1
|
Altenhof AR, Yang Q, Kern M, Newman SG, Anders J, Malone MW. A high-volume resonator for L-band DNP-NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107788. [PMID: 39442474 DOI: 10.1016/j.jmr.2024.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
DNP-NMR and EPR experiments that operate at or greater than L-band (i.e., ν0(e-) = 1-2 GHz) are typically limited to maximum sample volumes of several hundred µL. These experiments rely on well-known resonator designs for DNP/EPR irradiation such as the loop-gap resonator and Alderman-Grant coil, where their maximum volumes limit further application to imaging experiments and high-throughput screening beyond L-band. Herein, we demonstrate a birdcage (BC) resonator design that can accommodate several mL of sample while operating around 1.5 GHz. The sample volume is maximized by using two identical BC resonators in a stacked configuration. Simulations are used to optimize the BC design and the performance is validated experimentally with liquid-state Overhauser-DNP-NMR experiments. This BC design exploits just the parasitic capacitance of conductive rings and features no fixed tuning capacitors. An enhancement of -77 is achieved on a 10 mM 4-Amino-TEMPO in H2O sample for a 5 mL sample volume. The associated sample heating is minimal due to the low-E-fields generated and the large sample mass with +3.4 K when driving 100 W for several seconds.
Collapse
Affiliation(s)
- Adam R Altenhof
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Qing Yang
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, Stuttgart 70569, Germany
| | - Michal Kern
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, Stuttgart 70569, Germany
| | - Shaun G Newman
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jens Anders
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, Stuttgart 70569, Germany; Institute for Microelectronics Stuttgart (IMS CHIPS), Allmandring 30A, Stuttgart 70569, Baden-Wuerttemberg, Germany; Center for Integrated Quantum Science and Technology (IQST), Stuttgart 70569, Baden-Wuerttemberg, Germany
| | - Michael W Malone
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
2
|
Elajaili HB, Dee NM, Dikalov SI, Kao JPY, Nozik ES. Use of Electron Paramagnetic Resonance (EPR) to Evaluate Redox Status in a Preclinical Model of Acute Lung Injury. Mol Imaging Biol 2024; 26:495-502. [PMID: 37193807 PMCID: PMC10188229 DOI: 10.1007/s11307-023-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Patients with hyper- vs. hypo-inflammatory subphenotypes of acute respiratory distress syndrome (ARDS) exhibit different clinical outcomes. Inflammation increases the production of reactive oxygen species (ROS) and increased ROS contributes to the severity of illness. Our long-term goal is to develop electron paramagnetic resonance (EPR) imaging of lungs in vivo to precisely measure superoxide production in ARDS in real time. As a first step, this requires the development of in vivo EPR methods for quantifying superoxide generation in the lung during injury, and testing if such superoxide measurements can differentiate between susceptible and protected mouse strains. PROCEDURES In WT mice, mice lacking total body extracellular superoxide dismutase (EC-SOD) (KO), or mice overexpressing lung EC-SOD (Tg), lung injury was induced with intraperitoneal (IP) lipopolysaccharide (LPS) (10 mg/kg). At 24 h after LPS treatment, mice were injected with the cyclic hydroxylamines 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) or 4-acetoxymethoxycarbonyl-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-3-carboxylic acid (DCP-AM-H) probes to detect, respectively, cellular and mitochondrial ROS - specifically superoxide. Several probe delivery strategies were tested. Lung tissue was collected up to one hour after probe administration and assayed by EPR. RESULTS As measured by X-band EPR, cellular and mitochondrial superoxide increased in the lungs of LPS-treated mice compared to control. Lung cellular superoxide was increased in EC-SOD KO mice and decreased in EC-SOD Tg mice compared to WT. We also validated an intratracheal (IT) delivery method, which enhanced the lung signal for both spin probes compared to IP administration. CONCLUSIONS We have developed protocols for delivering EPR spin probes in vivo, allowing detection of cellular and mitochondrial superoxide in lung injury by EPR. Superoxide measurements by EPR could differentiate mice with and without lung injury, as well as mouse strains with different disease susceptibilities. We expect these protocols to capture real-time superoxide production and enable evaluation of lung EPR imaging as a potential clinical tool for subphenotyping ARDS patients based on redox status.
