1
|
Telkki VV, Urbańczyk M, Zhivonitko V. Ultrafast methods for relaxation and diffusion. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:101-120. [PMID: 34852922 DOI: 10.1016/j.pnmrs.2021.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Relaxation and diffusion NMR measurements offer an approach to studying rotational and translational motion of molecules non-invasively, and they also provide chemical resolution complementary to NMR spectra. Multidimensional experiments enable the correlation of relaxation and diffusion parameters as well as the observation of molecular exchange phenomena through relaxation or diffusion contrast. This review describes how to accelerate multidimensional relaxation and diffusion measurements significantly through spatial encoding. This so-called ultrafast Laplace NMR approach shortens the experiment time to a fraction and makes even single-scan experiments possible. Single-scan experiments, in turn, significantly facilitate the use of nuclear spin hyperpolarization methods to boost sensitivity. The ultrafast Laplace NMR method is also applicable with low-field, mobile NMR instruments, and it can be exploited in many disciplines. For example, it has been used in studies of the dynamics of fluids in porous materials, identification of intra- and extracellular metabolites in cancer cells, and elucidation of aggregation phenomena in atmospheric surfactant solutions.
Collapse
Affiliation(s)
| | - Mateusz Urbańczyk
- NMR Research Unit, University of Oulu, P.O. Box 3000, FIN-90014, Finland; Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | | |
Collapse
|
2
|
Abstract
The exchange of molecules between different physical or chemical environments due to diffusion or chemical transformations has a crucial role in a plethora of fundamental processes such as breathing, protein folding, chemical reactions and catalysis. Here, we introduce a method for a single-scan, ultrafast NMR analysis of molecular exchange based on the diffusion coefficient contrast. The method shortens the experiment time by one to four orders of magnitude. Consequently, it opens the way for high sensitivity quantification of important transient physical and chemical exchange processes such as in cellular metabolism. As a proof of principle, we demonstrate that the method reveals the structure of aggregates formed by surfactants relevant to aerosol research. Analysis of exchange processes is time consuming by two-dimensional exchange NMR spectroscopy. Here the authors demonstrate a single-scan ultrafast Laplace NMR approach based on spatial encoding to measure molecular diffusion, with an increase by a factor six in the sensitivity per unit time.
Collapse
|
3
|
Ahola S, Mankinen O, Telkki VV. Ultrafast NMR diffusion measurements exploiting chirp spin echoes. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:341-347. [PMID: 27726201 DOI: 10.1002/mrc.4540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Standard diffusion NMR measurements require the repetition of the experiment multiple times with varying gradient strength or diffusion delay. This makes the experiment time-consuming and restricts the use of hyperpolarized substances to boost sensitivity. We propose a novel single-scan diffusion experiment, which is based on spatial encoding of two-dimensional data, employing the spin-echoes created by two successive adiabatic frequency-swept chirp π pulses. The experiment is called ultrafast pulsed-field-gradient spin-echo (UF-PGSE). We present a rigorous derivation of the echo amplitude in the UF-PGSE experiment, justifying the theoretical basis of the method. The theory reveals also that the standard analysis of experimental data leads to a diffusion coefficient value overestimated by a few per cent. Although the overestimation is of the order of experimental error and thus insignificant in many practical applications, we propose that it can be compensated by a bipolar gradient version of the experiment, UF-BP-PGSE, or by corresponding stimulated-echo experiment, UF-BP-pulsed-field-gradient stimulated-echo. The latter also removes the effect of uniform background gradients. The experiments offer significant prospects for monitoring fast processes in real time as well as for increasing the sensitivity of experiments by several orders of magnitude by nuclear spin hyperpolarization. Furthermore, they can be applied as basic blocks in various ultrafast multidimensional Laplace NMR experiments. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Susanna Ahola
- NMR Research Unit, University of Oulu, POBox 3000, FIN-90014, Oulu, Finland
| | - Otto Mankinen
- NMR Research Unit, University of Oulu, POBox 3000, FIN-90014, Oulu, Finland
| | | |
Collapse
|
4
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|
5
|
Chen HY, Hilty C. Implementation and characterization of flow injection in dissolution dynamic nuclear polarization NMR spectroscopy. Chemphyschem 2015; 16:2646-52. [PMID: 26139513 DOI: 10.1002/cphc.201500292] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 11/08/2022]
Abstract
The use of dissolution dynamic nuclear polarization (D-DNP) offers substantially increased signals in liquid-state NMR spectroscopy. A challenge in realizing this potential lies in the transfer of the hyperpolarized sample to the NMR detector without loss of hyperpolarization. Here, the use of a flow injection method using high-pressure liquid leads to improved performance compared to the more common gas-driven injection, by suppressing residual fluid motions during the NMR experiment while still achieving a short injection time. Apparent diffusion coefficients are determined from pulsed field gradient echo measurements, and are shown to fall below 1.5 times the value of a static sample within 0.8 s. Due to the single-scan nature of D-DNP, pulsed field gradients are often the only choice for coherence selection or encoding, but their application requires stationary fluid. Sample delivery driven by a high-pressure liquid will improve the applicability of these types of D-DNP advanced experiments.
