1
|
Kuttner YY, Engel S. Complementarity of stability patches at the interfaces of protein complexes: Implication for the structural organization of energetic hot spots. Proteins 2017; 86:229-236. [DOI: 10.1002/prot.25430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Yosef Y. Kuttner
- Department of Clinical Biochemistry and Pharmacology; Faculty of Health Sciences, Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology; Faculty of Health Sciences, Ben-Gurion University of the Negev; Beer-Sheva Israel
| |
Collapse
|
2
|
Osman R, Mezei M, Engel S. The role of protein “Stability patches” in molecular recognition: A case study of the human growth hormone-receptor complex. J Comput Chem 2015; 37:913-9. [DOI: 10.1002/jcc.24276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Roman Osman
- Department of Structural and Chemical Biology; Icahn School of Medicine at Mount Sinai; New York
| | - Mihaly Mezei
- Department of Structural and Chemical Biology; Icahn School of Medicine at Mount Sinai; New York
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev; Beer-Sheva Israel
| |
Collapse
|
3
|
Chung WJ, Huang CL, Gong HY, Ou TY, Hsu JL, Hu SY. Recombinant production of biologically active giant grouper (Epinephelus lanceolatus) growth hormone from inclusion bodies of Escherichia coli by fed-batch culture. Protein Expr Purif 2015; 110:79-88. [PMID: 25703054 DOI: 10.1016/j.pep.2015.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) performs important roles in regulating somatic growth, reproduction, osmoregulation, metabolism and immunity in teleosts, and thus, it has attracted substantial attention in the field of aquaculture application. Herein, giant grouper GH (ggGH) cDNA was cloned into the pET28a vector and expressed in Shuffle® T7 Competent Escherichia coli. Recombinant N-terminal 6× His-tagged ggGH was produced mainly in insoluble inclusion bodies; the recombinant ggGH content reached 20% of total protein. For large-scale ggGH production, high-cell density E. coli culture was achieved via fed-batch culture with pH-stat. After 30h of cultivation, a cell concentration of 41.1g/l dry cell weight with over 95% plasmid stability was reached. Maximal ggGH production (4.0g/l; 22% total protein) was achieved via mid-log phase induction. Various centrifugal forces, buffer pHs and urea concentrations were optimized for isolation and solubilization of ggGH from inclusion bodies. Hydrophobic interactions and ionic interactions were the major forces in ggGH inclusion body formation. Complete ggGH inclusion body solubilization was obtained in PBS buffer at pH 12 containing 3M urea. Through a simple purification process including Ni-NTA affinity chromatography and refolding, 5.7mg of ggGH was obtained from 10ml of fed-batch culture (45% recovery). The sequence and secondary structure of the purified ggGH were confirmed by LC-MS/MS mass spectrometry and circular dichroism analysis. The cell proliferation-promoting activity was confirmed in HepG2, ZFL and GF-1 cells with the WST-1 colorimetric bioassay.
Collapse
Affiliation(s)
- Wen-Jen Chung
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chi-Lung Huang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Tsung-Yin Ou
- Department of Industrial Engineering and Management, National Quemoy University, Kinmen, Taiwan
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
4
|
Poen S, Pornbanlualap S. Growth hormone from striped catfish (Pangasianodon hypophthalmus): genomic organization, recombinant expression and biological activity. Gene 2013; 518:316-24. [PMID: 23353774 DOI: 10.1016/j.gene.2013.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 12/19/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Growth hormone is an essential polypeptide required for normal growth and development of vertebrates. In this report, striped catfish (Pangasianodon hypophthalmus) growth hormone gene and cDNA were isolated by reverse transcriptase-polymerase chain reaction. The striped catfish growth hormone (scGH) encoding gene contains 5 exons and 4 introns. The cDNA sequence of the scGH gene contains a 603bp open reading frame and encodes for a 200-aa protein consisting of a putative 22-aa signal peptide and the mature 178-aa protein. The recombinant histidine-tagged scGH protein which expressed in Escherichia coli as inclusion bodies was unfolded, refolded and purified to near-homogeneity by Ni(2+)-NTA chromatography. Analysis of the secondary structure content by CD spectroscopy showed that the α-helical content of the refolded scGH is 55%. Elucidation of the folding pathway of scGH by fluorescence spectroscopy showed that denaturation transition of scGH is coincident and cooperative, consistent with the two-state denaturation mechanism. The purified scGH was biologically active and exhibited growth-promoting activity in striped catfish, but not tilapia.
