1
|
More than a Confinement: “Soft” and “Hard” Enzyme Entrapment Modulates Biological Catalyst Function. Catalysts 2019. [DOI: 10.3390/catal9121024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Catalysis makes chemical and biochemical reactions kinetically accessible. From a technological point of view, organic, inorganic, and biochemical catalysis is relevant for several applications, from industrial synthesis to biomedical, material, and food sciences. A heterogeneous catalyst, i.e., a catalyst confined in a different phase with respect to the reagents’ phase, requires either its physical confinement in an immobilization matrix or its physical adsorption on a surface. In this review, we will focus on the immobilization of biological catalysts, i.e., enzymes, by comparing hard and soft immobilization matrices and their effect on the modulation of the catalysts’ function. Indeed, unlike smaller molecules, the catalytic activity of protein catalysts depends on their structure, conformation, local environment, and dynamics, properties that can be strongly affected by the immobilization matrices, which, therefore, not only provide physical confinement, but also modulate catalysis.
Collapse
|
2
|
DeMarino C, Schwab A, Pleet M, Mathiesen A, Friedman J, El-Hage N, Kashanchi F. Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection. J Neuroimmune Pharmacol 2016; 12:31-50. [PMID: 27372507 DOI: 10.1007/s11481-016-9692-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/12/2016] [Indexed: 12/18/2022]
Abstract
Despite the significant advances in neurological medicine, it remains difficult to treat ailments directly involving the brain. The blood brain barrier (BBB) is a tightly regulated, selectively permeable barrier that restricts access from the blood into the brain extracellular fluid (BEF). Many conditions such as tumors or infections in the brain are difficult to treat due to the fact that drugs and other therapeutic agents are unable to easily pass through this relatively impermeable barrier. Human Immunodeficiency Virus (HIV) presents a particular problem as it is able to remain dormant in the brain for years protected from antiretroviral drugs by the BBB. The development of nanoscale carriers over the past few decades has made possible the delivery of therapies with the potential to overcome membrane barriers and provide specific, targeted delivery. This review seeks to provide a comprehensive overview of the various aspects of nanoparticle formulation and their applications in improving the delivery efficiency of drugs, specifically antiretroviral therapeutics to the brain to treat HIV.
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Angela Schwab
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Michelle Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Allison Mathiesen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Joel Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
3
|
Abbruzzetti S, Spyrakis F, Bidon-Chanal A, Luque FJ, Viappiani C. Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:10686-701. [PMID: 23733145 DOI: 10.1039/c3cp51149a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of cavities and tunnels in the interior of proteins, in conjunction with the structural plasticity arising from the coupling to the thermal fluctuations of the protein scaffold, has profound consequences on the pathways followed by ligands moving through the protein matrix. In this perspective we discuss how quantitative analysis of experimental rebinding kinetics from laser flash photolysis, trapping of unstable conformational states by embedding proteins within the nanopores of silica gels, and molecular simulations can synergistically converge to gain insight into the migration mechanism of ligands. We show how the evaluation of the free energy landscape for ligand diffusion based on the outcome of computational techniques can assist the definition of sound reaction schemes, leading to a comprehensive understanding of the broad range of chemical events and time scales that encompass the transport of small ligands in hemeproteins.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, viale delle Scienze 7A, 43124, Parma, Italy
| | | | | | | | | |
Collapse
|
4
|
Panzica M, Emanuele A, Cordone L. Thermal Aggregation of Bovine Serum Albumin in Trehalose and Sucrose Aqueous Solutions. J Phys Chem B 2012; 116:11829-36. [DOI: 10.1021/jp3054197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Massimo Panzica
- Dipartimento di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo,
Italy
| | - Antonio Emanuele
- Dipartimento di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo,
Italy
| | - Lorenzo Cordone
- Dipartimento di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo,
Italy
| |
Collapse
|
5
|
Roche CJ, Malashkevich V, Balazs TC, Dantsker D, Chen Q, Moreira J, Almo SC, Friedman JM, Hirsch RE. Structural and functional studies indicating altered redox properties of hemoglobin E: implications for production of bioactive nitric oxide. J Biol Chem 2011; 286:23452-66. [PMID: 21531715 PMCID: PMC3123109 DOI: 10.1074/jbc.m110.183186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 04/28/2011] [Indexed: 12/22/2022] Open
Abstract
Hemoglobin (Hb) E (β-Glu26Lys) remains an enigma in terms of its contributions to red blood cell (RBC) pathophysiological mechanisms; for example, EE individuals exhibit a mild chronic anemia, and HbE/β-thalassemia individuals show a range of clinical manifestations, including high morbidity and death, often resulting from cardiac dysfunction. The purpose of this study was to determine and evaluate structural and functional consequences of the HbE mutation that might account for the pathophysiology. Functional studies indicate minimal allosteric consequence to both oxygen and carbon monoxide binding properties of the ferrous derivatives of HbE. In contrast, redox-sensitive reactions are clearly impacted as seen in the following: 1) the ∼2.5 times decrease in the rate at which HbE catalyzes nitrite reduction to nitric oxide (NO) relative to HbA, and 2) the accelerated rate of reduction of aquometHbE by L-cysteine (L-Cys). Sol-gel encapsulation studies imply a shift toward a higher redox potential for both the T and R HbE structures that can explain the origin of the reduced nitrite reductase activity of deoxyHbE and the accelerated rate of reduction of aquometHbE by cysteine. Deoxy- and CO HbE crystal structures (derived from crystals grown at or near physiological pH) show loss of hydrogen bonds in the microenvironment of βLys-26 and no significant tertiary conformational perturbations at the allosteric transition sites in the R and T states. Together, these data suggest a model in which the HbE mutation, as a consequence of a relative change in redox properties, decreases the overall rate of Hb-mediated production of bioactive NO.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Moreira
- From the Departments of Physiology and Biophysics
| | | | | | - Rhoda Elison Hirsch
- Medicine (Division of Hematology), and
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
6
|
Hendgen-Cotta UB, Flögel U, Kelm M, Rassaf T. Unmasking the Janus face of myoglobin in health and disease. J Exp Biol 2010; 213:2734-40. [DOI: 10.1242/jeb.041178] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SUMMARY
For more than 100 years, myoglobin has been among the most extensively studied proteins. Since the first comprehensive review on myoglobin function as a dioxygen store by Millikan in 1939 and the discovery of its structure 50 years ago, multiple studies have extended our understanding of its occurrence, properties and functions. Beyond the two major roles, the storage and the facilitation of dioxygen diffusion, recent physiological studies have revealed that myoglobin acts as a potent scavenger of nitric oxide (NO•) representing a control system that preserves mitochondrial respiration. In addition, myoglobin may also protect the heart against reactive oxygen species (ROS), and, under hypoxic conditions, deoxygenated myoglobin is able to reduce nitrite to NO• leading to a downregulation of the cardiac energy status and to a decreased heart injury after reoxygenation. Thus, by controlling the NO• bioavailability via scavenging or formation, myoglobin serves as part of a sensitive dioxygen sensory system. In this review, the physiological relevance of these recent findings are delineated for pathological states where NO• and ROS bioavailability are known to be critical determinants for the outcome of the disease, e.g. ischemia/reperfusion injury. Detrimental and beneficial effects of the presence of myoglobin are discussed for various states of tissue oxygen tension within the heart and skeletal muscle. Furthermore, the impact of myoglobin on parasite infection, rhabdomyolysis, hindlimb and liver ischemia, angiogenesis and tumor growth are considered.