Collapse
Affiliation(s)
- Hsueh-Ying Chen
- Department of Chemistry, Texas A&M University, College Station, TX 77843 (USA)
| | - Christian Hilty
- Department of Chemistry, Texas A&M University, College Station, TX 77843 (USA).
| |
Collapse
|
6
|
Zubkov M, Stait-Gardner T, Price WS, Stilbs P. Steady state effects in a two-pulse diffusion-weighted sequence. J Chem Phys 2015; 142:154201. [DOI: 10.1063/1.4918279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Sigmund EE, Novikov DS, Sui D, Ukpebor O, Baete S, Babb JS, Liu K, Feiweier T, Kwon J, Mcgorty K, Bencardino J, Fieremans E. Time-dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM): application to normal controls and chronic exertional compartment syndrome patients. NMR IN BIOMEDICINE 2014; 27:519-28. [PMID: 24610770 PMCID: PMC3980069 DOI: 10.1002/nbm.3087] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/13/2013] [Accepted: 01/10/2014] [Indexed: 05/11/2023]
Abstract
The purpose of this work was to carry out diffusion tensor imaging (DTI) at multiple diffusion times Td in skeletal muscle in normal subjects and chronic exertional compartment syndrome (CECS) patients and analyze the data with the random permeable barrier model (RPBM) for biophysical specificity. Using an institutional review board approved HIPAA-compliant protocol, seven patients with clinical suspicion of CECS and eight healthy volunteers underwent DTI of the calf muscle in a Siemens MAGNETOM Verio 3 T scanner at rest and after treadmill exertion at four different T(d) values. Radial diffusion values λ(rad) were computed for each of seven different muscle compartments and analyzed with RPBM to produce estimates of free diffusivity D(0), fiber diameter a, and permeability κ. Fiber diameter estimates were compared with measurements from literature autopsy reference for several compartments. Response factors (post/pre-exercise ratios) were computed and compared between normal controls and CECS patients using a mixed-model two-way analysis of variance. All subjects and muscle compartments showed nearly time-independent diffusion along and strongly time-dependent diffusion transverse to the muscle fibers. RPBM estimates of fiber diameter correlated well with corresponding autopsy reference. D(0) showed significant (p < 0.05) increases with exercise for volunteers, and a increased significantly (p < 0.05) in volunteers. At the group level, response factors of all three parameters showed trends differentiating controls from CECS patients, with patients showing smaller diameter changes (p = 0.07), and larger permeability increases (p = 0.07) than controls. Time-dependent diffusion measurements combined with appropriate tissue modeling can provide enhanced microstructural specificity for in vivo tissue characterization. In CECS patients, our results suggest that high-pressure interfiber edema elevates free diffusion and restricts exercise-induced fiber dilation. Such specificity may be useful in differentiating CECS from other disorders or in predicting its response to either physical therapy or fasciotomy.