Collapse
Affiliation(s)
- Sinothai Poen
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | | |
Collapse
|
5
|
Liu T, Pantazatos D, Li S, Hamuro Y, Hilser VJ, Woods VL. Quantitative assessment of protein structural models by comparison of H/D exchange MS data with exchange behavior accurately predicted by DXCOREX. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:43-56. [PMID: 22012689 PMCID: PMC3889642 DOI: 10.1007/s13361-011-0267-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 05/12/2023]
Abstract
Peptide amide hydrogen/deuterium exchange mass spectrometry (DXMS) data are often used to qualitatively support models for protein structure. We have developed and validated a method (DXCOREX) by which exchange data can be used to quantitatively assess the accuracy of three-dimensional (3-D) models of protein structure. The method utilizes the COREX algorithm to predict a protein's amide hydrogen exchange rates by reference to a hypothesized structure, and these values are used to generate a virtual data set (deuteron incorporation per peptide) that can be quantitatively compared with the deuteration level of the peptide probes measured by hydrogen exchange experimentation. The accuracy of DXCOREX was established in studies performed with 13 proteins for which both high-resolution structures and experimental data were available. The DXCOREX-calculated and experimental data for each protein was highly correlated. We then employed correlation analysis of DXCOREX-calculated versus DXMS experimental data to assess the accuracy of a recently proposed structural model for the catalytic domain of a Ca(2+)-independent phospholipase A(2). The model's calculated exchange behavior was highly correlated with the experimental exchange results available for the protein, supporting the accuracy of the proposed model. This method of analysis will substantially increase the precision with which experimental hydrogen exchange data can help decipher challenging questions regarding protein structure and dynamics.
Collapse
Affiliation(s)
- Tong Liu
- Department of Medicine and Biomedical Sciences Graduate Program, University of California, 9500 Gilman Drive, mc 0656, La Jolla, San Diego, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
6
|
Voorhees JL, Brooks CL. Obligate ordered binding of human lactogenic cytokines. J Biol Chem 2010; 285:20022-30. [PMID: 20427283 DOI: 10.1074/jbc.m109.084988] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class 1 cytokines bind two receptors to create an active heterotrimeric complex. It has been argued that ligand binding to their receptors is an ordered process, but a structural mechanism describing this process has not been determined. We have previously described an obligate ordered binding mechanism for the human prolactin/prolactin receptor heterotrimeric complex. In this work we expand this conceptual understanding of ordered binding to include three human lactogenic hormones: prolactin, growth hormone, and placental lactogen. We independently blocked either of the two receptor binding sites of each hormone and used surface plasmon resonance to measure human prolactin receptor binding kinetics and stoichiometries to the remaining binding surface. When site 1 of any of the three hormones was blocked, site 2 could not bind the receptor. But blocking site 2 did not affect receptor binding at site 1, indicating a requirement for receptor binding to site 1 before site 2 binding. In addition we noted variable responses to the presence of zinc in hormone-receptor interaction. Finally, we performed Förster resonance energy transfer (FRET) analyses where receptor binding at subsaturating stoichiometries induced changes in FRET signaling, indicative of binding-induced changes in hormone conformation, whereas at receptor:hormone ratios in excess of 2:1 no additional changes in FRET signaling were observed. These results strongly support a conformationally mediated obligate-ordered receptor binding for each of the three lactogenic hormones.
Collapse
Affiliation(s)
- Jeffery L Voorhees
- The Ohio State Biochemistry Program, The Ohio State University, 1925 Coffey Rd., Columbus, OH 43210, USA
| | | |
Collapse
|
7
|
Prediction of protein-protein interface sequence diversity using flexible backbone computational protein design. Structure 2009; 16:1777-88. [PMID: 19081054 DOI: 10.1016/j.str.2008.09.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/26/2008] [Accepted: 09/30/2008] [Indexed: 11/21/2022]
Abstract
A major challenge in computational protein design is to identify functional sequences as top predictions. One reason for design failures is conformational plasticity, as proteins frequently change their conformation in response to mutations. To advance protein design, here we describe a method employing flexible backbone ensembles to predict sequences tolerated for a protein-protein interface. We show that the predictions are enriched in functional proteins when compared to a phage display screen quantitatively mapping the energy landscape for the interaction between human growth hormone and its receptor. Our model for structural plasticity is inspired by coupled side chain-backbone "backrub" motions observed in high-resolution protein crystal structures. Although the modeled structural changes are subtle, our results on predicting sequence plasticity suggest that backrub sampling may capture a sizable fraction of localized conformational changes that occur in proteins. The described method has implications for predicting sequence libraries to enable challenging protein engineering problems.