Collapse
Affiliation(s)
- Hanan B Elajaili
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Nathan M Dee
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Sergey I Dikalov
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eva S Nozik
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Lee CH, Korvink JG, Jouda M. Frequency multiplexing enables parallel multi-sample EPR. Sci Rep 2024; 14:11815. [PMID: 38783051 PMCID: PMC11116391 DOI: 10.1038/s41598-024-62564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
Electron paramagnetic resonance (EPR) spectroscopy stands out as a powerful analytical technique with extensive applications in the fields of biology, chemistry, physics, and material sciences. It proves invaluable for investigating the molecular structure and reaction mechanisms of substances containing unpaired electrons, such as metal complexes, organic and inorganic radicals, and intermediate states in chemical reactions. However, despite their remarkable capabilities, EPR systems face significant limitations in terms of sample throughput, as current commercial systems only target the analysis of one sample at a time. Here we introduce a novel scheme for conducting ultra-high frequency continuous-wave EPR (CW EPR) targeting the EPR spectroscopy of multiple microliter volume samples in parallel. Our proof-of-principle prototype involves two decoupled detection cells equipped with high qualty factor Q = 104 solenoidal coils tuned to 488 and 589 MHz, ensuring a significant frequency gap for effective radio frequency (RF) decoupling between the channels. To further enhance electromagnetic decoupling, an orthogonal alignment of the coils was adopted. The paper further presents an innovative radiofrequency circuit concept that utilizes a single physical RF channel to simultaneously conduct parallel EPR on up to eight cells. Parallel EPR experiments on two BDPA samples, each with a sample volume of 18.3 μL, registered signal-to-noise ratios of 255 and 252 for the two EPR measurement cells, with no observable coupling. The showcased prototype, built using cost-effective commercially available fabrication technology, is readily scalable and represents an initial step with promising potential for advancing sample screening with high-throughput parallel EPR.
Collapse
Affiliation(s)
- Chun Him Lee
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jan G Korvink
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Mazin Jouda
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
4
|
Chen EY, Tse D, Hou H, Schreiber WA, Schaner PE, Kmiec MM, Hebert KA, Kuppusamy P, Swartz HM, Williams BB. Evaluation of a Refined Implantable Resonator for Deep-Tissue EPR Oximetry in the Clinic. APPLIED MAGNETIC RESONANCE 2021; 52:1321-1342. [PMID: 34744319 PMCID: PMC8570533 DOI: 10.1007/s00723-021-01376-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 05/04/2023]
Abstract
OBJECTIVES (1) Summarize revisions made to the implantable resonator (IR) design and results of testing to characterize biocompatibility;(2) Demonstrate safety of implantation and feasibility of deep tissue oxygenation measurement using electron paramagnetic resonance (EPR) oximetry. STUDY DESIGN In vitro testing of the revised IR and in vivo implantation in rabbit brain and leg tissues. METHODS Revised IRs were fabricated with 1-4 OxyChips with a thin wire encapsulated with two biocompatible coatings. Biocompatibility and chemical characterization tests were performed. Rabbits were implanted with either an IR with 2 oxygen sensors or a biocompatible-control sample in both the brain and hind leg. The rabbits were implanted with IRs using a catheter-based, minimally invasive surgical procedure. EPR oximetry was performed for rabbits with IRs. Cohorts of rabbits were euthanized and tissues were obtained at 1 week, 3 months, and 9 months after implantation and examined for tissue reaction. RESULTS Biocompatibility and toxicity testing of the revised IRs demonstrated no abnormal reactions. EPR oximetry from brain and leg tissues were successfully executed. Blood work and histopathological evaluations showed no significant difference between the IR and control groups. CONCLUSIONS IRs were functional for up to 9 months after implantation and provided deep tissue oxygen measurements using EPR oximetry. Tissues surrounding the IRs showed no more tissue reaction than tissues surrounding the control samples. This pre-clinical study demonstrates that the IRs can be safely implanted in brain and leg tissues and that repeated, non-invasive, deep-tissue oxygen measurements can be obtained using in vivo EPR oximetry.
