1
|
Sahu RK, Tandon S, Singh S, Das BC, Hedau ST. Methyl CpG binding protein MBD2 has a regulatory role on the BRCA1 gene expression and its modulation by resveratrol in ER+, PR+ & triple-negative breast cancer cells. BMC Cancer 2024; 24:566. [PMID: 38711004 PMCID: PMC11071212 DOI: 10.1186/s12885-024-12274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Resveratrol has demonstrated its ability to regulate BRCA1 gene expression in breast cancer cells, and previous studies have established the binding of MBD proteins to BRCA1 gene promoter regions. However, the molecular mechanism underlying these interactions remains to be elucidated. The aimed to evaluate the impact of MBD proteins on the regulation of BRCA1, BRCA2, and p16 genes and their consequential effects on breast cancer cells. METHODS Efficacy of resveratrol was assessed using the MTT assay. Binding interactions were investigated through EMSA, ChIP, & MeIP assay. Expression analyses of MBD genes and proteins were conducted using qRT-PCR and western blotting, respectively. Functional assays, including clonogenic, migratory, and sphere formation assays were used to assess cancer cells' colony-forming, metastatic, and tumor-forming abilities. The cytotoxicity of resveratrol on cancer cells was also tested using an apoptosis assay. RESULTS The study determined an IC50 of 30µM for resveratrol. MBD proteins were found to bind to the BRCA1 gene promoter. Resveratrol exhibited regulatory effects on MBD gene expression, subsequently impacting BRCA1 gene expression and protein levels. Higher concentrations of resveratrol resulted in reduced colony and sphere formation, decreases migration of cancer cells, and an increases number of apoptotic cells in breast cancer cells. Impact Identification of MBD2-BRCA1 axis indicates their significant role in the induction of apoptosis and reduction of metastasis and proliferation in breast cancer cells. Further therapy can be designed to target these MBD proteins and resveratrol could be used along with other anticancer drugs to target breast cancer. CONCLUSIONS In conclusion MBD2 protein interact to the BRCA1 gene promoter, and resveratrol modulates MBD2 gene expression, which in turn regulates BRCA1 gene expression, and inhibits cell proliferation, migration, and induces apoptosis in ER+, PR+ & Triple negative breast cancer cells.
Collapse
Affiliation(s)
- Ram Krishna Sahu
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I -7, Sector - 39, Noida, Uttar Pradesh, 201301, India
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201313, India
| | | | - Shalini Singh
- Division of Clinical Oncology, ICMR-National Institute of Cancer Prevention and Research, I -7, Sector - 39, Noida, Uttar Pradesh, 201301, India
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Suresh T Hedau
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I -7, Sector - 39, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
2
|
Olausson P, Gerdle B, Ghafouri N, Sjöström D, Blixt E, Ghafouri B. Protein alterations in women with chronic widespread pain--An explorative proteomic study of the trapezius muscle. Sci Rep 2015; 5:11894. [PMID: 26150212 PMCID: PMC4493691 DOI: 10.1038/srep11894] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022] Open
Abstract
Chronic widespread pain (CWP) has a high prevalence in the population and is associated with prominent negative individual and societal consequences. There is no clear consensus concerning the etiology behind CWP although alterations in the central processing of nociception maintained by peripheral nociceptive input has been suggested. Here, we use proteomics to study protein changes in trapezius muscle from 18 female patients diagnosed with CWP compared to 19 healthy female subjects. The 2-dimensional gel electrophoresis (2-DE) in combination with multivariate statistical analyses revealed 17 proteins to be differently expressed between the two groups. Proteins were identified by mass spectrometry. Many of the proteins are important enzymes in metabolic pathways like the glycolysis and gluconeogenesis. Other proteins are associated with muscle damage, muscle recovery, stress and inflammation. The altered expressed levels of these proteins suggest abnormalities and metabolic changes in the myalgic trapezius muscle in CWP. Taken together, this study gives further support that peripheral factors may be of importance in maintaining CWP.