Collapse
Affiliation(s)
- U. B. Hendgen-Cotta
- Department of Medicine, Division of Cardiology, Pulmonary Diseases and Angiology, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - U. Flögel
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - M. Kelm
- Department of Medicine, Division of Cardiology, Pulmonary Diseases and Angiology, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - T. Rassaf
- Department of Medicine, Division of Cardiology, Pulmonary Diseases and Angiology, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
A highlight of myoglobin diversity: the nitrite reductase activity during myocardial ischemia-reperfusion. Nitric Oxide 2009; 22:75-82. [PMID: 19836457 DOI: 10.1016/j.niox.2009.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/09/2009] [Accepted: 10/12/2009] [Indexed: 01/05/2023]
Abstract
Myoglobin, famous as an important intracellular oxygen binding hemeprotein, displays a variety of functions. The first pioneering review on myoglobin was published as early as 1939, in which Millikan concluded that "muscle hemoglobin" acts primarily as a short-term dioxygen store, tiding the muscle over from one contraction to the next. Since that time, myoglobin has become one of the most widely studied proteins in a variety of research fields ranging from chemistry to medicine. Recently it was discovered that in the heart myoglobin changes its function in dependence of oxygen tension, acting as an oxygen sensor. Under normoxic conditions myoglobin plays the role of a nitric oxide (NO(*)) scavenger, protecting the heart from the deleterious effects of excessive NO(*). During hypoxia however, myoglobin changes its role from an NO(*) scavenger to an NO(*) producer. Deoxygenated myoglobin reduces nitrite to bioactive NO(*). The produced NO(*) downregulates the cardiac energy status and reduces myocardial oxygen consumption, thus protecting the heart. Myoglobin also exhibits a nitrite reductase function under further pathophysiological conditions. During myocardial reperfusion after ischemia, myoglobin - via nitrite - regulates respiration and cellular viability. This leads to a dramatic reduction of myocardial infarct size and to an improvement of myocardial function. The reaction between myoglobin and nitrite thus seems to play an imminent role in the regulation of cardiac function in physiology and pathophysiology.
Collapse
|
8
|
Abbruzzetti S, Bruno S, Faggiano S, Ronda L, Grandi E, Mozzarelli A, Viappiani C. Characterization of ligand migration mechanisms inside hemoglobins from the analysis of geminate rebinding kinetics. Methods Enzymol 2008; 437:329-45. [PMID: 18433636 DOI: 10.1016/s0076-6879(07)37017-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The presence of internal hydrophobic cavities and packing defects has been demonstrated for several small globular proteins, including hemoglobins. The reduced thermodynamic stability appears to be compensated for by the capability of controlling ligand diffusion through the protein matrix to the active site, possibly by stocking more than one reactant molecule in selected sites. Photolysis of carbon monoxide complexes of hemoglobins encapsulated in silica gels leads to multiphasic geminate rebinding kinetics at room temperature, reflecting rebinding also from different temporary docking sites inside the protein matrix. A careful analysis of the ligand rebinding kinetics allows the determination of the microscopic rates for the underlying reactions, including those governing the migration to and from the docking sites. This chapter describes the experimental approach used to characterize the ligand rebinding kinetics for heme proteins in silica gels after nanosecond laser flash photolysis and the computational methods necessary to retrieve the kinetic parameters.
Collapse
|
9
|
Friedman AJ, Han G, Navati MS, Chacko M, Gunther L, Alfieri A, Friedman JM. Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide 2008; 19:12-20. [PMID: 18457680 DOI: 10.1016/j.niox.2008.04.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 03/26/2008] [Accepted: 04/08/2008] [Indexed: 11/17/2022]
Abstract
A new platform using biocompatible materials is presented for generating powders comprised of nanoparticles that release therapeutic levels of nitric oxide (NO) in a controlled and sustained manner. The capacity of these particles to retain and gradually release NO arises from their having combined features of both glassy matrices and hydrogels. This feature allows both for the generation of NO through the thermal reduction of added nitrite by glucose and for the retention of the generated NO within the dry particles. Exposure of these robust biocompatible nanoparticles to moisture initiates the sustained release of the trapped NO over extended time periods as determined both fluorimetrically and amperometrically. The slow sustained release is in contrast to the much faster release pattern associated with the hydration-initialed NO release in powders derived from glassy matrices. These glasses are prepared using trehalose and sucrose doped with either glucose or tagatose as the source of thermal electrons needed to convert nitrite to gNO. Significantly, the release profiles for the NO in the hydrogel/glass composite materials are found to be an easily tuned parameter that is modulated through the specific additives used in preparing the hydrogel/glass composites. The presented data raise the prospect that these new NO releasing nanoparticles can be easily formulated for use under a wide range of therapeutic circumstances.