Collapse
Affiliation(s)
- Eunice Y. Chen
- Section of Otolaryngology, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States and Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Dan Tse
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Huagang Hou
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Wilson A. Schreiber
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Philip E. Schaner
- Section of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States and Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Maciej M. Kmiec
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Kendra A. Hebert
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Periannan Kuppusamy
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Harold M. Swartz
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Section of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States and Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Benjamin B. Williams
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Section of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States and Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
5
|
Samouilov A, Komarov D, Petryakov S, Iosilevich A, Zweier JL. Development of an L-band resonator optimized for fast scan EPR imaging of the mouse head. Magn Reson Med 2021; 86:2316-2327. [PMID: 33938574 PMCID: PMC8295191 DOI: 10.1002/mrm.28821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop a novel resonator for high-quality fast scan electron paramagnetic resonance (EPR) and EPR/NMR co-imaging of the head and brain of mice at 1.25 GHz. METHODS Resonator dimensions were scaled to fit the mouse head with maximum filling factor. A single-loop 6-gap resonator of 20 mm diameter and 20 mm length was constructed. High resonator stability was achieved utilizing a fixed position double coupling loop. Symmetrical mutually inverted connections rendered it insensitive to field modulation and fast scan. Coupling adjustment was provided by a parallel-connected variable capacitor located at the feeding line at λ/4 distance. To minimize radiation loss, the shield around the resonator was supplemented with a planar conductive disc that focuses return magnetic flux. RESULTS Coupling of the resonator loaded with the mouse head was efficient and easy. This resonator enabled high-quality in vivo 3D EPR imaging of the mouse head following intravenous infusion of nitroxide probes. With this resonator and rapid scan EPR system, 4 ms scans were acquired in forward and reverse directions so that images with 2-scan 3,136 projections were acquired in 25 s. Head images were achieved with resolutions of 0.4 mm, enabling visualization of probe localization and uptake across the blood-brain barrier. CONCLUSIONS This resonator design provides good sensitivity, high stability, and B1 field homogeneity for in vivo fast scan EPR of the mouse head and brain, enabling faster measurements and higher resolution imaging of probe uptake, localization, and metabolism than previously possible.
Collapse
Affiliation(s)
- Alexandre Samouilov
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Denis Komarov
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Sergey Petryakov
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Arkadiy Iosilevich
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Jay L. Zweier
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
6
|
Biller JR, McPeak JE. EPR Everywhere. APPLIED MAGNETIC RESONANCE 2021; 52:1113-1139. [PMID: 33519097 PMCID: PMC7826499 DOI: 10.1007/s00723-020-01304-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
This review is inspired by the contributions from the University of Denver group to low-field EPR, in honor of Professor Gareth Eaton's 80th birthday. The goal is to capture the spirit of innovation behind the body of work, especially as it pertains to development of new EPR techniques. The spirit of the DU EPR laboratory is one that never sought to limit what an EPR experiment could be, or how it could be applied. The most well-known example of this is the development and recent commercialization of rapid-scan EPR. Both of the Eatons have made it a point to remain knowledgeable on the newest developments in electronics and instrument design. To that end, our review touches on the use of miniaturized electronics and applications of single-board spectrometers based on software-defined radio (SDR) implementations and single-chip voltage-controlled oscillator (VCO) arrays. We also highlight several non-traditional approaches to the EPR experiment such as an EPR spectrometer with a "wand" form factor for analysis of the OxyChip, the EPR-MOUSE which enables non-destructive in situ analysis of many non-conforming samples, and interferometric EPR and frequency swept EPR as alternatives to classical high Q resonant structures.