Collapse
Affiliation(s)
- Eric E. Sigmund
- Department of Radiology, New York University Langone Medical Center, New York, NY USA
| | - Dmitry S. Novikov
- Department of Radiology, New York University Langone Medical Center, New York, NY USA
| | - Dabang Sui
- Department of Radiology, New York University Langone Medical Center, New York, NY USA
- Shanghai Tongyue Leasing Co., Ltd., Shanghai City, China
| | - Obehi Ukpebor
- Department of Radiology, New York University Langone Medical Center, New York, NY USA
- Brooklyn College of the City of New York, New York, NY USA
| | - Steven Baete
- Department of Radiology, New York University Langone Medical Center, New York, NY USA
| | - James S. Babb
- Division of Biostatistics, New York University Langone Medical Center, New York, NY USA
| | - Kecheng Liu
- Department of Neurology, Epilepsy Center, New York University Langone Medical Center, New York, NY USA
| | | | - Jane Kwon
- Department of Radiology, New York University Langone Medical Center, New York, NY USA
- Department of Neurology, Epilepsy Center, New York University Langone Medical Center, New York, NY USA
| | - KellyAnne Mcgorty
- Department of Radiology, New York University Langone Medical Center, New York, NY USA
- New York Presbyterian Hospital-Columbia University Medical Center, New York NY USA
| | - Jenny Bencardino
- Department of Radiology, New York University Langone Medical Center, New York, NY USA
| | - Els Fieremans
- Department of Radiology, New York University Langone Medical Center, New York, NY USA
| |
Collapse
|
8
|
Granwehr J, Panek R, Leggett J, Köckenberger W. Quantifying the transfer and settling in NMR experiments with sample shuttling. J Chem Phys 2010; 132:244507. [DOI: 10.1063/1.3446804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Shrot Y, Frydman L. Single-scan 2D DOSY NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 195:226-231. [PMID: 18835796 DOI: 10.1016/j.jmr.2008.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/24/2008] [Accepted: 09/10/2008] [Indexed: 05/26/2023]
Abstract
Spatial encoding is a particular kind of spin manipulation that enables the acquisition of multidimensional NMR spectra within a single scan. This encoding has been shown to possess a general applicability and to enable the completion of arbitrary nD NMR acquisitions within a single transient. The present study explores its potential towards the acquisition of 2D DOSY spectra, where the indirect dimension is meant to encode molecular displacements rather than a coherent spin evolution. We find that in its simplest form this extension shows similarities with methods that have been recently discussed for the single-scan acquisition of this kind of traces; still, a number of advantageous features are also evidenced by the "ultrafast" modality hereby introduced. The principles underlying the operation of this new single-scan 2D DOSY approach are discussed, its use is illustrated with a variety of sequences and of samples, the limitations of this new experiment are noted, and potential extensions of the methodology are mentioned.
Collapse
Affiliation(s)
- Yoav Shrot
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | |
Collapse
|
10
|
Szutkowski K, Furó I. Effective and accurate single-shot NMR diffusion experiments based on magnetization grating. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 195:123-128. [PMID: 18930665 DOI: 10.1016/j.jmr.2008.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 08/13/2008] [Accepted: 08/24/2008] [Indexed: 05/26/2023]
Abstract
Current single-shot diffusion methods based on magnetization gratings suffer from low sensitivity due to small rf tip angles and, consequently, from inefficient use of the total equilibrium magnetization. Here, we propose and illustrate the use of a slightly modified form of the magnetization encoding scheme OUFIS for single-shot diffusion experiments. In a detailed theoretical and experimental analysis, we compare the performance of the proposed method to other encoding schemes such as the one-phase or two-phase DANTE and conclude that the OUFIS-based experiment is a superior one. The primary reason is that this scheme allows one to use a larger total pulse area. Hence, one can encode a far larger portion of the initial magnetization into a frequency grating before the onset of various nonlinear effects. In the experimental illustration, we present a single-shot measurement of multicomponent diffusion.