Collapse
Affiliation(s)
- Patrik Olausson
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Björn Gerdle
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Nazdar Ghafouri
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Dick Sjöström
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Emelie Blixt
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Bijar Ghafouri
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| |
Collapse
|
3
|
Mikkelsen UR, Paulsen G, Schjerling P, Helmark IC, Langberg H, Kjær M, Heinemeier KM. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion. Eur J Appl Physiol 2013; 113:1883-93. [PMID: 23467900 DOI: 10.1007/s00421-013-2606-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/03/2013] [Indexed: 12/20/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed in relation to pain and injuries in skeletal muscle, but may adversely affect muscle adaptation probably via inhibition of prostaglandin synthesis. Induction of heat shock proteins (HSP) represents an important adaptive response in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal eccentric contractions with each leg with intramuscular infusion of the NSAID indomethacin or placebo. Biopsies were obtained from m. vastus lateralis before and after (5, 28 hrs and 8 days) the exercise bout from both legs (NSAID vs unblocked leg) and analysed for expression of the HSPs HSP70, HSP27 and αB-crystallin (mRNA and protein). NSAID did not affect the mRNA expression of any of the HSPs. Compared to pre values, the mRNA expression of all HSPs was increased; αB-crystallin, 3.6- and 5.4-fold; HSP70, 26- and 3.4-fold; and HSP27: 4.8- and 6.5-fold at 5 and 28 hrs post-exercise, respectively (all p < 0.008). Immunohistochemical stainings for αB-crystallin and HSP70 revealed increased staining in some samples but with no differences between legs. Changes in force-generating capacity correlated with both αB-crystallin and HSP70 mRNA and immunohistochemisty data. Increased expression of HSPs was observed on mRNA and protein level following eccentric exercise; however, this response was unaffected by local intramuscular infusion of NSAIDs.
Collapse
Affiliation(s)
- U R Mikkelsen
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
4
|
Han Q, Zhang X, Xue R, Yang H, Zhou Y, Kong X, Zhao P, Li J, Yang J, Zhu Y, Guan Y. AMPK potentiates hypertonicity-induced apoptosis by suppressing NFκB/COX-2 in medullary interstitial cells. J Am Soc Nephrol 2011; 22:1897-911. [PMID: 21903993 DOI: 10.1681/asn.2010080822] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cells residing in the hypertonic, hypoxic renal medulla depend on dynamic adaptation mechanisms to respond to changes in energy supply and demand. The serine/threonine kinase 5'-AMP protein kinase (AMPK) is a sensor of cellular energy status, but whether it contributes to the survival of cells in the renal medulla is unknown. Here, hypertonic conditions induced a decrease in AMPK phosphorylation within 12 hours in renal medullary interstitial cells (RMIC), followed by a gradual return to baseline levels. Activation of AMPK markedly increased hypertonicity-induced apoptosis of RMICs and suppressed both hypertonicity-induced NFκB nuclear translocation and cyclooxygenase-2 (COX-2) activation; overexpression of COX-2 significantly attenuated these effects. AMPK activation also markedly reduced generation of reactive oxygen species and nuclear expression of tonicity-responsive enhancer-binding protein, which prevented upregulation of osmoprotective genes. In vivo, pharmacologic activation of AMPK led to massive apoptosis of RMICs and renal dysfunction in the setting of water deprivation in mice. Taken together, these results identify a critical role for AMPK in the maintenance of RMIC viability and suggest that AMPK modulates the NFκB-COX-2 survival pathway in the renal medulla. Furthermore, this study raises safety concerns for the development of AMPK activators as anti-diabetic drugs, especially for patients prone to dehydration.
Collapse
Affiliation(s)
- Qifei Han
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ebenezer PJ, Mariappan N, Elks CM, Haque M, Soltani Z, Reisin E, Francis J. Effects of pyrrolidine dithiocarbamate on high-fat diet-induced metabolic and renal alterations in rats. Life Sci 2009; 85:357-64. [PMID: 19631668 DOI: 10.1016/j.lfs.2009.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 05/28/2009] [Accepted: 06/29/2009] [Indexed: 12/11/2022]
Abstract
AIMS We investigated the effects of the nuclear factor kappa B (NFkappaB) blocker pyrrolidine dithiocarbamate (PDTC) on high-fat diet (HFD)-induced metabolic and renal alterations in obese and lean Zucker rats (OZR and LZR, respectively). MAIN METHODS Rats were fed a HFD resembling the typical "Western" diet or a regular diet (RD) and allowed free access to tap water or tap water containing PDTC (150 mg/kg body weight) for 10 weeks; rats were then sacrificed. Total ROS production rates were measured using electron paramagnetic resonance spectroscopy, and superoxide production was measured with lucigenin assay. Blood, plasma, and urine were analyzed. Semi-quantitative reverse transcriptase-polymerase chain reaction and electrophoretic mobility shift assay were conducted to assess NFkappaB mRNA levels and DNA binding activities, respectively; immunofluorescence was performed to assess protein levels. KEY FINDINGS OZR-HFD rats exhibited significantly higher levels of total renal cortical reactive oxygen species production, plasma lipids, insulin, C-reactive protein, blood urea nitrogen, creatinine, and urinary albumin excretion than all other groups (p<0.05); these changes were accompanied by a significant decrease in plasma high density lipoprotein levels (p<0.05). Gene expression levels of desmin, cytokine and oxidative stress genes were significantly higher in the renal cortical tissues of OZR-HFD; NFkappaB p65 DNA binding activity was also significantly higher in these animals. PDTC attenuated these changes. SIGNIFICANCE Our data suggest that NFkappaB blockade may prove beneficial in treating the nephropathy often associated with metabolic syndrome.