Collapse
Affiliation(s)
| | - Joseph E. McPeak
- University of Denver, Denver, CO 80210 USA
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPINS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
7
|
Morton JJL, Bertet P. Storing quantum information in spins and high-sensitivity ESR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 287:128-139. [PMID: 29413326 DOI: 10.1016/j.jmr.2017.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins.
Collapse
Affiliation(s)
- John J L Morton
- London Centre for Nanotechnology, UCL, London WC1H 0AH, United Kingdom; Dept. of Electronic and Electrical Engineering, UCL, London WC1E 7JE, United Kingdom.
| | - Patrice Bertet
- Quantronics Group, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
8
|
Quine RW, Rinard GA, Shi Y, Buchanan L, Biller JR, Eaton SS, Eaton GR. UHF EPR spectrometer operating at frequencies between 400 MHz and 1 GHz. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2016; 46B:123-133. [PMID: 28190987 PMCID: PMC5300075 DOI: 10.1002/cmr.b.21328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A spectrometer was designed and constructed to facilitate measurements of T1, T2, spin echo signal-to-noise, and resonator quality factor, Q, between about 400 and 1000 MHz. Pulse patterns are generated at 250 MHz and mixed with the output from a second source to perform excitation and detection. A cross-loop resonator was constructed in which the same sample could be measured in the same resonator over the full range of frequencies. An air-core, 4-coil, water-cooled electromagnet with a large experimental volume was built.
Collapse
Affiliation(s)
- Richard W. Quine
- Ritchie School of Engineering and Computer Science, University of Denver, Denver, Colorado 80210 USA
| | - George A. Rinard
- Ritchie School of Engineering and Computer Science, University of Denver, Denver, Colorado 80210 USA
| | - Yilin Shi
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, 80210 USA
| | - Laura Buchanan
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, 80210 USA
| | - Joshua R. Biller
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, 80210 USA
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, 80210 USA
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, 80210 USA
| |
Collapse
|
9
|
Nakagawa K, Epel B. Locations of radical species in black pepper seeds investigated by CW EPR and 9GHz EPR imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 131:342-346. [PMID: 24835937 PMCID: PMC4363116 DOI: 10.1016/j.saa.2014.04.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/11/2014] [Accepted: 04/22/2014] [Indexed: 06/03/2023]
Abstract
In this study, noninvasive 9GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9GHz EPR imaging capabilities. The 9GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe(3+), and Mn(2+) complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds.
Collapse
Affiliation(s)
- Kouichi Nakagawa
- Department of Radiological Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cyo, Hirosaki 036-8564, Japan.
| | - Boris Epel
- Department of Radiation and Cellular Oncology, The University of Chicago, MC1105, 5841 S. Maryland Ave, Chicago, IL 60637-1463, USA
| |
Collapse
|
10
|
Narkowicz R, Ogata H, Reijerse E, Suter D. A cryogenic receiver for EPR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:79-84. [PMID: 24161681 DOI: 10.1016/j.jmr.2013.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
Cryogenic probes have significantly increased the sensitivity of NMR. Here, we present a compact EPR receiver design capable of cryogenic operation. Compared to room temperature operation, it reduces the noise by a factor of ≈2.5. We discuss in detail the design and analyze the resulting noise performance. At low microwave power, the input noise density closely follows the emission of a cooled 50Ω resistor over the whole measurement range from 20K up to room temperature. To minimize the influence of the microwave source noise, we use high microwave efficiency (≈1.1-1.7mTW(-1/2)) planar microresonators. Their efficient conversion of microwave power to magnetic field permits EPR measurements with very low power levels, typically ranging from a few μW down to fractions of nW.