Collapse
Affiliation(s)
- Adam J Friedman
- Department of Physiology of Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Nienhaus K, Palladino P, Nienhaus GU. Structural Dynamics of Myoglobin: FTIR-TDS Study of NO Migration and Binding†. Biochemistry 2007; 47:935-48. [DOI: 10.1021/bi701935v] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Karin Nienhaus
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, and Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Il 61801
| | - Pasquale Palladino
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, and Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Il 61801
| | - G. Ulrich Nienhaus
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, and Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Il 61801
| |
Collapse
|
11
|
Abbruzzetti S, Grandi E, Bruno S, Faggiano S, Spyrakis F, Mozzarelli A, Cacciatori E, Dominici P, Viappiani C. Ligand migration in nonsymbiotic hemoglobin AHb1 from Arabidopsis thaliana. J Phys Chem B 2007; 111:12582-90. [PMID: 17924689 DOI: 10.1021/jp074954o] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AHb1 is a hexacoordinated type 1 nonsymbiotic hemoglobin recently discovered in Arabidopsis thaliana. To gain insight into the ligand migration inside the protein, we studied the CO rebinding kinetics of AHb1 encapsulated in silica gels, in the presence of glycerol. The CO rebinding kinetics after nanosecond laser flash photolysis exhibits complex ligand migration patterns, consistent with the existence of discrete docking sites in which ligands can temporarily be stored before rebinding to the heme at different times. This finding may be of relevance to the physiological NO dioxygenase activity of this protein, which requires sequential binding of two substrates, NO and O2, to the heme.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica, Università degli Studi di Parma, NEST CNR-INFM, Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Samuni U, Roche CJ, Dantsker D, Friedman JM. Conformational dependence of hemoglobin reactivity under high viscosity conditions: the role of solvent slaved dynamics. J Am Chem Soc 2007; 129:12756-64. [PMID: 17910446 DOI: 10.1021/ja072342b] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The concept of protein dynamic states is introduced. This concept is based on (i) protein dynamics being organized hierarchically with respect to solvent slaving and (ii) which tier of dynamics is operative over the time window of a given measurement. The protein dynamic state concept is used to analyze the kinetic phases derived from the recombination of carbon monoxide to sol-gel-encapsulated human adult hemoglobin (HbA) and select recombinant mutants. The temperature-dependent measurements are made under very high viscosity conditions obtained by bathing the samples in an excess of glycerol. The results are consistent with a given tier of solvent slaved dynamics becoming operative at a time delay (with respect to the onset of the measurement) that is primarily solvent- and temperature-dependent. However, the functional consequences of the dynamics are protein- and conformation-specific. The kinetic traces from both equilibrium populations and trapped allosteric intermediates show a consistent progression that exposes the role of both conformation and hydration in the control of reactivity. Iron-zinc symmetric hybrid forms of HbA are used to show the dramatic difference between the kinetic patterns for T state alpha and beta subunits. The overall results support a model for allostery in HbA in which the ligand-binding-induced transition from the deoxy T state to the high -affinity R state proceeds through a progression of T state intermediates.
Collapse
Affiliation(s)
- Uri Samuni
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
13
|
Samuni U, Dantsker D, Roche C, Friedman JM. Ligand recombination and a hierarchy of solvent slaved dynamics: the origin of kinetic phases in hemeproteins. Gene 2007; 398:234-48. [PMID: 17570619 PMCID: PMC1975397 DOI: 10.1016/j.gene.2007.04.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ligand recombination studies play a central role both for characterizing different hemeproteins and their conformational states but also for probing fundamental biophysical processes. Consequently, there is great importance to providing a foundation from which one can understand the physical processes that give rise to and modulate the large range of kinetic patterns associated with ligand recombination in myoglobins and hemoglobins. In this work, an overview of cryogenic and solution phase recombination phenomena for COMb is first reviewed and then a new paradigm is presented for analyzing the temperature and viscosity dependent features of kinetic traces in terms of multiple phases that reflect which tier(s) of solvent slaved protein dynamics is (are) operative on the photoproduct population during the time course of the measurement. This approach allows for facile inclusion of both ligand diffusion among accessible cavities and conformational relaxation effects. The concepts are illustrated using kinetic traces and MEM populations derived from the CO recombination process for wild type and mutant myoglobins either in sol-gel matrices bathed in glycerol or in trehalose-derived glassy matrices.
Collapse
Affiliation(s)
- Uri Samuni
- Albert Einstein College of Medicine, Department of Physiology and Biophysics, Bronx, New York 10461, USA
| | - David Dantsker
- Albert Einstein College of Medicine, Department of Physiology and Biophysics, Bronx, New York 10461, USA
| | - Camille Roche
- Albert Einstein College of Medicine, Department of Physiology and Biophysics, Bronx, New York 10461, USA
| | - Joel M. Friedman
- Albert Einstein College of Medicine, Department of Physiology and Biophysics, Bronx, New York 10461, USA
| |
Collapse
|
14
|
Sottini S, Abbruzzetti S, Viappiani C, Ronda L, Mozzarelli A. Determination of microscopic rate constants for CO binding and migration in myoglobin encapsulated in silica gels. J Phys Chem B 2007; 109:19523-8. [PMID: 16853522 DOI: 10.1021/jp054098l] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CO rebinding kinetics after nanosecond photolysis of myoglobin encapsulated in wet silica gels exhibits an enhanced geminate phase that allows the determination of the microscopic rate constants and the activation barriers for distinct ligand docking sites inside the protein matrix. Using a maximum entropy method, we demonstrate that the geminate phase can be well-described by a biphasic lifetime distribution, reflecting rebinding from the distal and proximal sites. Microscopic rates and activation barriers were estimated using a four-state model.
Collapse
Affiliation(s)
- Silvia Sottini
- Dipartimento di Fisica, Università degli Studi di Parma, Parco Area delle Scienze 7/A, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
15
|
Bruno S, Faggiano S, Spyrakis F, Mozzarelli A, Cacciatori E, Dominici P, Grandi E, Abbruzzetti S, Viappiani C. Different roles of protein dynamics and ligand migration in non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. Gene 2007; 398:224-33. [PMID: 17555890 DOI: 10.1016/j.gene.2007.02.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 02/20/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
The ligand rebinding kinetics after photolysis of the CO complexes of Arabidopsis thaliana hemoglobins AHb1 and AHb2 in solution show very different amplitudes in the geminate phase, reflecting different migration pathways of the photodissociated ligand in the system of internal cavities accessible from the heme. The dependence of the geminate phase on CO concentration, temperature, encapsulation in silica gels and presence of glycerol confirms a remarkable difference in the internal structure of the two proteins and a dramatically different role of protein dynamics in regulating the reactivity with CO. This finding strongly supports the idea that they have distinct physiological functions.