Collapse
Affiliation(s)
- Philip J Ebenezer
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Njemini R, Lambert M, Demanet C, Kooijman R, Mets T. Basal and infection-induced levels of heat shock proteins in human aging. Biogerontology 2007; 8:353-64. [PMID: 17211576 DOI: 10.1007/s10522-006-9078-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/13/2006] [Indexed: 01/11/2023]
Abstract
Heat shock proteins (Hsp) are ubiquitously expressed proteins, which are highly inducible by a variety of stressful stimuli. As organisms age, various denatured proteins such as proteins modified by oxidation have been detected. Such abnormal proteins might serve as stress signals for the induction of Hsp, which plays indispensable roles in protecting proteins from denaturation. Although it is well known that the heat shock induced expression of Hsp decreases with age, little attention has been given to the unstimulated, basal levels of Hsp. Therefore, a study was performed to examine the expression pattern of various Hsp with aging, under normal physiological conditions in human peripheral blood cells. The basal levels of Hsp32, Hsp70 and Hsp90 increased significantly with age in controls but not patients. Moreover, the levels of Hsp32, Hsp70, Hsp90, but not Hsp27 correlated positively among each other, indicating both common and different regulatory mechanisms. Higher levels of Hsp32, Hsp70 and Hsp90 were noticed in patients with inflammation, a commonly occurring natural stimulant of Hsp production, compared to control subjects. The production of Hsp appeared to be related to the circulating levels of C-reactive protein and cytokines.
Collapse
Affiliation(s)
- Rose Njemini
- Gerontology and Geriatrics, Academic Hospital, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | | | | | | | | |
Collapse
|
7
|
Abstract
This review considers modern concepts on the structural-functional properties and antiproliferative, antitumor, and antiviral effects of cyclopentenone prostaglandins A and mechanisms underlying their actions. Possible directions of pharmacological application of these compounds and their analogs are discussed.
Collapse
|
8
|
Alter P, Rupp H, Maisch B. Activated nuclear transcription factor kappaB in patients with myocarditis and dilated cardiomyopathy--relation to inflammation and cardiac function. Biochem Biophys Res Commun 2005; 339:180-7. [PMID: 16297880 DOI: 10.1016/j.bbrc.2005.10.195] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 10/30/2005] [Indexed: 01/10/2023]
Abstract
OBJECTIVES AND BACKGROUND Myocarditis is caused by various agents and autoimmune processes. It is unknown whether viral genome persistence represents inactive remnants of previous infections or whether it is attributed to ongoing adverse processes. The latter also applies to the course of autoimmune myocarditis. One principal candidate for an adverse remodeling is nuclear factor-kappaB (NFkappaB). METHODS A total of 93 patients with suspected myocarditis/cardiomyopathy was examined. Hemodynamics were assessed by echocardiography as well as right and left heart catheterization. Endomyocardial biopsies were taken from the left ventricle. Biopsies were examined by immunohistochemistry and PCR for viral genomes. Selective immunostaining of activated NFkappaB was performed. RESULTS NFkappaB was increased in patients with myocarditis when compared with controls (11.1+/-7.1% vs. 5.0+/-5.3%, P<0.005) whereas dilated cardiomyopathy showed no significant increase. Patients with myocarditis and preserved left ventricular function exhibited increased activated NFkappaB when compared with reduced function (r2=0.72, P<0.001). In parallel, inverse correlation of NFkappaB and left ventricular enddiasstolic volume was found (r2=0.43, P<0.02). Increased activated NFkappaB was found in adenovirus persistence when compared with controls (P=0.001). Only a trend of increased NFkappaB activation was seen in cytomegalovirus persistence. Parvovirus B19 persistence did not affect NFkappaB activation. CONCLUSIONS Increased activation of NFkappaB is related to inflammatory processes in myocarditis. Since activated NFkappaB correlates with left ventricular function, it could be assumed that NFkappaB activation occurs at early stages of inflammation. Potentially, NFkappaB could inhibit loss of cardiomyocytes by apoptosis and protect from cardiac dilation. Since NFkappaB is a crucial key transcription factor of inflammation, its prognostic and future therapeutic relevance should be addressed.
