1
|
Li C, Matsushita S, Li Z, Guan J, Amano A. c-kit Positive Cardiac Outgrowth Cells Demonstrate Better Ability for Cardiac Recovery Against Ischemic Myopathy. ACTA ACUST UNITED AC 2017; 7. [PMID: 29238626 PMCID: PMC5726283 DOI: 10.4172/2157-7633.1000402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective Resident cardiac stem cells are expected to be a therapeutic option for patients who suffer from severe heart failure. However, uncertainty remains over whether sorting cells for c-kit, a stem cell marker, improves therapeutic outcomes. Materials and methods Cardiac outgrowth cells cultured from explants of rat heart atrium were sorted according to their positivity (+) or negativity (−) for c-kit. These cells were exposed to hypoxia for 3 d, and subsequently harvested for mRNA expression measurement. The cell medium was also collected to assess cytokine secretion. To test for a functional benefit in animals, myocardial infarction (MI) was induced in rats, and c-kit+ or c-kit− cells were injected. The left ventricular ejection fraction (LVEF) was measured for up to 4 weeks, after which the heart was harvested for biological and histological analyses. Results and conclusion Expression of the angiogenesis-related genes, VEGF and ANGPTL2, was significantly higher in c-kit+ cells after 3 d of hypoxic culture, although we found no such difference prior to hypoxia. Secretion of VEGF and ANGPTL2 was greater in the c-kit+ group than in the c-kit− group, while hypoxia tended to increase cytokine expression in both groups. In addition, IGF-1 was significantly increased in the c-kit+ group, consistent with the relatively low expression of cleaved-caspase 3 revealed by western blot assay, and the relatively low count of apoptotic cells revealed by histochemical analysis. Administration of c-kit+cells into the MI heart improved the LVEF and increased neovascularization. These results indicate that c-kit+cells may be useful in cardiac stem cell therapy.
Collapse
Affiliation(s)
- Chuan Li
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Satoshi Matsushita
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Zhengqing Li
- Department of Materials Science and Engineering, Ohio State University, Columbus, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, Ohio State University, Columbus, USA
| | - Atsushi Amano
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Fewell JE, Lun R. Adenosine A1-receptor blockade impairs the ability of rat pups to autoresuscitate from primary apnea during repeated exposure to hypoxia. Physiol Rep 2015; 3:3/8/e12458. [PMID: 26272732 PMCID: PMC4562557 DOI: 10.14814/phy2.12458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Failure of gasping to bring about autoresuscitation from hypoxia-induced apnea has been suggested to play a role in sudden unexpected infant death. Little is known, however, about factors that influence the ability of gasping to restore life during severe hypoxia in newborns. Given that adenosine modulates cardiac function during hypoxia-induced apnea and that cardiac dysfunction plays a role in mediating autoresuscitation failure, the present experiments were carried out on 34, 5- to 6-, and 10- to 11-day-old rat pups to investigate their ability to autoresuscitate from hypoxia-induced apnea during repeated exposure to hypoxia after adenosine A1-receptor blockade. Each pup was placed into a temperature-controlled chamber regulated to 37 ± 1°C and repeatedly exposed to an anoxic gas mixture (97% N2 and 3% CO2) until the occurrence of autoresuscitation failure. One group was studied following administration of the selective adenosine A1-receptor antagonist 8-Cyclopentyl-1,3,-dipropylxanthine (DPCPX) and one group was studied following vehicle. DPCPX significantly attenuated bradycardia during hypoxia-induced apnea and impaired the ability of both age groups of pups to autoresuscitate during repeated exposure to hypoxia (5–6 days tolerated – vehicle 17 ± 4 vs. DPCPX 10 ± 2 hypoxia exposures [P < 0.05]; 10–11 days tolerated – vehicle 10 ± 2 vs. DPCPX 7 ± 2 hypoxia exposures [P < 0.05]). Death in all pups resulted from the inability of gasping to restore cardiovascular function during hypoxia-induced apnea although the mechanism of cardiovascular dysfunction/failure was influenced and the occurrence hastened by DPCPX. Thus, our data provide evidence that adenosine acting via adenosine A1-receptors enhances the ability of rat pups to tolerate repeated exposure to severe hypoxia during early postnatal maturation.