Collapse
Affiliation(s)
- Kosma Szutkowski
- Division of Physical Chemistry, Department of Chemistry, Royal Institute of Technology, Teknikringen 30/36, SE-10044 Stockholm, Sweden
| | | |
Collapse
|
11
|
Stait-Gardner T, Anil Kumar P, Price WS. Steady state effects in PGSE NMR diffusion experiments. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.07.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Davies CJ, Griffith JD, Sederman AJ, Gladden LF, Johns ML. Rapid surface-to-volume ratio and tortuosity measurement using Difftrain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 187:170-5. [PMID: 17485231 DOI: 10.1016/j.jmr.2007.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 04/10/2007] [Accepted: 04/12/2007] [Indexed: 05/15/2023]
Abstract
Analysis of diffusion measurements as a function of observation time (Delta), to calculate surface-to-volume ratios (S/V) and tortuosities (kappa), is a useful tool in the characterisation of porous media using NMR. However, using conventional pulsed field gradient (PFG) measurements, this requires long total experiment times (typically hours). Here, we show how the rapid diffusion measurement pulse sequence, Difftrain, can be used to provide the required experimental data much more rapidly (typically within minutes) with a consequential reduction in total experiment time of typically over an order of magnitude. Several novel modifications to the Difftrain pulse sequence are also presented to tailor it to this particular application; these include a variable delay between echoes (to ensure optimal echo position with respect to Delta) and a variable tip angle for the refocusing pulse (to ensure optimal use of available signal). Difftrain is applied to measure both S/V and kappa for a model glass bead pack; excellent agreement is found with both a conventional PFG measurement and with a bulk gravimetric measurement of S/V.
Collapse
Affiliation(s)
- Colin J Davies
- Magnetic Resonance Research Centre, Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge, UK
| | | | | | | | | |
Collapse
|
13
|
Hürlimann MD. Encoding of diffusion and T1 in the CPMG echo shape: single-shot D and T1 measurements in grossly inhomogeneous fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 184:114-29. [PMID: 17052930 DOI: 10.1016/j.jmr.2006.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 05/12/2023]
Abstract
We present a new approach of NMR measurements in the presence of grossly inhomogeneous fields where information is encoded in the echo shape of CPMG trains. The method is based on sequences that consist of an initial encoding sequence that generates echoes with contributions from at least two different coherence pathways that are then both refocused many times by a long string of closely spaced identical pulses. The generated echoes quickly assume an asymptotic shape that encodes the information of interest. High signal-to-noise ratios can be achieved by averaging the large number of echoes. We demonstrate this approach with different implementations of the measurements of longitudinal relaxation time, T(1), and diffusion coefficient, D. It is shown that the method can be used for novel single-shot measurements.
Collapse
|
14
|
Fast single-gradient simultaneous measurement of D and T2 in liquids via the distant dipolar field. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Knagge K, Smith JR, Smith LJ, Buriak J, Raftery D. Analysis of porosity in porous silicon using hyperpolarized 129Xe two-dimensional exchange experiments. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2006; 29:85-9. [PMID: 16257190 DOI: 10.1016/j.ssnmr.2005.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Indexed: 05/05/2023]
Abstract
The porosity in porous silicon was characterized using hyperpolarized (HP) xenon as a probe. HP xenon under conditions of continuous flow allows for the rapid acquisition of xenon NMR spectra that can be used to characterize a variety of materials. Two-dimensional exchange spectroscopy (EXSY) (129)Xe NMR experiments using HP xenon were performed to obtain exchange pathways and rates of xenon mobility between pores of different dimensions within the structure of porous silicon and to the gas phase above the sample. Pore sizes are estimated from chemical shift information and a model for pore geometry is presented.
Collapse
Affiliation(s)
- Kevin Knagge
- H.C. Brown Laboratory, Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
16
|
Song YQ. Multiple modulation multiple echoes: A one-shot method. Magn Reson Imaging 2005; 23:301-3. [PMID: 15833631 DOI: 10.1016/j.mri.2004.11.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 11/12/2004] [Indexed: 10/25/2022]
Abstract
This paper reviews a recently reported NMR method capable of determining the diffusion constant within milliseconds and without the need of multiple scans. The method can be used with static or pulsed magnetic field gradients.