Collapse
Affiliation(s)
- Peter Alter
- Philipps University of Marburg, Department of Internal Medicine-Cardiology, Germany.
| | | | | |
Collapse
|
9
|
Nakada J, Matsura T, Okazaki N, Nishida T, Togawa A, Minami Y, Inagaki Y, Ito H, Yamada K, Ishibe Y. ORAL ADMINISTRATION OF GERANYLGERANYLACETONE IMPROVES SURVIVAL RATE IN A RAT ENDOTOXIN SHOCK MODEL: ADMINISTRATION TIMING AND HEAT SHOCK PROTEIN 70 INDUCTION. Shock 2005; 24:482-7. [PMID: 16247336 DOI: 10.1097/01.shk.0000180980.63247.a9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The present study was performed to determine whether oral pretreatment with geranylgeranylacetone (GGA) inhibits proinflammatory cytokine liberation and nitric oxide (NO) production in lipopolysaccharide (LPS)-treated rats and protects rats against death from LPS-induced endotoxin shock, and whether such protection by GGA is related to heat shock protein (HSP) 70 induction in multiple organs of rats. GGA (200 mg/kg) was given orally to rats. LPS (20 mg/kg) was administered intraperitoneally 4, 8, 16, or 24 h after GGA administration. The survival of rats was monitored over 24 h after LPS administration. GGA treatment at 8 or 16 h before LPS dramatically improved the survival rate of LPS-treated rats. Plasma levels of proinflammatory cytokines (tumor necrosis factor-alpha and interleukin-6) and NO 6 h after LPS administration in these GGA-pretreated rats were less than one-half of those in rats treated with LPS alone. A GGA challenge 8 or 16 h before LPS administration enhanced HSP70 expression in rat organs after LPS. Treatment with GGA 8 h before LPS minimized hepatic and renal damage. Furthermore, the protective effect of GGA on mortality in LPS-treated rats was inhibited with quercetin, known as an HSP70 inhibitor. These results suggest that oral administration of GGA at an optimal time before LPS injection induces and enhances HSP70 expression in several organs, inhibits proinflammatory cytokine and NO production, and prevents organ damage, resulting in an improved survival rate.
Collapse
Affiliation(s)
- Junya Nakada
- Division of Medical Biochemistry, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hamilton KL, Mbai FN, Gupta S, Knowlton AA. Estrogen, heat shock proteins, and NFkappaB in human vascular endothelium. Arterioscler Thromb Vasc Biol 2004; 24:1628-33. [PMID: 15231513 DOI: 10.1161/01.atv.0000137188.76195.fb] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We hypothesized that estrogen would increase HSP72 in human coronary artery endothelial cells (HCAEC), and that these would be more sensitive to estrogen than our previous observations in myocytes. METHODS AND RESULTS HCAEC were treated with 17beta-estradiol or tamoxifen, ranging from physiological to pharmacological(1 nM to 10 micromol/L) for either 24 hours (early) or 7 days (chronic). HSP expression was assessed by Western blots. Both early and chronic 17beta-estradiol and tamoxifen increased HSP72. Electromobility shift assays (EMSA) showed activation of HSF-1 with early, but not chronic, 17beta-estradiol. 17beta-Estradiol activated NFkappaB within 10 minutes, and the ER-alpha selective inhibitor, ICI 182 780, abolished this effect. Transcription factor decoys containing the heat shock element blocked HSP72 induction. Estrogen pretreatment decreased lactate dehydrogenase release with hypoxia. This protective effect persisted despite blockade of HSF-1 by decoys. However, an NF-kappaB decoy prevented the increase in HSP72 and abolished the estrogen-associated protection during hypoxia. CONCLUSIONS 17beta-Estradiol upregulates HSP72 early and chronically via different mechanisms in HCAEC, and provides cytoprotection during hypoxia, independent of HSP72 induction. NF-kappaB mediates the early increase in HSP72, suggesting that estrogen activates NF-kappaB via a nongenomic, receptor-dependent mechanism, and this leads to activation of HSF-1. Activation of NF-kappaB was critical for estrogen-associated protection. Further studies are needed to elucidate the involved signaling pathways. We hypothesized that estrogen would increase HSP72 in human coronary artery endothelial cells (HCAEC). Both early and chronic treatment increased HSP72. EMSA showed activation of HSF-1 with early, but not chronic, 17beta-estradiol. Transcription factor decoys blocked estrogen-related HSP72 induction. Estrogen decreased LDH release with hypoxia. An NF-kappaB decoy blocked the HSP72 increase and estrogen-associated protection.