Collapse
|
8
|
Kadaveru K, Vyas J, Schiller MR. Viral infection and human disease--insights from minimotifs. FRONT BIOSCI-LANDMRK 2008; 13:6455-71. [PMID: 18508672 DOI: 10.2741/3166] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Short functional peptide motifs cooperate in many molecular functions including protein interactions, protein trafficking, and posttranslational modifications. Viruses exploit these motifs as a principal mechanism for hijacking cells and many motifs are necessary for the viral life-cycle. A virus can accommodate many short motifs in its small genome size providing a plethora of ways for the virus to acquire host molecular machinery. Host enzymes that act on motifs such as kinases, proteases, and lipidation enzymes, as well as protein interaction domains, are commonly mutated in human disease, suggesting that the short peptide motif targets of these enzymes may also be mutated in disease; however, this is not observed. How can we explain why viruses have evolved to be so dependent on motifs, yet these motifs, in general do not seem to be as necessary for human viability? We propose that short motifs are used at the system level. This system architecture allows viruses to exploit a motif, whereas the viability of the host is not affected by mutation of a single motif.
Collapse
Affiliation(s)
- Krishna Kadaveru
- University of Connecticut Health Center, Department of Molecular, Microbial, and Structural Biology, Biological Systems Modeling Group, 263 Farmington Ave., Farmington, CT, 06030-3305, USA
| | | | | |
Collapse
|
9
|
Chowdry AB, Reynolds KA, Hanes MS, Voorhies M, Pokala N, Handel TM. An object-oriented library for computational protein design. J Comput Chem 2007; 28:2378-88. [PMID: 17471459 DOI: 10.1002/jcc.20727] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in computational protein design have established it as a viable technique for the rational generation of stable protein sequences, novel protein folds, and even enzymatic activity. We present a new and object-oriented library of code, written specifically for protein design applications in C(++), called EGAD Library. The modular fashion in which this library is written allows developers to tailor various energy functions and minimizers for a specific purpose. It also allows for the generation of novel protein design applications with a minimal amount of code investment. It is our hope that this will permit labs that have not considered protein design to apply it to their own systems, thereby increasing its potential as a tool in biology. We also present various uses of EGAD Library: in the development of Interaction Viewer, a PyMOL plug-in for viewing interactions between protein residues; in the repacking of protein cores; and in the prediction of protein-protein complex stabilities.
Collapse
Affiliation(s)
- Arnab B Chowdry
- Biophysics Graduate Group, University of California, Berkeley, California, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Horn JR, Kraybill B, Petro EJ, Coales SJ, Morrow JA, Hamuro Y, Kossiakoff AA. The role of protein dynamics in increasing binding affinity for an engineered protein-protein interaction established by H/D exchange mass spectrometry. Biochemistry 2006; 45:8488-98. [PMID: 16834322 DOI: 10.1021/bi0604328] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is generally accepted that protein and solvation dynamics play fundamental roles in the mechanisms of protein-protein binding; however, assessing their contribution meaningfully has not been straightforward. Here, hydrogen/deuterium exchange mass spectrometry (H/D-Ex) was employed to assess the role of dynamics for a high-affinity human growth hormone variant (hGHv) and the wild-type growth hormone (wt-hGH) each binding to the extracellular domain of their receptor (hGHbp). Comparative analysis of the transient fluctuations in the bound and unbound states revealed that helix-1 of hGHv undergoes significant transient unfolding in its unbound state, a characteristic that was not found in wt-hGH or apparent in the temperature factor data from the X-ray analysis of the unbound hGHv structure. In addition, upon hormone binding, an overall increase in stability was observed for the beta-sheet structure of hGHbp which included sites distant from the binding interface. On the basis of the stability, binding kinetics, and thermodynamic data presented, the increase in the binding free energy of hGHv is primarily generated by factors that appear to increase the energy of the unbound state relative to the free energy of the bound complex. This implies that an alternate route to engineer new interactions aiming to increase protein-protein association energies may be achieved by introducing certain mutations that destabilize one of the interacting molecules without destabilizing the resulting bound complex. Importantly, although the hGHv molecule is less stable than its wt-hGH counterpart, its resulting active ternary complex with two copies of hGHbp has comparable stability to the wt complex.