Collapse
Affiliation(s)
- R Narkowicz
- Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, D-44221 Dortmund, Germany.
| | - H Ogata
- Max-Planck Institute for Chemical Energy Conversion, Stiftsraße 34-36, D-45470 Mülheim a.d. Ruhr, Germany
| | - E Reijerse
- Max-Planck Institute for Chemical Energy Conversion, Stiftsraße 34-36, D-45470 Mülheim a.d. Ruhr, Germany
| | - D Suter
- Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, D-44221 Dortmund, Germany
| |
Collapse
|
11
|
Epel, B, Halpern H. Electron paramagnetic resonance oxygen imaging in vivo. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This review covers the last 15 years of the development of EPR in vivo oxygen imaging. During this time, a number of major technological and methodological advances have taken place. Narrow line width, long relaxation time, and non-toxic triaryl methyl radicals were introduced in the late 1990s. These not only improved continuous wave (CW) imaging, but also enabled the application of pulse EPR imaging to animals. Recent developments in pulse technology have brought an order of magnitude increase in image acquisition speed, enhancement of sensitivity, and considerable improvement in the precision and accuracy of oxygen measurements. Consequently, pulse methods take up a significant part of this review.
Collapse
Affiliation(s)
- Boris Epel,
- Center for EPR Imaging in vivo Physiology the University of Chicago, Department of Radiation and Cellular Oncology (MC 1105), Chicago Illinois 60637
| | - Howard Halpern
- Center for EPR Imaging in vivo Physiology the University of Chicago, Department of Radiation and Cellular Oncology (MC 1105), Chicago Illinois 60637
| |
Collapse
|
12
|
Tseitlin M, Quine RW, Eaton SS, Eaton GR. Use of polyphase continuous excitation based on the Frank sequence in EPR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 211:221-7. [PMID: 21737326 PMCID: PMC3148075 DOI: 10.1016/j.jmr.2011.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/14/2011] [Accepted: 06/06/2011] [Indexed: 05/12/2023]
Abstract
Polyphase continuous excitation based on the Frank sequence is suggested as an alternative to single pulse excitation in EPR. The method allows reduction of the source power, while preserving the excitation bandwidth of a single pulse. For practical EPR implementation the use of a cross-loop resonator is essential to provide isolation between the spin system and the resonator responses to the excitation. Provided that a line broadening of about 5% is acceptable, the cumulative turning angle of the magnetization vector generated by the excitation sequence can be quite large and can produce signal amplitudes that are comparable to that achieved with a higher power 90° pulse.
Collapse
Affiliation(s)
- Mark Tseitlin
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Richard W. Quine
- School of Engineering and Computer Science, University of Denver, Denver, CO 80208
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| |
Collapse
|
13
|
Epel B, Sundramoorthy SV, Barth ED, Mailer C, Halpern HJ. Comparison of 250 MHz electron spin echo and continuous wave oxygen EPR imaging methods for in vivo applications. Med Phys 2011; 38:2045-52. [PMID: 21626937 DOI: 10.1118/1.3555297] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors compare two electron paramagnetic resonance imaging modalities at 250 MHz to determine advantages and disadvantages of those modalities for in vivo oxygen imaging. METHODS Electron spin echo (ESE) and continuous wave (CW) methodologies were used to obtain three-dimensional images of a narrow linewidth, water soluble, nontoxic oxygen-sensitive trityl molecule OX063 in vitro and in vivo. The authors also examined sequential images obtained from the same animal injected intravenously with trityl spin probe to determine temporal stability of methodologies. RESULTS A study of phantoms with different oxygen concentrations revealed a threefold advantage of the ESE methodology in terms of reduced imaging time and more precise oxygen resolution for samples with less than 70 torr oxygen partial pressure. Above 100 torr, CW performed better. The images produced by both methodologies showed pO2 distributions with similar mean values. However, ESE images demonstrated superior performance in low pO2 regions while missing voxels in high pO2 regions. CONCLUSIONS ESE and CW have different areas of applicability. ESE is superior for hypoxia studies in tumors.