Collapse
Affiliation(s)
- Stefano Bruno
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wheeler KE, Nocek JM, Hoffman BM. NMR Spectroscopy Can Characterize Proteins Encapsulated in a Sol-Gel Matrix. J Am Chem Soc 2006; 128:14782-3. [PMID: 17105269 DOI: 10.1021/ja066244m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins encapsulated within sol-gel matrices (SG) have the potential to fill many scientific and technological roles, but these applications are hindered by the limited means of probing possible structural consequences of encapsulation. We here present the first demonstration that it is possible to obtain high-resolution, solution NMR measurements of proteins encapsulated within a SG matrix. With the aim of determining the breadth of this approach, we have encapsulated three paramagnetic proteins with different overall charges: the highly acidic human Fe3+ cytochrome b5 (cyt b5); the highly basic horse heart cytochrome c (cyt c); and the nearly neutral, sperm whale cyanomet-myoglobin. The encapsulated anionic and neutral proteins (cyt b5; myoglobin) undergo essentially free rotation, but show minor conformational perturbations as revealed by shifts of contact-shifted peaks associated with the heme and nearby amino acids.
Collapse
Affiliation(s)
- Korin E Wheeler
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | | | | |
Collapse
|
17
|
Abbruzzetti S, Bruno S, Faggiano S, Grandi E, Mozzarelli A, Viappiani C. Time-resolved methods in Biophysics. 2. Monitoring haem proteins at work with nanosecond laser flash photolysis. Photochem Photobiol Sci 2006; 5:1109-20. [PMID: 17136275 DOI: 10.1039/b610236k] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Haem proteins have long been the most studied proteins in biophysics, and have become paradigms for the characterization of fundamental biomolecular processes as ligand binding and regulatory conformational transitions. The presence of the haem prosthetic group, the absorbance spectrum of which has a ligation sensitive region conveniently located in the UV-visible range, has offered a powerful and sensitive tool for the investigation of molecular functions. The central Fe atom is capable of reversibly binding diatomic ligands, including O(2), CO, and NO. The Fe-ligand bond is photolabile, and a reactive unligated state can be transiently generated with a pulsed laser. The photodissociated ligands quickly rebind to the haem and the process can be monitored by transient absorbance methods. The ligand rebinding kinetics reflects protein dynamics and ligand migration within the protein inner cavities. The characterization of these processes was done in the past mainly by low temperature experiments. The use of silica gels to trap proteins allows the characterization of internal ligand dynamics at room temperature. In order to show the potential of the laser flash photolysis techniques, combined with modern numerical analysis methods, we report experiments conducted on two non-symbiotic haemoglobins from Arabidopsis thaliana. The comparison between time courses recorded on haemoglobins in solution and encapsulated in silica gels allows for the highlighting of different interplays between protein dynamics and ligand migration.
Collapse
|
18
|
Giuffrida S, Cottone G, Cordone L. Role of solvent on protein-matrix coupling in MbCO embedded in water-saccharide systems: a Fourier transform infrared spectroscopy study. Biophys J 2006; 91:968-80. [PMID: 16714349 PMCID: PMC1563748 DOI: 10.1529/biophysj.106.081927] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embedding protein in sugar systems of low water content enables one to investigate the protein dynamic-structure function in matrixes whose rigidity is modulated by varying the content of residual water. Accordingly, studying the dynamics and structure thermal evolution of a protein in sugar systems of different hydration constitutes a tool for disentangling solvent rigidity from temperature effects. Furthermore, studies performed using different sugars may give information on how the detailed composition of the surrounding solvent affects the internal protein dynamics and structural evolution. In this work, we compare Fourier transform infrared spectroscopy measurements (300-20 K) on MbCO embedded in trehalose, sucrose, maltose, raffinose, and glucose matrixes of different water content. At all the water contents investigated, the protein-solvent coupling was tighter in trehalose than in the other sugars, thus suggesting a molecular basis for the trehalose peculiarity. These results are in line with the observation that protein-matrix phase separation takes place in lysozyme-lactose, whereas it is absent in lysozyme-trehalose systems; indeed, these behaviors may respectively be due to the lack or presence of suitable water-mediated hydrogen-bond networks, which match the protein surface to the surroundings. The above processes might be at the basis of pattern recognition in crowded living systems; indeed, hydration shells structural and dynamic matching is first needed for successful come together of interacting biomolecules.
Collapse
Affiliation(s)
- Sergio Giuffrida
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo and CNISM, I-90123 Palermo, Italy
| | | | | |
Collapse
|
19
|
Samuni U, Roche CJ, Dantsker D, Juszczak LJ, Friedman JM. Modulation of reactivity and conformation within the T-quaternary state of human hemoglobin: the combined use of mutagenesis and sol-gel encapsulation. Biochemistry 2006; 45:2820-35. [PMID: 16503637 PMCID: PMC3558951 DOI: 10.1021/bi050010i] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A range of conformationally distinct functional states within the T quaternary state of hemoglobin are accessed and probed using a combination of mutagenesis and sol-gel encapsulation that greatly slow or eliminate the T --> R transition. Visible and UV resonance Raman spectroscopy are used to probe the proximal strain at the heme and the status of the alpha(1)beta(2) interface, respectively, whereas CO geminate and bimolecular recombination traces in conjunction with MEM (maximum entropy method) analysis of kinetic populations are used to identify functionally distinct T-state populations. The mutants used in this study are Hb(Nbeta102A) and the alpha99-alpha99 cross-linked derivative of Hb(Wbeta37E). The former mutant, which binds oxygen noncooperatively with very low affinity, is used to access low-affinity ligated T-state conformations, whereas the latter mutant is used to access the high-affinity end of the distribution of T-state conformations. A pattern emerges within the T state in which ligand reactivity increases as both the proximal strain and the alpha(1)beta(2) interface interactions are progressively lessened after ligand binding to the deoxy T-state species. The ligation and effector-dependent interplay between the heme environment and the stability of the Trp beta37 cluster in the hinge region of the alpha(1)beta(2) interface appears to determine the distribution of the ligated T-state species generated upon ligand binding. A qualitative model is presented, suggesting that different T quaternary structures modulate the stability of different alphabeta dimer conformations within the tetramer.