Collapse
Affiliation(s)
- James R Horn
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Pál G, Kouadio JLK, Artis DR, Kossiakoff AA, Sidhu SS. Comprehensive and quantitative mapping of energy landscapes for protein-protein interactions by rapid combinatorial scanning. J Biol Chem 2006; 281:22378-22385. [PMID: 16762925 DOI: 10.1074/jbc.m603826200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel, quantitative saturation (QS) scanning strategy was developed to obtain a comprehensive data base of the structural and functional effects of all possible mutations across a large protein-protein interface. The QS scan approach was applied to the high affinity site of human growth hormone (hGH) for binding to its receptor (hGHR). Although the published structure-function data base describing this system is probably the most extensive for any large protein-protein interface, it is nonetheless too sparse to accurately describe the nature of the energetics governing the interaction. Our comprehensive data base affords a complete view of the binding site and provides important new insights into the general principles underlying protein-protein interactions. The hGH binding interface is highly adaptable to mutations, but the nature of the tolerated mutations challenges generally accepted views about the evolutionary and biophysical pressures governing protein-protein interactions. Many substitutions that would be considered chemically conservative are not tolerated, while conversely, many non-conservative substitutions can be accommodated. Furthermore, conservation across species is a poor predictor of the chemical character of tolerated substitutions across the interface. Numerous deviations from generally accepted expectations indicate that mutational tolerance is highly context dependent and, furthermore, cannot be predicted by our current knowledge base. The type of data produced by the comprehensive QS scan can fill the gaps in the structure-function matrix. The compilation of analogous data bases from studies of other protein-protein interactions should greatly aid the development of computational methods for explaining and designing molecular recognition.
Collapse
Affiliation(s)
- Gábor Pál
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, Cummings Life Sciences Center, University of Chicago, Chicago, Illinois 60637
| | - Jean-Louis K Kouadio
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, Cummings Life Sciences Center, University of Chicago, Chicago, Illinois 60637
| | - Dean R Artis
- Department of Protein Engineering, Genentech Inc., South San Francisco, California 94080
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, Cummings Life Sciences Center, University of Chicago, Chicago, Illinois 60637.
| | - Sachdev S Sidhu
- Department of Protein Engineering, Genentech Inc., South San Francisco, California 94080.
| |
Collapse
|
12
|
Walsh STR, Kossiakoff AA. Crystal Structure and Site 1 Binding Energetics of Human Placental Lactogen. J Mol Biol 2006; 358:773-84. [PMID: 16546209 DOI: 10.1016/j.jmb.2006.02.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/10/2006] [Accepted: 02/14/2006] [Indexed: 11/18/2022]
Abstract
In primates, placental lactogen (PL) is a pituitary hormone with fundamental roles during pregnancy involving fetal growth, metabolism, and stimulating lactation in the mother. Human placental lactogen (hPL) is highly conserved with human growth hormone (hGH) and both hormones bind to the hPRLR extracellular domain (ECD), the first step in receptor homodimerization, in a Zn2+-dependent manner. A modified surface plasmon resonance method was developed to measure the kinetics for hPL and hGH binding to the hPRLR ECD, with and without Zn2+ and showed that hPL has about a tenfold higher affinity for the hPRLR ECD1 than hGH. The crystal structure of the free state of hPL has been determined to 2.0 A resolution showing the molecule possesses an overall structure similar to other long chain four-helix bundle cytokines. Comparison of the free hPL structure with the 1:1 complex structure of hGH bound to the hPRLR ECD1 suggests that two surface loops undergo conformational changes >10 A upon binding. An 18 residue Ala-scan was used to characterize the binding energy epitope for the site 1 interface of hPL. Individual alanine substitutions at five positions reduced binding affinity by a DeltaDeltaG > or = 3 kcal mol(-1). A comparison of the hPL site 1 epitope with that previously determined for hGH indicates contributions of individual residues track reasonably well between hPL and hGH. In particular, residues involved in the zinc-binding site and Lys172 constitute the principal binding determinants for both hormones. However, several residues that are identical between hPL and hGH contribute quite differently to the binding of the hPRLR ECD1. Additionally, the overall magnitudes of the DeltaDeltaG changes observed from the Ala-scan of hPL were markedly larger than those determined in the comparative scan of hGH to the hPRLR ECD1. The structural and biophysical data presented here show that subtle changes in the structural context of an interaction can lead to significantly different effects at the individual residue level.