Collapse
Affiliation(s)
- Boris Epel
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, University of Chicago, MC1105, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
14
|
Quine RW, Rinard GA, Eaton SS, Eaton GR. Quantitative rapid scan EPR spectroscopy at 258 MHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 205:23-7. [PMID: 20382055 PMCID: PMC3097513 DOI: 10.1016/j.jmr.2010.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 05/05/2023]
Abstract
Experimental data obtained with an electron paramagnetic resonance (EPR) rapid scan spectrometer were translated through the reverse transfer functions of the spectrometer hardware to the sample position. Separately, theoretical calculations were performed to predict signal and noise amplitudes at the sample position for specified experimental conditions. A comparison was then made between the translated experimental values and the calculated values. Excellent agreement was obtained.
Collapse
Affiliation(s)
| | | | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| |
Collapse
|
15
|
Eaton SS, Eaton GR. Frequency Dependence of Pulsed EPR Experiments. CONCEPTS IN MAGNETIC RESONANCE. PART A, BRIDGING EDUCATION AND RESEARCH 2009; 34A:315. [PMID: 20148127 PMCID: PMC2818603 DOI: 10.1002/cmr.a.20148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The frequency dependence of the signal-to-noise ratio (S/N) that is theoretically possible for pulsed EPR experiments is the same as for continuous wave experiments. To select the optimum resonance frequency or frequencies for pulsed EPR experiments it is important to consider not only S/N, but also orientation selection, depth of spin echo modulation, and intensities of forbidden transitions. Evaluation of factors involved in selecting the optimum frequency for pulsed EPR measurements of distances between spins is discussed.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA 80208
| | | |
Collapse
|
16
|
Abstract
Electron paramagnetic resonance (EPR) spectroscopy and imaging (EPRI) are deeply rooted in the basic and quantum physics, but the spectrum of their applications in modern experimental and clinical dermatology and cosmetology is surprisingly wide. The main aim of this review was to show the physical foundation, technical limitations and versatility of this method in skin studies. Free radical and metal ion detection, EPR dosimetry, melanin study, spin trapping, spin labelling, oximetry and NO-metry, EPR imaging, new generation methods of EPR and EPR/NMR hybrid technology used under ex vivo and in vivo regime are portrayed in the context of clinical and experimental skin research to study problems such as oxidative and nitrosative stress generated by UV or inflammation, skin oxygenation, hydration of corneal layer of epidermis, transport and metabolism of drugs and cosmeceutics, skin carcinogenesis, skin tumors and many others. A part of the paper is devoted to hair and nail research. The review of dermatological applications of EPR is supplemented with a handful of advice concerning practical aspects of EPR experimentation and usage of EPR reagents.
Collapse
Affiliation(s)
- Przemyslaw M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
17
|
Petryakov S, Samouilov A, Kesselring E, Wasowicz T, Caia GL, Zweier JL. Single loop multi-gap resonator for whole body EPR imaging of mice at 1.2 GHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 188:68-73. [PMID: 17625940 PMCID: PMC2714052 DOI: 10.1016/j.jmr.2007.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 04/13/2007] [Accepted: 05/18/2007] [Indexed: 05/05/2023]
Abstract
For whole body EPR imaging of small animals, typically low frequencies of 250-750 MHz have been used due to the microwave losses at higher frequencies and the challenges in designing suitable resonators to accommodate these large lossy samples. However, low microwave frequency limits the obtainable sensitivity. L-band frequencies can provide higher sensitivity, and have been commonly used for localized in vivo EPR spectroscopy. Therefore, it would be highly desirable to develop an L-band microwave resonator suitable for in vivo whole body EPR imaging of small animals such as living mice. A 1.2 GHz 16-gap resonator with inner diameter of 42 mm and 48 mm length was designed and constructed for whole body EPR imaging of small animals. The resonator has good field homogeneity and stability to animal-induced motional noise. Resonator stability was achieved with electrical and mechanical design utilizing a fixed position double coupling loop of novel geometry, thus minimizing the number of moving parts. Using this resonator, high quality EPR images of lossy phantoms and living mice were obtained. This design provides good sensitivity, ease of sample access, excellent stability and uniform B(1) field homogeneity for in vivo whole body EPR imaging of mice at 1.2 GHz.