Collapse
Affiliation(s)
- James E Fewell
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary Health Sciences Centre Alberta Children's Hospital Research Institute for Child and Maternal Health, Calgary, Alberta, Canada
| | - Rongzhi Lun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary Health Sciences Centre Alberta Children's Hospital Research Institute for Child and Maternal Health, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Roy S, Khanna S, Azad A, Schnitt R, He G, Weigert C, Ichijo H, Sen CK. Fra-2 mediates oxygen-sensitive induction of transforming growth factor beta in cardiac fibroblasts. Cardiovasc Res 2010; 87:647-55. [PMID: 20427335 DOI: 10.1093/cvr/cvq123] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS In the ischaemia-reperfused heart, transforming growth factor beta (TGFbeta) proteins trigger the differentiation of cardiac fibroblasts (CFs) contributing to fibrosis. Reoxygenation of the heart, in addition to being a trigger for reperfusion injury, induces tissue remodelling by hyperoxia-sensitive signalling processes involving TGFbeta. Here, we sought to characterize the molecular mechanisms responsible for the O(2)-sensitive transcriptional induction of TGFbeta in murine CF and to test the significance of such findings in the infarcted myocardium in vivo using laser capture microdissection. METHODS AND RESULTS All three isoforms of TGFbeta were induced in the CF-rich peri-infarct tissue as well as in CF exposed to hyperoxic challenge. Reporter studies demonstrated that TGFbeta transcription is hyperoxia inducible. Deletion of any one or both of the activating protein-1 (AP-1) binding sites in the TGFbeta reporter construct resulted in loss of O(2) sensitivity, demonstrating that AP-1 confers O(2) sensitivity to TGFbeta transcription. Fos-related AP-1 transcription factor (Fra-2) and Ask-1 (apoptosis signal-regulating kinase-1) were identified as key mediators of AP-1-dependent O(2)-sensitive TGFbeta transcription. Knockdown of Fra-2 significantly blunted O(2)-induced expression of TGFbeta1 as well as TGFbeta3 in CF. Knockdown of Ask-1 blunted hyperoxia-induced Fra-2 gene expression and nuclear localization in CF. Collectively, these observations point towards a central role of Ask-1 and Fra-2 in O(2)-inducible AP-1 activation and induction of TGFbeta. CONCLUSION Taken together with the observation that Fra-2-regulated genes are implicated in fibrosis, identification of Fra-2 as an O(2)-sensitive transcriptional regulator of inducible TGFbeta expression positions Fra-2 as an important player in reoxygenation-induced fibrosis.
Collapse
Affiliation(s)
- Sashwati Roy
- Department of Surgery, The Ohio State University Medical Center, 513 Davis Heart and Lung Research Institute, 473 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
BACKGROUND Microdialysis is a technique to monitor extracellular changes in living tissue. Substances present in the extracellular space, such as neurotransmitters and metabolites transported between cells and capillaries in the extracellular fluid (ECF), are major object. RESULTS Since its introduction to the research of the nervous system, microdialysis has become a popular method for the measurements of brain chemistry and greatly affected in the fields of neuropharmacology, neuroanatomy and neurophysiology. Most of published papers using microdialysis have focused on the area of neuroscience, recently more biomedical application. CONCLUSION In this review, we focused on cerebral microdialysis as a monitoring tool for physiologic and pathophysiologic changes in chemical processes in the brain. Then we presented the principle and various applications of cerebral microdialysis.