Collapse
Affiliation(s)
- Scott T R Walsh
- Department of Molecular and Cellular Biochemistry, Ohio State University, 467 Hamilton Hall, 1645 Neil Avenue Columbus, OH 43210, USA
| | | |
Collapse
|
13
|
Pál G, Fong SY, Kossiakoff AA, Sidhu SS. Alternative views of functional protein binding epitopes obtained by combinatorial shotgun scanning mutagenesis. Protein Sci 2006; 14:2405-13. [PMID: 16131663 PMCID: PMC2253482 DOI: 10.1110/ps.051519805] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Combinatorial shotgun scanning mutagenesis was used to analyze two large, related protein binding sites to assess the specificity and importance of individual side chain contributions to binding affinity. The strategy allowed for cost-effective generation of a plethora of functional data. The ease of the technology promoted comprehensive investigations, in which the classic alanine-scanning approach was expanded with two additional strategies, serine- and homolog-scanning. Binding of human growth hormone (hGH) to the hGH receptor served as the model system. The entire high affinity receptor-binding sites (site 1) of wild-type hGH (hGHwt) and of an affinity-improved variant (hGHv) were investigated and the results were compared. The contributions that 35 residue positions make to binding were assessed on each hormone molecule by both serine- and homolog-scanning. The hormone molecules were displayed on the surfaces of bacteriophage, and the 35 positions were randomized simultaneously to allow equal starting frequencies of the wild-type residue and either serine or a homologous mutation in separate libraries. Functional selections for binding to the hGH receptor shifted the relative wild-type/mutant frequencies at each position to an extent characteristic of the functional importance of the side chain. Functional epitope maps were created and compared to previous maps obtained by alanine-scanning. Comparisons between the different scans provide insights into the affinity maturation process that produced hGHv. The serine and homolog-scanning results expand upon and complement the alanine-scanning results and provide additional data on the robustness of the high affinity receptor-binding site of hGH.
Collapse
Affiliation(s)
- Gábor Pál
- Dept. of Biochemistry and Molecular Biology, Cummings Life Sciences Center, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
14
|
Kouadio JLK, Horn JR, Pal G, Kossiakoff AA. Shotgun alanine scanning shows that growth hormone can bind productively to its receptor through a drastically minimized interface. J Biol Chem 2005; 280:25524-32. [PMID: 15857837 DOI: 10.1074/jbc.m502167200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity binding site (Site1) of the human growth hormone (hGH) binds to its cognate receptor (hGHR) via a concave surface patch containing about 35 residues. Using 167 sequences from a shotgun alanine scanning analysis of Site1, we have determined that over half of these residues can be simultaneously changed to an alanine or a non-isosteric amino acid while still retaining a high affinity interaction. Among these hGH variants the distribution of the mutation is highly variable throughout the interface, although helix 4 is more conserved than the other binding elements. Kinetic and thermodynamic analyses were performed on 11 representative hGH Site1 variants that contained 14-20 mutations. Generally, the tightest binding variants showed similar associated rate constants (k(on)) as the wild-type (wt) hormone, indicating that their binding proceeds through a similar transition state intermediate. However, calorimetric analyses indicate very different thermodynamic partitioning: wt-hGH binding exhibits favorable enthalpy and entropy contributions, whereas the variants display highly favorable enthalpy and highly unfavorable entropy contributions. The heat capacities (DeltaCp) on binding measured for wt-hGH and its variants are significantly larger than normally seen for typical protein-protein interactions, suggesting large conformational or solvation effects. The multiple Site1 mutations are shown to indirectly affect binding of the second receptor at Site2 through an allosteric mechanism. We show that the stability of the ternary hormone-receptor complex reflects the affinity of the Site2 binding and is surprisingly exempt from changes in Site1 affinity, directly demonstrating that dissociation of the active signaling complex is a stepwise process.
Collapse
Affiliation(s)
- Jean-Louis K Kouadio
- Department of Biochemistry and Molecular Biology the University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
15
|
Verkhivker GM. Computational analysis of ligand binding dynamics at the intermolecular hot spots with the aid of simulated tempering and binding free energy calculations. J Mol Graph Model 2004; 22:335-48. [PMID: 15099830 DOI: 10.1016/j.jmgm.2003.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Equilibrium binding dynamics is studied for a panel of benzimidazole-containing compounds at the remodeled interface between human growth hormone (hGH) and the extracellular domain of its receptor (hGHbp), engineered by mutating to glycine hot spot residues T175 from the hormone and W104 from the receptor. Binding energetics is predicted in a good agreement with the experimental data for a panel of these small molecules that complement the engineered defect and restore the binding affinity of the wild-type hGH-hGHbp complex. The results of simulated tempering ligand dynamics at the protein-protein interface reveals a diversity of ligand binding modes that is consistent with the structural orientation of the benzimidazole ring which closely mimics the position of the mutated W104 hot spot residue in the wild-type hGH-hGHbp complex. This structural positioning of the benzimidazole core motif is shown to be a critical feature of the low-energy ligand conformations binding in the engineered cavity. The binding free energy analysis provides a plausible rationale behind the experimental dissociation constants and suggests a key role of ligand-protein van der Waals interactions in restoring binding affinity.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Pfizer Global Research and Development, La Jolla Laboratories, 10777 Science Center Drive, San Diego, CA 92121-1111, USA.