Collapse
|
20
|
Ionascu D, Gruia F, Ye X, Yu A, Rosca F, Beck C, Demidov A, Olson JS, Champion PM. Temperature-dependent studies of NO recombination to heme and heme proteins. J Am Chem Soc 2005; 127:16921-34. [PMID: 16316238 PMCID: PMC2553725 DOI: 10.1021/ja054249y] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rebinding kinetics of NO to the heme iron of myoglobin (Mb) is investigated as a function of temperature. Below 200 K, the transition-state enthalpy barrier associated with the fastest (approximately 10 ps) recombination phase is found to be zero and a slower geminate phase (approximately 200 ps) reveals a small enthalpic barrier (approximately 3 +/- 1 kJ/mol). Both of the kinetic rates slow slightly in the myoglobin (Mb) samples above 200 K, suggesting that a small amount of protein relaxation takes place above the solvent glass transition. When the temperature dependence of the NO recombination in Mb is studied under conditions where the distal pocket is mutated (e.g., V68W), the rebinding kinetics lack the slow phase. This is consistent with a mechanism where the slower (approximately 200 ps) kinetic phase involves transitions of the NO ligand into the distal heme pocket from a more distant site (e.g., in or near the Xe4 cavity). Comparison of the temperature-dependent NO rebinding kinetics of native Mb with that of the bare heme (PPIX) in glycerol reveals that the fast (enthalpically barrierless) NO rebinding process observed below 200 K is independent of the presence or absence of the proximal histidine ligand. In contrast, the slowing of the kinetic rates above 200 K in MbNO disappears in the absence of the protein. Generally, the data indicate that, in contrast to CO, the NO ligand binds to the heme iron through a "harpoon" mechanism where the heme iron out-of-plane conformation presents a negligible enthalpic barrier to NO rebinding. These observations strongly support a previous analysis (Srajer et al. J. Am. Chem. Soc. 1988, 110, 6656-6670) that primarily attributes the low-temperature stretched exponential rebinding of MbCO to a quenched distribution of heme geometries. A simple model, consistent with this prior analysis, is presented that explains a variety of MbNO rebinding experiments, including the dependence of the kinetic amplitudes on the pump photon energy.
Collapse
Affiliation(s)
- Dan Ionascu
- Dept. of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston 02115
| | - Flaviu Gruia
- Dept. of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston 02115
| | - Xiong Ye
- Dept. of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston 02115
| | - Anchi Yu
- Dept. of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston 02115
| | - Florin Rosca
- Dept. of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston 02115
| | - Chris Beck
- Dept. of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston 02115
| | - Andrey Demidov
- Dept. of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston 02115
| | | | - Paul M. Champion
- Dept. of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston 02115
| |
Collapse
|
21
|
Dantsker D, Roche C, Samuni U, Blouin G, Olson JS, Friedman JM. The Position 68(E11) Side Chain in Myoglobin Regulates Ligand Capture, Bond Formation with Heme Iron, and Internal Movement into the Xenon Cavities. J Biol Chem 2005; 280:38740-55. [PMID: 16155005 DOI: 10.1074/jbc.m506333200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After photodissociation, ligand rebinding to myoglobin exhibits complex kinetic patterns associated with multiple first-order geminate recombination processes occurring within the protein and a simpler bimolecular phase representing second-order ligand rebinding from the solvent. A smooth transition from cryogenic-like to solution phase properties can be obtained by using a combination of sol-gel encapsulation, addition of glycerol as a bathing medium, and temperature tuning (-15 --> 65 degrees C). This approach was applied to a series of double mutants, myoglobin CO (H64L/V68X, where X = Ala, Val, Leu, Asn, and Phe), which were designed to examine the contributions of the position 68(E11) side chain to the appearance and disappearance of internal rebinding phases in the absence of steric and polar interactions with the distal histidine. Based on the effects of viscosity, temperature, and the stereochemistry of the E11 side chain, the three major phases, B --> A, C --> A, and D --> A, can be assigned, respectively, to ligand rebinding from the following: (i) the distal heme pocket, (ii) the xenon cavities prior to large amplitude side chain conformational relaxation, and (iii) the xenon cavities after significant conformational relaxation of the position 68(E11) side chain. The relative amplitudes of the B --> A and C --> A phases depend markedly on the size and shape of the E11 side chain, which regulates sterically both ligand return to the heme iron atom and ligand migration to the xenon cavities. The internal xenon cavities provide a transient docking site that allows side chain relaxations and the entry of water into the vacated distal pocket, which in turn slows ligand recombination markedly.
Collapse
Affiliation(s)
- David Dantsker
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hill JJ, Shalaev EY, Zografi G. Thermodynamic and dynamic factors involved in the stability of native protein structure in amorphous solids in relation to levels of hydration. J Pharm Sci 2005; 94:1636-67. [PMID: 15965985 DOI: 10.1002/jps.20333] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The internal, dynamical fluctuations of protein molecules exhibit many of the features typical of polymeric and bulk small molecule glass forming systems. The response of a protein's internal molecular mobility to temperature changes is similar to that of other amorphous systems, in that different types of motions freeze out at different temperatures, suggesting they exhibit the alpha-beta-modes of motion typical of polymeric glass formers. These modes of motion are attributed to the dynamic regimes that afford proteins the flexibility for function but that also develop into the large-scale collective motions that lead to unfolding. The protein dynamical transition, T(d), which has the same meaning as the T(g) value of other amorphous systems, is attributed to the temperature where protein activity is lost and the unfolding process is inhibited. This review describes how modulation of T(d) by hydration and lyoprotectants can determine the stability of protein molecules that have been processed as bulk, amorphous materials. It also examines the thermodynamic, dynamic, and molecular factors involved in stabilizing folded proteins, and the effects typical pharmaceutical processes can have on native protein structure in going from the solution state to the solid state.
