cTnI. For these models, we assume a helix-loop-helix conformation for the inhibitory region. We have found several structures that satisfy the experimental constraints fairly well. Although it is not possible to eliminate any of these models at this time, future studies with additional experimental restraints will yield insights on the mechanisms of calcium regulation in cardiac muscle.
Collapse
Affiliation(s)
- Christopher Sheldahl
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
35
|
Robinson JM, Wang Y, Kerrick WGL, Kawai R, Cheung HC. Activation of striated muscle: nearest-neighbor regulatory-unit and cross-bridge influence on myofilament kinetics. J Mol Biol 2002; 322:1065-88. [PMID: 12367529 DOI: 10.1016/s0022-2836(02)00855-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have formulated a three-compartment model of muscle activation that includes both strong cross-bridge (XB) and Ca(2+)-activated regulatory-unit (RU) mediated nearest-neighbor cooperative influences. The model is based on the tight coupling premise--that XB retain activating Ca(2+) on the thin filament. Using global non-linear least-squares, the model produced excellent fits to experimental steady-state force-pCa and ATPase-pCa data from skinned rat soleus fibers. In terms of the model, nearest-neighbor influences over the range of Ca(2+) required for activation cause the Ca(2+) dissociation rate from regulatory-units (k(off)) to decrease and the cross-bridge association rate (f) to increase each more than ten-fold. Moreover, the rate variations occur in separate Ca(2+) regimes. The energy of activation governing f is strongly influenced by both neighboring RU and XB. In contrast, the energy of activation governing k(off) is less affected by neighboring XB than by neighboring RU. Nearest-neighbor cooperative influences provide both an overall sensitization to Ca(2+) and the well-known steep response of force to free Ca(2+). The apparent sensitivity for Ca(2+)-activation of force and ATPase is a function of cross-bridge kinetic rates. The model and derived parameter set produce simulated behavior in qualitative agreement with steady-state experiments reported in the literature for partial TnC replacement, increased [P(i)], increased [ADP], and MalNEt-S1 addition. The model is an initial attempt to construct a general theory of striated muscle activation-one that can be consistently used to interpret data from various types of muscle manipulation experiments.
Collapse
Affiliation(s)
- John M Robinson
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294-0005, USA.
| | | | | | | | | |
Collapse
|
36
|
Brown LJ, Sale KL, Hills R, Rouviere C, Song L, Zhang X, Fajer PG. Structure of the inhibitory region of troponin by site directed spin labeling electron paramagnetic resonance. Proc Natl Acad Sci U S A 2002; 99:12765-70. [PMID: 12239350 PMCID: PMC130534 DOI: 10.1073/pnas.202477399] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-directed spin labeling EPR (SDSL-EPR) was used to determine the structure of the inhibitory region of TnI in the intact cardiac troponin ternary complex. Maeda and collaborators have modeled the inhibitory region of TnI (skeletal 96-112: the structural motif that communicates the Ca(2+) signal to actin) as a kinked alpha-helix [Vassylyev, D., Takeda, S., Wakatsuki, S., Maeda, K. & Maeda, Y. (1998) Proc. Natl. Acad. Sci. USA 95, 4847-4852), whereas Trewhella and collaborators have proposed the same region to be a flexible beta-hairpin [Tung, C. S., Wall, M. E., Gallagher, S. C. & Trewhella, J. (2000) Protein Sci. 9, 1312-1326]. To distinguish between the two models, residues 129-145 of cardiac TnI were mutated sequentially to cysteines and labeled with the extrinsic spin probe, MTSSL. Sequence-dependent solvent accessibility was measured as a change in power saturation of the spin probe in the presence of the relaxation agent. In the ternary complex, the 129-137 region followed a pattern characteristic of a regular 3.6 residues/turn alpha-helix. The following region, residues 138-145, showed no regular pattern in solvent accessibility. Measurements of 4 intradomain distances within the inhibitory sequence, using dipolar EPR, were consistent with an alpha-helical structure. The difference in side-chain mobility between the ternary (C.I.T) and binary (C.I) complexes revealed a region of interaction of TnT located at the N-terminal end of the inhibitory sequence, residues 130-135. The above findings for the troponin complex in solution do not support either of the computational models of the binary complex; however, they are in very good agreement with a preliminary report of the x-ray structure of the cardiac ternary complex [Takeda, S. Yamashita, A., Maeda, K. & Maeda, Y. (2002) Biophys. J. 82, 832].
Collapse
Affiliation(s)
- Louise J Brown
- National High Magnetic Field Laboratory, Institute of Molecular Biophysics, and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Fluorescence resonance energy transfer (FRET) provides a unique means of measuring interatomic distances in biological molecules in real time. Recent advances have been made in the application of this technique to studies of conformational changes in proteins. New ways of introducing fluorescence probes into proteins, newly developed fluorescence probes, and progress in the technologies for fluorescence signal detection have greatly expanded the range of applications of FRET. In particular, studies of conformational changes in proteins at a single molecule level and in the native in vivo context of a living cell are now possible.
Collapse
Affiliation(s)
- Tomasz Heyduk
- E.A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA.
| |
Collapse
|