| |
Collapse
|
16
|
Sivaprasad U, Canfield JM, Brooks CL. Mechanism for ordered receptor binding by human prolactin. Biochemistry 2004; 43:13755-65. [PMID: 15504038 DOI: 10.1021/bi049333p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prolactin, a lactogenic hormone, binds to two prolactin receptors sequentially, the first receptor binding at site 1 of the hormone followed by the second receptor binding at site 2. We have investigated the mechanism by which human prolactin (hPRL) binds the extracellular domain of the human prolactin receptor (hPRLbp) using surface plasmon resonance (SPR) technology. We have covalently coupled hPRL to the SPR chip surface via coupling chemistries that reside in and block either site 1 or site 2. Equilibrium binding experiments using saturating hPRLbp concentrations show that site 2 receptor binding is dependent on site 1 receptor occupancy. In contrast, site 1 binding is independent of site 2 occupancy. Thus, sites 1 and 2 are functionally coupled, site 1 binding inducing the functional organization of site 2. Site 2 of hPRL does not have a measurable binding affinity prior to hPRLbp binding at site 1. After site 1 receptor binding, site 2 affinity is increased to values approaching that of site 1. Corruption of either site 1 or site 2 by mutagenesis is consistent with a functional coupling of sites 1 and 2. Fluorescence resonance energy transfer (FRET) experiments indicate that receptor binding at site 1 induces a conformation change in the hormone. These data support an "induced-fit" model for prolactin receptor binding where binding of the first receptor to hPRL induces a conformation change in the hormone creating the second receptor-binding site.
Collapse
Affiliation(s)
- Umasundari Sivaprasad
- The Ohio State Biochemistry Program and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
17
|
Walsh STR, Sylvester JE, Kossiakoff AA. The high- and low-affinity receptor binding sites of growth hormone are allosterically coupled. Proc Natl Acad Sci U S A 2004; 101:17078-83. [PMID: 15563602 PMCID: PMC535364 DOI: 10.1073/pnas.0403336101] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Growth hormone regulates its biological properties via a sequential hormone-induced receptor homodimerization mechanism. Using a mutagenesis-scanning analysis of 81 single and 32 pairwise double mutations, we show that the hormone's two spatially distal receptor binding sites (Site1 and Site2) are allosterically coupled. These allosteric effects are focused among a relatively few residues centered around the interaction between Asp-116 of the hormone and Trp-169 of the receptor in Site2. A rearrangement of this interaction triggered by mutations in Site1 produces both a major conformation and energetic reorganization of Site2, surprisingly without a reduction in overall binding affinity. Additionally, the data suggest a change in the conformational dynamics of several groups in Site2 that appear to be important in defining the Site2 interaction. Changes in binding energy of the affected Site2 residues usually range in magnitude from 3- to 60-fold, but in one case are as large as 10(4).
Collapse
Affiliation(s)
- Scott T R Walsh
- Department of Biochemistry and Molecular Biology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
18
|
Wan Y, McDevitt A, Shen B, Smythe ML, Waters MJ. Increased Site 1 Affinity Improves Biopotency of Porcine Growth Hormone. J Biol Chem 2004; 279:44775-84. [PMID: 15297460 DOI: 10.1074/jbc.m406092200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on phage display optimization studies with human growth hormone (GH), it is thought that the biopotency of GH cannot be increased. This is proposed to be a result of the affinity of the first receptor for hormone far exceeding that which is required to trap the hormone long enough to allow diffusion of the second receptor to form the ternary complex, which initiates signaling. We report here that despite similar site 1 kinetics to the hGH/hGH receptor interaction, the potency of porcine GH for its receptor can be increased up to 5-fold by substituting hGH residues involved in site 1 binding into pGH. Based on extensive mutations and BIAcore studies, we show that the higher potency and site 1 affinity of hGH for the pGHR is primarily a result of a decreased off-rate associated with residues in the extended loop between helices 1 and 2 that interact with the two key tryptophans Trp104 and Trp169 in the receptor binding hot spot. Our mutagenic analysis has also identified a second determinant (Lys165), which in addition to His169, restricts the ability of non-primate hormones to activate hGH receptor. The increased biopotency of GH that we observe can be explained by a model for GH receptor activation where subunit alignment is critical for effective signaling.