Collapse
Affiliation(s)
- John J Hill
- ICOS Corporation, 22021 20th Avenue SE, Bothell, WA 98021, USA.
| | | | | |
Collapse
|
23
|
Cordone L, Cottone G, Giuffrida S, Palazzo G, Venturoli G, Viappiani C. Internal dynamics and protein–matrix coupling in trehalose-coated proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:252-81. [PMID: 15886079 DOI: 10.1016/j.bbapap.2005.03.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 11/23/2022]
Abstract
We review recent studies on the role played by non-liquid, water-containing matrices on the dynamics and structure of embedded proteins. Two proteins were studied, in water-trehalose matrices: a water-soluble protein (carboxy derivative of horse heart myoglobin) and a membrane protein (reaction centre from Rhodobacter sphaeroides). Several experimental techniques were used: Mossbauer spectroscopy, elastic neutron scattering, FTIR spectroscopy, CO recombination after flash photolysis in carboxy-myoglobin, kinetic optical absorption spectroscopy following pulsed and continuous photoexcitation in Q(B) containing or Q(B) deprived reaction centre from R. sphaeroides. Experimental results, together with the outcome of molecular dynamics simulations, concurred to give a picture of how water-containing matrices control the internal dynamics of the embedded proteins. This occurs, in particular, via the formation of hydrogen bond networks that anchor the protein surface to the surrounding matrix, whose stiffness increases by lowering the sample water content. In the conclusion section, we also briefly speculate on how the protein-matrix interactions observed in our samples may shed light on the protein-solvent coupling also in liquid aqueous solutions.
Collapse
Affiliation(s)
- Lorenzo Cordone
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Dantsker D, Samuni U, Friedman JM, Agmon N. A hierarchy of functionally important relaxations within myoglobin based on solvent effects, mutations and kinetic model. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:234-51. [PMID: 15914102 DOI: 10.1016/j.bbapap.2005.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Revised: 03/30/2005] [Accepted: 04/06/2005] [Indexed: 10/25/2022]
Abstract
Geminate CO rebinding in myoglobin is studied for two viscous solvents, trehalose and sol-gel (bathed in 100% glycerol) at several temperatures. Mutations in key distal hemepocket residues are used to eliminate or enhance specific relaxation modes. The time-resolved data are analyzed with a modified Agmon-Hopfield model which is capable of providing excellent fits in cases where a single relaxation mode is dominant. Using this approach, we determine the relaxation rate constants of specific functionally important modes, obtaining also their Arrhenius activation energies. We find a hierarchy of distal pocket modes controlling the rebinding kinetics. The "heme access mode" (HAM) is responsible for the major slow-down in rebinding. It is a solvent-coupled cooperative mode which restricts ligand return from the xenon cavities. Bulky side-chains, like those His64 and Trp29 (in the L29W mutant), operate like overdamped pendulums which move over and block the binding site. They may be either unslaved (His64) or moderately slaved (Trp29) to the solvent. Small side-chain relaxations, most notably of leucines, are revealed in some mutants (V68L, V68A). They are conjectured to facilitate inter-cavity ligand motion. When all relaxations are arrested (H64L in trehalose), we observe pure inhomogeneous kinetics with no temperature dependence, suggesting that proximal relaxation is not a factor on the investigated timescale.
Collapse
Affiliation(s)
- David Dantsker
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
25
|
Tetreau C, Mouawad L, Murail S, Duchambon P, Blouquit Y, Lavalette D. Disentangling ligand migration and heme pocket relaxation in cytochrome P450cam. Biophys J 2004; 88:1250-63. [PMID: 15489303 PMCID: PMC1305127 DOI: 10.1529/biophysj.104.050104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work we show that ligand migration and active site conformational relaxation can occur independently of each other in hemoproteins. The complicated kinetics of carbon monoxide rebinding with cytochrome P450cam display up to five distinct processes between 77 K and 300 K. They were disentangled by using a combination of three approaches: 1), the competition of the ligand with xenon for the occupation of internal protein cavities; 2), the modulation of the amount of distal steric hindrance within the heme pocket by varying the nature of the substrate; and 3), molecular mechanics calculations to support the proposed heme-substrate relaxation mechanism and to seek internal cavities. In cytochrome P450cam, active site conformational relaxation results from the displacement of the substrate toward the heme center upon photodissociation of the ligand. It is responsible for the long, puzzling bimodal nature of the rebinding kinetics observed down to 77 K. The relaxation rate is strongly substrate-dependent. Ligand migration is slower and is observed only above 135 K. Migration and return rates are independent of the substrate.
Collapse
Affiliation(s)
- Catherine Tetreau
- Biophysique Moléculaire, Institut Curie, Centre Universitaire, Orsay, France
| | | | | | | | | | | |
Collapse
|
26
|
Fenimore PW, Frauenfelder H, McMahon BH, Young RD. Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci U S A 2004; 101:14408-13. [PMID: 15448207 PMCID: PMC521939 DOI: 10.1073/pnas.0405573101] [Citation(s) in RCA: 415] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The concept that proteins exist in numerous different conformations or conformational substates, described by an energy landscape, is now accepted, but the dynamics is incompletely explored. We have previously shown that large-scale protein motions, such as the exit of a ligand from the protein interior, follow the dielectric fluctuations in the bulk solvent. Here, we demonstrate, by using mean-square displacements (msd) from Mossbauer and neutron-scattering experiments, that fluctuations in the hydration shell control fast fluctuations in the protein. We call the first type solvent-slaved or alpha-fluctuations and the second type hydration-shell-coupled or beta-fluctuations. Solvent-slaved motions are similar to the alpha-fluctuations in glasses. Their temperature dependence can be approximated by a Vogel-Tammann-Fulcher relation and they are absent in a solid environment. Hydration-shell-coupled fluctuations are similar to the beta-relaxation in glasses. They can be approximated by a Ferry or an Arrhenius relation, are much reduced or absent in dehydrated proteins, and occur in hydrated proteins even if embedded in a solid. They can be responsible for internal processes such as the migration of ligands within myoglobin. The existence of two functionally important fluctuations in proteins, one slaved to bulk motions and the other coupled to hydration-shell fluctuations, implies that the environment can control protein functions through different avenues and that no real protein transition occurs at approximately 200 K. The large number of conformational substates is essential; proteins cannot function without this reservoir of entropy, which resides mainly in the hydration shell.