Collapse
Affiliation(s)
- Gi Ja Lee
- Department of Biomedical Engineering, College of Medicine, Healthcare Industry Research Institute, Kyung Hee University, No. 1 Hoeki-dong, Dongdaemun-gu, Seoul 130-702, Korea
| | | | | |
Collapse
|
5
|
Roy S, Khanna S, Rink T, Radtke J, Williams WT, Biswas S, Schnitt R, Strauch AR, Sen CK. P21waf1/cip1/sdi1 as a central regulator of inducible smooth muscle actin expression and differentiation of cardiac fibroblasts to myofibroblasts. Mol Biol Cell 2007; 18:4837-46. [PMID: 17881730 PMCID: PMC2096602 DOI: 10.1091/mbc.e07-03-0270] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The phenotypic switch of cardiac fibroblasts (CFs) to myofibroblasts is essential for normal and pathological wound healing. Relative hyperoxic challenge during reoxygenation causes myocardial remodeling. Here, we sought to characterize the novel O(2)-sensitive molecular mechanisms responsible for triggering the differentiation of CFs to myofibroblasts. Exposure of CFs to hyperoxic challenge-induced transcription of smooth muscle actin (SMA) and enhanced the stability of both Acta2 transcript as well as of SMA protein. Both p21 deficiency as well as knockdown blunted hyperoxia-induced Acta2 and SMA response. Strikingly, overexpression of p21 alone markedly induced differentiation of CFs under normoxia. Overexpression of p21 alone induced SMA transcription by down-regulating YB1 and independent of TGFbeta1. In vivo, hyperoxic challenge induced p21-dependent differentiation of CFs to myofibroblasts in the infarct boundary region of ischemia-reperfused heart. Tissue elements were laser-captured from infarct boundary and from a noninfarct region 0.5 mm away. Reperfusion caused marked p21 induction in the infarct region. Acta2 as well as SMA expression were markedly up-regulated in CF-rich infarct boundary region. Of note, ischemia-reperfusion-induced up-regulation of Acta2 in the infarct region was completely abrogated in p21-deficient mice. This observation establishes p21 as a central regulator of reperfusion-induced phenotypic switch of CFs to myofibroblasts.
Collapse
Affiliation(s)
- Sashwati Roy
- *Laboratory of Molecular Medicine, Department of Surgery, and
| | - Savita Khanna
- *Laboratory of Molecular Medicine, Department of Surgery, and
| | - Trenton Rink
- *Laboratory of Molecular Medicine, Department of Surgery, and
| | - Jared Radtke
- *Laboratory of Molecular Medicine, Department of Surgery, and
| | | | | | - Rebecca Schnitt
- *Laboratory of Molecular Medicine, Department of Surgery, and
| | - Arthur R. Strauch
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210
| | - Chandan K. Sen
- *Laboratory of Molecular Medicine, Department of Surgery, and
| |
Collapse
|
6
|
Richard CL, Tan EY, Blay J. Adenosine upregulates CXCR4 and enhances the proliferative and migratory responses of human carcinoma cells to CXCL12/SDF-1alpha. Int J Cancer 2006; 119:2044-53. [PMID: 16823836 DOI: 10.1002/ijc.22084] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The level of expression of the chemokine receptor CXCR4 has been shown to play a crucial role in determining the ability of cancer cells to metastasize from the primary tumor and become established in tissue sites that are rich in the CXCR4 ligand CXCL12/SDF-1alpha. High CXCR4 expression on cancer cells is associated with an increased risk of recurrence and poorer overall survival. We propose that local tissue mediators within the primary tumor or at secondary sites may modulate the level of CXCR4 expression and, therefore, potentially affect the ability of the cancer cells to metastasize. The purine nucleoside adenine-9-beta-D-ribofuranoside (adenosine) is generated at high concentrations within the extracellular fluid of solid tumors because of their hypoxia. We show here that adenosine acts through A(2A) and A(2B) adenosine receptors on human colorectal carcinoma cells to upregulate CXCR4 mRNA expression up to 10-fold and selectively increases cell-surface CXCR4 protein up to 3-fold. This increase in cell-surface CXCR4 enables the carcinoma cells to migrate toward CXCL12, and enhances their proliferation in response to CXCL12. Adenosine may therefore be one of the factors within the tumor microenvironment that facilitates tumor dissemination, by upregulating CXCR4 on certain cancer cells and enhancing cellular responses to CXCL12.