Collapse
Affiliation(s)
- Yu Wan
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, St. Lucia 4072, Australia
| | | | | | | | | |
Collapse
|
19
|
Bernat B, Sun M, Dwyer M, Feldkamp M, Kossiakoff AA. Dissecting the Binding Energy Epitope of a High-Affinity Variant of Human Growth Hormone: Cooperative and Additive Effects from Combining Mutations from Independently Selected Phage Display Mutagenesis Libraries. Biochemistry 2004; 43:6076-84. [PMID: 15147191 DOI: 10.1021/bi036069b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phage display mutagenesis is a widely used approach to engineering novel protein properties and is especially powerful in probing structure-function relationships in molecular recognition processes. The relative contributions of additive and cooperative binding forces and the influence of conformational diversity in producing a novel protein-protein interface is investigated using as a model an ultra-high-affinity receptor binding variant of human growth hormone (hGHv) that has been previously affinity matured. The modular aspect of how the mutations were grouped in the phage display libraries and combined allowed for a systematic probing of the inherent functional cross-talk between the different secondary structure elements that make up the remodeled hGHv binding surface. We performed an alanine scanning analyses of 35 hGHv residues and determined the kinetics of each variant by surface plasmon resonance (SPR). This analysis showed that there is a significant difference between the additive and cooperative binding forces existing among the selected residues in each library module, and the binding advantage of these residues is maximized over the original wild-type residue when in the context of the other mutations in the library. The degree to which residues in a particular mutagenesis library display binding cooperativity characteristics is generally correlated with the conformational plasticity of the polypeptide chain. Additionally, these cooperativity effects change when the mutations from one library are combined with the mutations from one or several of the other separate libraries. This supports the idea that significant functional cross-talk exists between the combined library modules that can affect the binding energetics of individual residues over a large distance.
Collapse
Affiliation(s)
- Bryan Bernat
- Department of Biochemistry and Molecular Biology, University of Chicago, Cummings Life Science Center, 920 East 58 Street, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
20
|
Kossiakoff AA. The structural basis for biological signaling, regulation, and specificity in the growth hormone-prolactin system of hormones and receptors. ADVANCES IN PROTEIN CHEMISTRY 2004; 68:147-69. [PMID: 15500861 DOI: 10.1016/s0065-3233(04)68005-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pituitary hormones growth hormone (GH), prolactin (PRL) and placental lactogen (PL), are members of an extensive cytokine superfamily of hormones and receptors that share many of the same general structure-function relationships in expressing their biological activities. The biology of the pituitary hormones involves a very sophisticated interplay of cross-reactivity and specificity. Biological activity is triggered via a hormone-induced receptor homodimerization process that is regulated by tertiary features of the hormone. These hormones have an asymmetric four alpha-helical bundle structure that gives rise to two receptor binding sites that have distinctly different topographies and electrostatic character. This feature plays an important role in the regulation of these systems by producing binding surfaces with dramatically different binding affinities to the receptor extracellular domains (ECD). As a consequence, the signaling complexes for systems that activate through receptor homodimerization are formed in a controlled sequential step-wise manner. Extensive biochemical and biophysical characterization of the two hormone-receptor interfaces indicate that the energetic properties of the two binding sites are fundamentally different and that the receptor shows extraordinary conformational plasticity to mate with the topographically dissimilar sites on the hormone. An unexpected finding has been that the two hormone binding sites are allosterically coupled; a certain set of mutations in the higher affinity site can produce both conformational and energetic effects in the lower affinity site. These effects are so large that at some level they must have played some role in the evolution of the molecule.