Collapse
Affiliation(s)
- P W Fenimore
- Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
27
|
Tsuneshige A, Kanaori K, Samuni U, Danstker D, Friedman JM, Neya S, Giangiacomo L, Yonetani T. Semihemoglobins, high oxygen affinity dimeric forms of human hemoglobin respond efficiently to allosteric effectors without forming tetramers. J Biol Chem 2004; 279:48959-67. [PMID: 15361521 DOI: 10.1074/jbc.m405909200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Significant reduction in oxygen affinity resulting from interactions between heterotropic allosteric effectors and hemoglobin in not only the unligated derivative but also the fully ligated form has been reported (Tsuneshige, A., Park, S. I., and Yonetani, T. (2002) Biophys. Chem. 98, 49-63; Yonetani, T., Park, S. I., Tsuneshige, A., Imai, K., and Kanaori, K. (2002) J. Biol. Chem. 277, 34508-34520). To further investigate this effect in more detail, alpha- and beta-semihemoglobins, namely, alpha(heme)beta(apo) and alpha(apo)beta(heme), respectively, were prepared and characterized with respect to the impact of allosteric effectors on both conformation and ligand binding properties. Semihemoglobins are dimers characterized by a high affinity for oxygen and lack of cooperativity. We found that, compared with stripped conditions, semihemoglobins responded to effectors (inositol hexaphosphate and L35) by decreasing the affinity for oxygen by 60- and 130-fold for alpha- and beta-semihemoglobins, respectively. 1H NMR and sedimentation velocity experiments carried out with their ligated and unligated forms in the absence and presence of effectors revealed that semihemoglobins always remain as single-heme-carrying dimers. Recombination kinetics of their photolyzed CO derivatives showed that effectors did indeed interact with their ligated forms. Measurements of the Fe-His stretching mode show that the semihemoglobins undergo a large ligand binding-induced conformational shift and that both ligand-free and ligand derivatives respond to the presence of effectors. Contradictions to the Monod-Wyman-Changeaux/Perutz allosteric model arise since 1) the modulation of ligand affinity is not achieved in semihemoglobins by the formation of a low affinity T conformation (quaternary effect) but by direct interaction with effectors, 2) effectors do interact significantly with ligated forms of high affinity semihemoglobins, and 3) modulation of the ligand affinity and the cooperativity are not necessarily linked but instead can be separated into two distinct phenomena that can be isolated.
Collapse
Affiliation(s)
- Antonio Tsuneshige
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine and the Johnson Research Foundation, Philadelphia, Pennsylvania 19104-6059, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dantsker D, Samuni U, Ouellet Y, Wittenberg BA, Wittenberg JB, Milani M, Bolognesi M, Guertin M, Friedman JM. Viscosity-dependent Relaxation Significantly Modulates the Kinetics of CO Recombination in the Truncated Hemoglobin TrHbN from Mycobacterium tuberculosis. J Biol Chem 2004; 279:38844-53. [PMID: 15234986 DOI: 10.1074/jbc.m401513200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetic traces were generated for the nanosecond and slower rebinding of photodissociated CO to trHbN in solution and in porous sol-gel matrices as a function of viscosity, conformation, and mutation. TrHbN is one of the two truncated hemoglobins from Mycobacterium tuberculosis. The kinetic traces were analyzed in terms of three distinct phases. These three phases are ascribed to rebinding: (i) from the distal heme pocket, (ii) from the adjacent apolar tunnel prior to conformational relaxation, and (iii) from the apolar tunnel subsequent to conformational relaxation. The fractional content of each of these phases was shown to be a function of the viscosity and, in the case of the sol-gel-encapsulated samples, sample preparation history. The observed kinetic patterns support a model consisting of the following elements: (i) the viscosity and conformation-sensitive dynamics of the Tyr(B10) side chain facilitate diffusion of the dissociated ligand from the distal heme pocket into the adjacent tunnel; (ii) the distal heme pocket architecture determines ligand access from the tunnel back to the heme iron; (iii) the distal heme pocket architecture is governed by a ligand-dependent hydrogen bonding network that limits the range of accessible side chain positions; and (iv) the apolar tunnel linking the heme site to the solvent biases the competition between water and ligand for occupancy of the vacated polar distal heme pocket greatly toward the nonpolar ligand. Implications of these finding with respect to biological function are discussed.
Collapse
Affiliation(s)
- David Dantsker
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Giuffrida S, Cottone G, Cordone L. Structure−Dynamics Coupling between Protein and External Matrix in Sucrose-Coated and in Trehalose-Coated MbCO: An FTIR Study. J Phys Chem B 2004. [DOI: 10.1021/jp047894k] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergio Giuffrida
- Istituto Nazionale di Fisica della Materia, Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Via Archirafi 36 I-90123 Palermo, Italy
| | - Grazia Cottone
- Istituto Nazionale di Fisica della Materia, Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Via Archirafi 36 I-90123 Palermo, Italy
| | - Lorenzo Cordone
- Istituto Nazionale di Fisica della Materia, Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Via Archirafi 36 I-90123 Palermo, Italy
| |
Collapse
|
30
|
Navati MS, Ray A, Shamir J, Friedman JM. Probing Solvation-Shell Hydrogen Binding in Glassy and Sol−Gel Matrixes through Vibronic Sideband Luminescence Spectroscopy. J Phys Chem B 2003. [DOI: 10.1021/jp0366466] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahantesh S. Navati
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, and Department of Chemistry, Hebrew University, Jerusalem, Israel
| | - Anandhi Ray
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, and Department of Chemistry, Hebrew University, Jerusalem, Israel
| | - Jacob Shamir
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, and Department of Chemistry, Hebrew University, Jerusalem, Israel
| | - Joel M. Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, and Department of Chemistry, Hebrew University, Jerusalem, Israel
| |
Collapse
|
31
|
Giuffrida S, Cottone G, Librizzi F, Cordone L. Coupling between the Thermal Evolution of the Heme Pocket and the External Matrix Structure inTrehalose CoatedCarboxymyoglobin. J Phys Chem B 2003. [DOI: 10.1021/jp036194x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Nienhaus K, Deng P, Olson JS, Warren JJ, Nienhaus GU. Structural dynamics of myoglobin: ligand migration and binding in valine 68 mutants. J Biol Chem 2003; 278:42532-44. [PMID: 12907676 DOI: 10.1074/jbc.m306888200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have combined Fourier transform infrared/temperature derivative (FTIR-TDS) spectroscopy at cryogenic temperatures and flash photolysis at ambient temperature to examine the effects of polar and bulky amino acid replacements of the highly conserved distal valine 68 in sperm whale myoglobin. In FTIR-TDS experiments, the CO ligand can serve as an internal voltmeter that monitors the local electrostatic field not only at the active site but also at intermediate ligand docking sites. Mutations of residue 68 alter size, shape, and electric field of the distal pocket, especially in the vicinity of the primary docking site (state B). As a consequence, the infrared bands associated with the ligand at site B are shifted. The effect is most pronounced in mutants with large aromatic side chains. Polar side chains (threonine or serine) have only little effect on the peak frequencies. Ligands that migrate toward more remote sites C and D give rise to IR bands with altered frequencies. TDS experiments separate the photoproducts according to their recombination temperatures. The rates and extent of ligand migration among internal cavities at cryogenic temperatures can be used to interpret geminate and bimolecular O2 and CO recombination at room temperature. The kinetics of geminate recombination can be explained by steric arguments alone, whereas both the polarity and size of the position 68 side chain play major roles in regulating bimolecular ligand binding from the solvent.