Collapse
Affiliation(s)
- Cynthia Lee Richard
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
7
|
Audonnet-Blaise S, Krafft MP, Smani Y, Mertes PM, Marie PY, Labrude P, Longrois D, Menu P. Resuscitation of severe but brief haemorrhagic shock with PFC in rabbits restores skeletal muscle oxygen delivery and does not alter skeletal muscle metabolism. Resuscitation 2006; 70:124-32. [PMID: 16759782 DOI: 10.1016/j.resuscitation.2005.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 11/01/2005] [Indexed: 11/23/2022]
Abstract
Studies have demonstrated that perfluorocarbon (PFC) emulsions associated with hyperoxia improved whole body oxygen delivery during resuscitation of acute haemorrhagic shock (HS). Nevertheless the microcirculatory effects of PFC and the potential deleterious effects of hyperoxic reperfusion are still of concern. We investigated (i) the ability of a newly formulated, small sized and highly stable PFC emulsion to increase skeletal muscle oxygen delivery and (ii) the effect of hyperoxic reperfusion on skeletal muscle metabolism after a brief period of ischaemia using an original, microdialysis-based method that allowed simultaneous measurement tissue oxygen pressure (PtiO2) and interstitial lactate and pyruvate. These measurements were carried out in anaesthetised and ventilated (FiO2 = 1) rabbits subjected to acute HS (50% of blood volume withdrawal) and either resuscitated with a PFC emulsion diluted with a 5% albumin solution (16.2 g PFC per kg body weight) (n = 10) or with a modified fluid gelatin solution (Gelofusine) (n = 10). We found no difference between the two groups for the haemodynamic and haematological variables (except for the venous oxygen partial pressure). However, a significant difference was observed in the slope of the regression linear relationship exhibited between the mean arterial pressure (MAP) and the PtiO2, PFC group showing a much steeper slope than Gelofusine group. In addition, PtiO2 values increased linearly with decreasing haematocrit (Hct) values in PFC-resuscitated animals and decreased linearly with decreasing Hct values in Gelofusine-resuscitated animals. There were no differences between the two groups concerning the blood and interstitial lactate/pyruvate ratios suggesting no deleterious effect of hyperoxic resuscitation in skeletal muscle. In conclusion these results suggest that resuscitation of severe, but brief, HS with PFC increased skeletal muscle oxygen delivery without measurable deleterious effects.
Collapse
Affiliation(s)
- Sandra Audonnet-Blaise
- Laboratoire d'Hématologie et de Physiologie, EA 3452, Faculté de Pharmacie, Université Henri Poincaré, 5 rue Albert Lebrun, B.P. 403, F-54001 Nancy Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Microdialysis is the only technique available for cerebral metabolic monitoring in the clinical setting. By the mean of a probe inserted in the brain, it provides an extracellular space sampling. Values of various substrates including cerebral glucose, lactate, pyruvate, glycerol or glutamate can be obtained at the bedside at intervals between minutes and hours. Values are critically dependent on the flow of the perfusion liquid and reflect a highly localized cerebral metabolism. Cerebral microdialysis improves our understanding of acute neurological events such as intracranial hypertension or decrease in brain tissue oxygen pressure. Cerebral microdialysis can be used for detection of ischaemia, especially after malignant stroke or vasospasm complicating subarachnoid haemorrhage. In these cases, it may influence the therapeutic management. Moreover, it permits the assessment of metabolic changes after therapeutic interventions. Finally, some markers (like lactate/pyruvate ratio) are related to outcome, especially after traumatic brain injury.