Collapse
Affiliation(s)
- Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Cummings Life Sciences Center, Chicago, Illinois 60637, USA
| |
Collapse
|
21
|
Pal G, Kossiakoff AA, Sidhu SS. The functional binding epitope of a high affinity variant of human growth hormone mapped by shotgun alanine-scanning mutagenesis: insights into the mechanisms responsible for improved affinity. J Mol Biol 2003; 332:195-204. [PMID: 12946357 DOI: 10.1016/s0022-2836(03)00898-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A high-affinity variant of human growth hormone (hGH(v)) contains 15 mutations within site 1 and binds to the hGH receptor (hGHR) approximately 400-fold tighter than does wild-type (wt) hGH (hGH(wt)). We used shotgun scanning combinatorial mutagenesis to dissect the energetic contributions of individual residues within the hGH(v) binding epitope and placed them in context with previously determined structural information. In all, the effects of alanine substitutions were determined for 35 hGH(v) residues that are directly contained in or closely border the binding interface. We found that the distribution of binding energy in the functional epitope of hGH(v) differs significantly from that of hGH(wt). The residues that contributed the majority of the binding energy in the wt interaction (the so-called binding "hot spot") remain important, but their contributions are attenuated in the hGH(v) interaction, and additional binding energy is acquired from residues on the periphery of the original hotspot. Many interactions that inhibited the binding of hGH(wt) are replaced by interactions that make positive contributions to the binding of hGH(v). These changes produce an expanded and diffused hot spot in which improved affinity results from numerous small contributions distributed broadly over the interface. The mutagenesis results are consistent with previous structural studies, which revealed widespread structural differences between the wt and variant hormone-receptor interfaces. Thus, it appears that the improved binding affinity of hGH(v) site 1 was not achieved through minor adjustments to the wt interface, but rather, results from a wholesale reconfiguration of many of the original binding elements.
Collapse
Affiliation(s)
- Gabor Pal
- Department of Biochemistry and Molecular Biology, University of Chicago, Cummings Life Sciences Center, Chicago, IL 60637, USA
| | | | | |
Collapse
|
22
|
Walsh STR, Jevitts LM, Sylvester JE, Kossiakoff AA. Site2 binding energetics of the regulatory step of growth hormone-induced receptor homodimerization. Protein Sci 2003; 12:1960-70. [PMID: 12930995 PMCID: PMC2323993 DOI: 10.1110/ps.03133903] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 05/23/2003] [Accepted: 06/01/2003] [Indexed: 10/27/2022]
Abstract
Receptor signaling in the growth hormone (GH)-growth hormone receptor (GHR) system is controlled through a sequential two-step hormone-induced dimerization of two copies of the extracellular domain (ECD) of the receptor. The regulatory step of this process is the binding of the second ECD (ECD2) to the stable preassociated 1 : 1 GH/ECD1 complex on the cell surface. To determine the energetics that governs this step, the binding kinetics of 38 single- and double-alanine mutants in the hGH Site2 contact with ECD2 were measured by using trimolecular surface plasmon resonance (TM-SPR). We find that the Site2 interface of hGH does not have a distinct binding hot-spot region, and the most important residues are not spatially clustered, but rather are distributed over the whole binding surface. In addition, it was determined through analysis of a set of pairwise double alanine mutations that there is a significant degree of negative cooperativity among Site2 residues. Residues that show little effect or even improved binding on substitution with alanine, when paired with D116A-hGH, display significant negative cooperativity. Because most of these pairwise mutated residues are spatially separated by >or=10 A, this indicates that the Site2 binding interface of the hGH-hGHR ternary complex displays both structural and energetic malleability.
Collapse
Affiliation(s)
- Scott T R Walsh
- Department of Biochemistry and Molecular Biology Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
23
|
Högbom M, Eklund M, Nygren PA, Nordlund P. Structural basis for recognition by an in vitro evolved affibody. Proc Natl Acad Sci U S A 2003; 100:3191-6. [PMID: 12604795 PMCID: PMC404300 DOI: 10.1073/pnas.0436100100] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Indexed: 11/18/2022] Open
Abstract
The broad binding repertoire of antibodies has permitted their use in a wide range of applications. However, some uses of antibodies are precluded due to limitations in the efficiency of antibody generation. In vitro evolved binding proteins, selected from combinatorial libraries generated around various alternative structural scaffolds, are promising alternatives to antibodies. We have solved the crystal structure of a complex of an all alpha-helical in vitro selected binding protein (affibody) bound to protein Z, an IgG Fc-binding domain derived from staphylococcal protein A. The structure of the complex reveals an extended and complementary binding surface with similar properties to protein-antibody interactions. The surface region of protein Z recognized by the affibody is strikingly similar to the one used for IgG(1) Fc binding, suggesting that this surface contains potential hot-spots for binding. The implications of the selected affibody binding-mode for its application as a universal binding protein are discussed.
Collapse
Affiliation(s)
- Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Roslagstullsbacken 15, Albanova University Center, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|