Collapse
Affiliation(s)
- Karin Nienhaus
- Department of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
33
|
Ouellet H, Juszczak L, Dantsker D, Samuni U, Ouellet YH, Savard PY, Wittenberg JB, Wittenberg BA, Friedman JM, Guertin M. Reactions of Mycobacterium tuberculosis truncated hemoglobin O with ligands reveal a novel ligand-inclusive hydrogen bond network. Biochemistry 2003; 42:5764-74. [PMID: 12741834 DOI: 10.1021/bi0270337] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Truncated hemoglobin O (trHbO) is one of two trHbs in Mycobacterium tuberculosis. Remarkably, trHbO possesses two novel distal residues, in addition to the B10 tyrosine, that may be important in ligand binding. These are the CD1 tyrosine and G8 tryptophan. Here we investigate the reactions of trHbO and mutants using stopped-flow spectrometry, flash photolysis, and UV-enhanced resonance Raman spectroscopy. A biphasic kinetic behavior is observed for combination and dissociation of O(2) and CO that is controlled by the B10 and CD1 residues. The rate constants for combination (<1.0 microM(-1) s(-1)) and dissociation (<0.006 s(-1)) of O(2) are among the slowest known, precluding transport or diffusion of O(2) as a major function. Mutation of CD1 tyrosine to phenylalanine shows that this group controls ligand binding, as evidenced by 25- and 77-fold increases in the combination rate constants for O(2) and CO, respectively. In support of a functional role for G8 tryptophan, UV resonance Raman indicates that the chi((2,1)) dihedral angle for the indole ring increases progressively from approximately 93 degrees to at least 100 degrees in going sequentially from the deoxy to CO to O(2) derivative, demonstrating a significant conformational change in the G8 tryptophan with ligation. Remarkably, protein modeling predicts a network of hydrogen bonds between B10 tyrosine, CD1 tyrosine, and G8 tryptophan, with the latter residues being within hydrogen bonding distance of the heme-bound ligand. Such a rigid hydrogen bonding network may thus represent a considerable barrier to ligand entrance and escape. In accord with this model, we found that changing CD1 or B10 tyrosine for phenylalanine causes only small changes in the rate of O(2) dissociation, suggesting that more than one hydrogen bond must be broken at a time to promote ligand escape. Furthermore, trHbO-CO cannot be photodissociated under conditions where the CO derivative of myoglobin is extensively photodissociated, indicating that CO is constrained near the heme by the hydrogen bonding network.
Collapse
Affiliation(s)
- Hugues Ouellet
- Department of Biochemistry and Microbiology, Faculty of Sciences and Engineering, Laval University, Quebec, Quebec G1K 7P4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nocek JM, Hatch SL, Seifert JL, Hunter GW, Thomas DD, Hoffman BM. Interprotein electron transfer in a confined space: uncoupling protein dynamics from electron transfer by sol-gel encapsulation. J Am Chem Soc 2002; 124:9404-11. [PMID: 12167035 DOI: 10.1021/ja0258430] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper, we describe the first observations of photoinitiated interprotein electron transfer (ET) within sol-gels. We have encapsulated three protein-protein complexes, specifically selected because they represent a full range of affinities, are sensitive to different types of dynamic processes, and thus are expected to respond differently to sol-gel encapsulation. The three systems are (i) the [Zn, Fe(3+)L] mixed-metal hemoglobin hybrids, where the alpha(1)-Zn and beta(2)-Fe subunits correspond to a "predocked" protein-protein complex with a crystallographically defined interface (Natan, M. J.; Baxter, W. W.; Kuila, D.; Gingrich, D. J.; Martin, G. S.; Hoffman, B. M. Adv. Chem. Ser. 1991, 228 (Electron-Transfer Inorg., Org., Biol. Syst.), 201-213), (ii) the Zn-cytochrome c peroxidase complex with cytochrome c, [ZnCcP, Fe(3+)Cc], having an intermediate affinity between its partners (Nocek, J. M.; Zhou, J. S.; De Forest, S.; Priyadarshy, S.; Beratan, D. N.; Onuchic, J. N.; Hoffman, B. M. Chem. Rev. 1996, 96, 2459-2489), and (iii) the [Zn-deuteromyoglobin, ferricytochrome b(5)] complex, [ZnDMb, Fe(3+)b(5)], which is loosely bound and highly dynamic (Liang, Z.-X.; Nocek, J.; Huang, K.; Hayes, R. T.; Kurnikov, I. V.; Beratan, D. N.; Hoffman, B. M. J. Am. Chem. Soc. 2002, 124, 6849-6859. Intersubunit ET within the hybrid does not involve second-order processes or subunit rearrangements, and thus is influenced only by perturbations of high-frequency motions coupled to ET. For the latter two complexes, sol-gel encapsulation eliminates second-order processes: protein partners encapsulated as a complex must stay together throughout a photoinitiated ET cycle, while proteins encapsulated alone cannot acquire a partner. It further modulates intracomplex motions of the two partners.
Collapse
Affiliation(s)
- Judith M Nocek
- Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|