Collapse
Affiliation(s)
- G Audibert
- Département d'anesthésie-réanimation, hôpital central, CHU de Nancy, 54000 Nancy, France.
| | | | | |
Collapse
|
9
|
Fewell JE. Protective responses of the newborn to hypoxia. Respir Physiol Neurobiol 2005; 149:243-55. [PMID: 15941675 DOI: 10.1016/j.resp.2005.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 05/10/2005] [Accepted: 05/11/2005] [Indexed: 11/22/2022]
Abstract
In human infants, spontaneous recovery from sleep related apnea or positional asphyxia can occur early with or without behavioral and/or cortical arousal or later as a result of autoresuscitation from "asphyxial coma" by hypoxic gasping. Because it occurs when early defense mechanisms are absent or fail to resolve apnea or positional asphyxia, autoresuscitation serves as a backup mechanism and is considered to be the last operative mechanism used by mammals to ensure survival during exposure to severe hypoxia. In this short review, factors will be considered that influence the onset, duration and number of potential autoresuscitation producing gasps as well as the integrated physiology of successful autoresuscitation and pathophysiology of failed autoresuscitation from hypoxic-induced apnea.
Collapse
Affiliation(s)
- James E Fewell
- Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive, N.W. Calgary, Alta., Canada T2N 4N1.
| |
Collapse
|
10
|
Roy S, Khanna S, Sen CK. Perceived Hyperoxia: Oxygen-Regulated Signal Transduction Pathways in the Heart. Methods Enzymol 2004; 381:133-9. [PMID: 15063670 DOI: 10.1016/s0076-6879(04)81008-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Sashwati Roy
- Laboratory of Molecular Medicine, Department of Surgery, Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
11
|
Roy S, Khanna S, Wallace WA, Lappalainen J, Rink C, Cardounel AJ, Zweier JL, Sen CK. Characterization of perceived hyperoxia in isolated primary cardiac fibroblasts and in the reoxygenated heart. J Biol Chem 2003; 278:47129-35. [PMID: 12952964 DOI: 10.1074/jbc.m308703200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Under normoxic conditions, pO2 ranges from 90 to <3 torr in mammalian organs with the heart at approximately 35 torr (5%) and arterial blood at approximately 100 torr. Thus, "normoxia" for cells is an adjustable variable. In response to chronic moderate hypoxia, cells adjust their normoxia set point such that reoxygenation-dependent relative elevation of pO2 results in perceived hyperoxia. We hypothesized that O2, even in marginal relative excess of the pO2 to which cells are adjusted, results in the activation of specific O2-sensitive signal transduction pathways that alter cellular phenotype and function. Thus, reperfusion causes damage to the tissue at the focus of ischemia while triggering remodeling in the peri-infarct region by means of perceived hyperoxia. We reported first evidence demonstrating that perceived hyperoxia triggers the differentiation of cardiac fibroblasts (CF) to myofibroblasts by a p21-dependent mechanism (Roy, S., Khanna, S., Bickerstaff, A. A., Subramanian, S. V., Atalay, M., Bierl, M., Pendyala, S., Levy, D., Sharma, N., Venojarvi, M., Strauch, A., Orosz, C. G., and Sen, C. K. (2003) Circ. Res. 92, 264-271). Here, we sought to characterize the genomic response to perceived hyperoxia in CF using GeneChips trade mark. Candidate genes were identified, confirmed and clustered. Cell cycle- and differentiation-associated genes represented a key target of perceived hyperoxia. Bioinformatics-assisted pathway reconstruction revealed the specific signaling processes that were sensitive to perceived hyperoxia. To test the significance of our in vitro findings, a survival model of rat heart focal ischemia-reperfusion (I-R) was investigated. A significant induction in p21 mRNA expression was observed in I-R tissue. The current results provide a comprehensive molecular definition of perceived hyperoxia in cultured CF. Furthermore, the first evidence demonstrating activation of perceived hyperoxia sensitive genes in the cardiac I-R tissue is presented.