Collapse
|
11
|
Kim KY, Shin SM, Kim JK, Paik SG, Yang Y, Choi I. Heat shock factor regulates VDUP1 gene expression. Biochem Biophys Res Commun 2004; 315:369-75. [PMID: 14766217 DOI: 10.1016/j.bbrc.2004.01.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Indexed: 11/20/2022]
Abstract
The vitamin D3 up-regulated protein 1 (VDUP1) is identified as interacting protein with thioredoxin (TRX) and functions as a natural antagonist of TRX. Its expression is regulated by various stresses including ROS, UV, and heat shock. In the present study, we observed an inducible expression of VDUP1 in Bosc cells by high density and serum deprivation cultures. To determine transcription factors associated with the induction of VDUP1 by stresses, the promoter region of VDUP1 was cloned. Through reporter assays with plasmids having various deletion of its promoter region and analysis of putative cis-elements, heat shock factor element (HSE) was identified. The deletion of HSE abolished transcriptional activity of VDUP1 promoter by stresses and the binding of heat shock factor (HSF) to HSE was confirmed by gel-shift and supershift assays using nuclear extracts prepared from stressed Bosc cells. Also, the enforced expression of HSF or heat shock increased the transcription of endogenous VDUP1. These imply that HSF is an important transcription factor involved in up-regulation of VDUP1 expression by stresses such as high density and serum deprivation cultures.
Collapse
Affiliation(s)
- Kun-Yong Kim
- Laboratory of Immunology, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon 305-333, Republic of Korea
| | | | | | | | | | | |
Collapse
|
12
|
Jarrar D, Wang P, Chaudry IH. Metabolic disturbances in shock, and the role of ATP-MgCl2 and sex steroids. Med Princ Pract 2004; 13:2-9. [PMID: 14657611 DOI: 10.1159/000074043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2002] [Accepted: 05/02/2003] [Indexed: 11/19/2022] Open
Abstract
Hemorrhage following accidental injuries is a common cause of death in the industrialized world. Moreover, the impact of elective surgery and solid organ transplantation sometimes results in low flow conditions similar to those seen following hemorrhagic shock. A shortage in O(2) availability, or hypoxia, leads to sequential changes in cell metabolism and morphology, including inflammatory responses and the expression of hypoxia-inducible transcription factor-1, which controls the cellular adaptation to hypoxia. These endogenous adaptive responses show that O(2) deprivation is not an unforeseen event for cells. The purpose of this review article is to discuss the pathophysiologic principles of shock and the metabolic alterations that cells undergo during low flow conditions. Moreover, the rationale for therapeutic intervention by administering ATP-MgCl(2) and sex steroids following shock and trauma will also be discussed.
Collapse
Affiliation(s)
- Doraid Jarrar
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, Ala. 35294-0019, USA
| | | | | |
Collapse
|
13
|
Abstract
The vertebrate transcription factor NF-kappaB is induced by over 150 different stimuli. Active NF-kappaB, in turn, participates in the control of transcription of over 150 target genes. Because a large variety of bacteria and viruses activate NF-kappaB and because the transcription factor regulates the expression of inflammatory cytokines, chemokines, immunoreceptors, and cell adhesion molecules, NF-kappaB has often been termed a 'central mediator of the human immune response'. This article contains a complete listing of all NF-kappaB inducers and target genes described to date. The collected data argue that NF-kappaB functions more generally as a central regulator of stress responses. In addition, NF-kappaB activation blocks apoptosis in several cell types. Coupling stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Collapse
Affiliation(s)
- H L Pahl
- Department of Experimental Anesthesiology, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|