Collapse
Affiliation(s)
- Yi-Qiao Song
- Schlumberger-Doll Research, 36 Old Quarry Road, Ridgefield, CT 06877, USA.
| |
Collapse
|
17
|
Song YQ, Scheven UM. An NMR technique for rapid measurement of flow. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 172:31-35. [PMID: 15589405 DOI: 10.1016/j.jmr.2004.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Revised: 09/08/2004] [Indexed: 05/24/2023]
Abstract
We present a one-scan method for determining fluid flow velocity within a few milliseconds in the presence of a static field gradient, and without the need of multiple scans. A few RF-pulses populate a series of coherence pathways, each of which exhibits a phase shift that is proportional to fluid velocity. These coherence pathways produce spin echoes separated in the time domain, thus eliminating the need for phase cycling.
Collapse
Affiliation(s)
- Yi-Qiao Song
- Schlumberger-Doll Research, 36 Old Quarry Road, Ridgefield, CT 06877, USA.
| | | |
Collapse
|
18
|
Abstract
Hyperpolarized gases have found a steadily increasing range of applications in nuclear magnetic resonance (NMR) and NMR imaging (MRI). They can be regarded as a new class of MR contrast agent or as a way of greatly enhancing the temporal resolution of the measurement of processes relevant to areas as diverse as materials science and biomedicine. We concentrate on the properties and applications of hyperpolarized xenon. This review discusses the physics of producing hyperpolarization, the NMR-relevant properties of 129Xe, specific MRI methods for hyperpolarized gases, applications of xenon to biology and medicine, polarization transfer to other nuclear species and low-field imaging.
Collapse
Affiliation(s)
- Ana-Maria Oros
- Institute of Medicine, Research Centre Jiilich, 52425 Jülich, Germany.
| | | |
Collapse
|
19
|
Song YQ, Tang X. A one-shot method for measurement of diffusion. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 170:136-148. [PMID: 15324767 DOI: 10.1016/j.jmr.2004.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 06/07/2004] [Indexed: 05/24/2023]
Abstract
This paper describes an NMR method capable of determining the diffusion constant of a material within a few milliseconds and without the need of multiple scans. The method can be used with static or pulsed magnetic field gradients. It may be used to detect time-dependent processes, such as in chemical reactions, production monitoring, and medical MRI.
Collapse
Affiliation(s)
- Yi-Qiao Song
- Schlumberger-Doll Research, 36 Old Quarry Road, Ridgefield, CT 06877, USA.
| | | |
Collapse
|
20
|
Mair RW, Rosen MS, Wang R, Cory DG, Walsworth RL. Diffusion NMR methods applied to xenon gas for materials study. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2002; 40:S29-S39. [PMID: 12807139 DOI: 10.1002/mrc.1114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack.
Collapse
Affiliation(s)
- R W Mair
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | |
Collapse
|
21
|
Goodson BM. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 155:157-216. [PMID: 12036331 DOI: 10.1006/jmre.2001.2341] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The sensitivity of conventional nuclear magnetic resonance (NMR) techniques is fundamentally limited by the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This review describes the principles and magnetic resonance applications of laser-polarized noble gases. The enormous sensitivity enhancement afforded by optical pumping can be exploited to permit a variety of novel NMR experiments across numerous disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, NMR sensitivity enhancement via polarization transfer, and low-field NMR and MRI.
Collapse
Affiliation(s)
- Boyd M Goodson
- Materials Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley 94720-1460, USA
| |
Collapse
|
22
|
|
23
|
Loening NM, Keeler J, Morris GA. One-dimensional DOSY. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 153:103-112. [PMID: 11700086 DOI: 10.1006/jmre.2001.2423] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new NMR experiment for correlating diffusion coefficients and chemical shifts is presented. This experiment provides the same information as the conventional DOSY experiment, but only requires a single dimension because a nonuniform magnetic field gradient is used to encode the diffusion information into the lineshapes of the peaks in the chemical shift dimension. By fitting the resulting lineshapes, the diffusion coefficient for each peak in the spectrum can be extracted. Using this experiment, a qualitative DOSY spectrum can be generated using the results from a single one-dimensional experiment. Quantitative results can be determined with the use of reference experiments.