Collapse
Affiliation(s)
- Sergey Petryakov
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
18
|
Sato H, Dalton LA, Ha D, Quine RW, Eaton SS, Eaton GR. Electron Spin Relaxation in x-Lithium Phthalocyanine. J Phys Chem B 2007; 111:7972-7. [PMID: 17583936 DOI: 10.1021/jp070810y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Continuous-wave linewidths and spin susceptibilities, spin-spin relaxation rates (1/T2), and spin-lattice relaxation rates (1/T1) for two sources of x-LiPc were measured at 9.5 GHz between 15 and 298 K. Relaxation rates at 34 GHz were measured between 80 and 298 K. Room-temperature relaxation rates also were measured at 250 MHz, 1.9 GHz, and 2.76 GHz. The temperature dependences of linewidths and spin susceptibilities are characteristic of 1-D organic conductors. The ratio of populations of localized and delocalized electrons varies with sample preparation. For a single needle between 15 and about 200 K, 1/T2 is higher for the parallel orientation, but 1/T1 is higher for the perpendicular orientation, consistent with predictions based on dipolar interactions. Between about 60 and 150 K, which is the temperature regime in which spin susceptibility is changing rapidly with temperature, 1/T1 exhibits a non-monotonic dependence on temperature and is lower at 34 GHz than at 9.5 GHz. In other organic conductors, this dependence has been attributed to a bottleneck mechanism of relaxation. At higher temperatures, 1/T1 becomes less orientation-dependent. At room temperature, T1 increases rapidly between 250 MHz (3.0 micros) and 2.76 GHz (6.3 micros) and then shows less frequency dependence up to 34 GHz (9.8 micros). The relaxation rate near room temperature might have a substantial contribution from spin hopping perpendicular to the stacking axis of the molecules.
Collapse
Affiliation(s)
- Hideo Sato
- Department of Chemistry and Biochemistry and Department of Engineering, University of Denver, Denver, Colorado 80208, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kinoshita A, Karmann I, William da Cruz F, Graeff CFO, Baffa O. K-band ESR spectra of calcite stalagmites from southeast and south Brazil. Appl Radiat Isot 2005; 62:247-50. [PMID: 15607456 DOI: 10.1016/j.apradiso.2004.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Samples of calcite stalagmites from Caverna Santana (Sao Paulo State) and Caverna Botuvera (Santa Catarina State), southeastern and southern Brazil, respectively, were studied by electron spin resonance (ESR). The more common microwave frequency (X-Band, 9.5 GHz) as well as higher frequency K-band, 24 GHz were employed for the determination of the age of the samples. Even after extensive signal averaging, the dosimetric signal is not very well defined in the X-band (9.5 GHz). Using the K-band spectrometer it was possible to clearly identify the 6 hyperfine lines of Mn2+ and other paramagnetic centers in the g=2 region: SO2- and CO2- radicals. The use of high microwave frequency gives better S/N and spectral resolution making the identification of the dosimetric signal easier. The total dose (TD) or equivalent dose (ED) deposited in the samples was 2.3+/-0.3 Gy and 1.7+/-0.4 Gy for Caverna Botuvera samples and 2.6+/-0.7 Gy for the sample of Caverna Santana, giving an age of 2.9+/-0.7 ky, 2.1+/-0.8 ky and 3+/-1 ky, respectively. These first results are compatible with U/Th analysis. Due to the low S/N precision, measurements were possible only with the use of secondary standard composed on Mn2+ lines, naturally present in this sample.
Collapse
Affiliation(s)
- Angela Kinoshita
- Departamento de Física e Matemática, Ffclrp-Usp, 14040-901 Ribeirão Preto, Sp, Brazil.
| | | | | | | | | |
Collapse
|
20
|
Eaton GR, Eaton SS. EPR Spectrometers at Frequencies Below X-band. EPR: INSTRUMENTAL METHODS 2004. [DOI: 10.1007/978-1-4419-8951-2_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
|