Collapse
Affiliation(s)
- Sashwati Roy
- Laboratory of Molecular Medicine, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, 473 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Roy S, Khanna S, Bickerstaff AA, Subramanian SV, Atalay M, Bierl M, Pendyala S, Levy D, Sharma N, Venojarvi M, Strauch A, Orosz CG, Sen CK. Oxygen sensing by primary cardiac fibroblasts: a key role of p21(Waf1/Cip1/Sdi1). Circ Res 2003; 92:264-71. [PMID: 12595337 DOI: 10.1161/01.res.0000056770.30922.e6] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In mammalian organs under normoxic conditions, O2 concentration ranges from 12% to <0.5%, with O2 approximately 14% in arterial blood and <10% in the myocardium. During mild hypoxia, myocardial O2 drops to approximately 1% to 3% or lower. In response to chronic moderate hypoxia, cells adjust their normoxia set point such that reoxygenation-dependent relative elevation of PO2 results in perceived hyperoxia. We hypothesized that O2, even in marginal relative excess of the PO2 to which cardiac cells are adjusted, results in activation of specific signal transduction pathways that alter the phenotype and function of these cells. To test this hypothesis, cardiac fibroblasts (CFs) isolated from adult murine ventricle were cultured in 10% or 21% O2 (hyperoxia relative to the PO2 to which cells are adjusted in vivo) and were compared with those cultured in 3% O2 (mild hypoxia). Compared with cells cultured in 3% O2, cells that were cultured in 10% or 21% O2 demonstrated remarkable reversible G2/M arrest and a phenotype indicative of differentiation to myofibroblasts. These effects were independent of NADPH oxidase function. CFs exposed to high O2 exhibited higher levels of reactive oxygen species production. The molecular signature response to perceived hyperoxia included (1) induction of p21, cyclin D1, cyclin D2, cyclin G1, Fos-related antigen-2, and transforming growth factor-beta1, (2) lowered telomerase activity, and (3) activation of transforming growth factor-beta1 and p38 mitogen-activated protein kinase. CFs deficient in p21 were resistant to such O2 sensitivity. This study raises the vital broad-based issue of controlling ambient O2 during the culture of primary cells isolated from organs.
Collapse
Affiliation(s)
- Sashwati Roy
- Laboratory of Molecular Medicine, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Boura C, Caron A, Longrois D, Mertes PM, Labrude P, Menu P. Volume expansion with modified hemoglobin solution, colloids, or crystalloid after hemorrhagic shock in rabbits: effects in skeletal muscle oxygen pressure and use versus arterial blood velocity and resistance. Shock 2003; 19:176-82. [PMID: 12578128 DOI: 10.1097/00024382-200302000-00015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Therapeutic goals for hemorrhagic shock resuscitation are the increase of cardiac output and oxygen delivery. The possibility exists that because of microcirculatory effects, different volume expanders result in different tissue oxygen delivery and oxygen use. In a rabbit model of resuscitation from hemorrhagic shock (50% blood loss), we compared the effects of an hemoglobin-based O2-carrying solution (HbOC) with those elicited by albumin, hydroxyethyl starch (HES), or saline on systemic hemodynamics, skeletal muscle O2 pressure (PtiO2), and interstitial concentration of lactate (LACi) through the combined implantation of a microdialysis probe and a sensitive O2 electrode into the hind limb. Hemorrhagic shock induced a 50% decrease in mean arterial pressure (MAP), femoral artery blood flow (BF), and PtiO2. After resuscitation, there were statistically significant differences among the volume expanders. The increase in MAP was faster with HbOC and colloids, and slower with saline, mainly obtained by vasoconstriction for HbOC and by increased BF with albumin and HES. The maximum MAP values were significantly higher for HbOC compared with the other volume expanders. HbOC and colloids induced a faster increase in PtiO2 as compared with saline, but maximum PtiO2 values were not different among the volume expanders. Tissue oxygen use as estimated by LACi increased transiently at the beginning of volume expansion with similar maximum values. Animals resuscitated with saline had significantly higher LACi concentrations after the onset of volume expansion as compared with HbOC but not with colloids. Our results demonstrate that there are measurable differences in MAP and BF upon resuscitation with the four different solutions and there is a slower increase in tissue PtiO2 with saline than with colloids associated with significantly increased LACi consistent with delayed reoxygenation upon resuscitation with saline.
Collapse
Affiliation(s)
- Cédric Boura
- Laboratoire d'hématologie et physiologie, Faculté de Pharmacie, Université Henri Poincaré, Nancy, France
| | | | | | | | | | | |
Collapse
|