Collapse
Affiliation(s)
- N M Loening
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.
| | | | | |
Collapse
|
24
|
Fujiwara H, Kimura A, Yanagawa Y, Kamiya T, Hattori M, Hiraga T. Relaxation behavior of laser-polarized (129)Xe gas: size dependency and wall effect of the T(1) relaxation time in glass and gelatin bulbs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 150:156-160. [PMID: 11384174 DOI: 10.1006/jmre.2001.2327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Size dependency of the relaxation time T(1) was measured for laser-polarized (129)Xe gas encapsulated in different sized cavities made by glass bulbs or gelatin capsules. The use of laser-polarized gas enhances the sensitivity a great deal, making it possible to measure the longer (129)Xe relaxation time in quite a short time. The size dependency is analyzed on the basis of the kinetic theory of gases and a relationship is derived in which the relaxation rate is connected with the square inverse of the diameter of the cavity. Such an analysis provides a novel parameter which denotes the wall effect on the relaxation rate when a gas molecule collides with the surface once in a second. The relaxation time of (129)Xe gas is also dependent on the material which forms the cavity. This dependency is large and the relaxation study using polarized (129)Xe gas is expected to offer important information about the state of the matter of the cavity wall.
Collapse
Affiliation(s)
- H Fujiwara
- School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Wheeler-Kingshott CA, Thomas DL, Lythgoe MF, Guilfoyle D, Williams SR, Doran SJ. Burst excitation for quantitative diffusion imaging with multiple b-values. Magn Reson Med 2000; 44:737-45. [PMID: 11064409 DOI: 10.1002/1522-2594(200011)44:5<737::aid-mrm12>3.0.co;2-t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A quantitative imaging sequence has been developed to exploit the intrinsic sensitivity of Burst NMR data to molecular diffusion. In the scan time of a single spin echo experiment, it is possible to acquire many images of the same slice, with a different T(2) and diffusion weighting. Under favorable conditions, it is possible to obtain both the diffusion coefficient and T(2) from the same experiment; or, by correcting for T(2) relaxation using a control image, more precise diffusion coefficients may be measured. The quantitative values in rat brain are in agreement with those from conventional experiments. The major gains of this method are the potentially reduced scan time, the higher number of acquired images corresponding to different diffusion weightings, the reduced sensitivity to inter-scan motion artifact and to local variations in magnetic susceptibility, and an automatic co-registration between T(2) and diffusion images. Problems with the sequence include a lower signal-to-noise ratio than is achievable with diffusion-weighted spin-echo imaging, the limitation of measuring only in-plane components of diffusion and, at present, single-slice acquisition.
Collapse
Affiliation(s)
- C A Wheeler-Kingshott
- NMR Unit, Department of Clinical Neurology, Institute of Neurology, UCL, London, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Hecke PV. Current awareness. NMR IN BIOMEDICINE 2000; 13:314-319. [PMID: 10960923 DOI: 10.1002/1099-1492(200008)13:5<314::aid-nbm627>3.0.co;2-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of NMR in biomedicine. Each bibliography is divided into 9 sections: 1 Books, Reviews ' Symposia; 2 General; 3 Technology; 4 Brain and Nerves; 5 Neuropathology; 6 Cancer; 7 Cardiac, Vascular and Respiratory Systems; 8 Liver, Kidney and Other Organs; 9 Muscle and Orthopaedic. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted.
Collapse
Affiliation(s)
- PV Hecke
- Katholicke Universiteit Leuven, Facultiet der Geneeskunde, Biomedische NMR Eenheid, Onderwijs en Navorsing, Gasthuisberg, B-3000 Leuven, Belgium
| |
Collapse
|