1
|
Sorzano C, Vargas J, Otón J, Abrishami V, de la Rosa-Trevín J, Gómez-Blanco J, Vilas J, Marabini R, Carazo J. A review of resolution measures and related aspects in 3D Electron Microscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 124:1-30. [DOI: 10.1016/j.pbiomolbio.2016.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/22/2016] [Accepted: 09/18/2016] [Indexed: 12/21/2022]
|
2
|
Penczek PA, Fang J, Li X, Cheng Y, Loerke J, Spahn CMT. CTER-rapid estimation of CTF parameters with error assessment. Ultramicroscopy 2014; 140:9-19. [PMID: 24562077 DOI: 10.1016/j.ultramic.2014.01.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03Å without, and 3.85Å with, inclusion of astigmatism parameters.
Collapse
Affiliation(s)
- Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, 6431 Fannin MSB 6.220, Houston, TX 77054, USA.
| | - Jia Fang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, 6431 Fannin MSB 6.220, Houston, TX 77054, USA
| | - Xueming Li
- The Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Yifan Cheng
- The Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
3
|
Vulović M, Franken E, Ravelli RB, van Vliet LJ, Rieger B. Precise and unbiased estimation of astigmatism and defocus in transmission electron microscopy. Ultramicroscopy 2012. [DOI: 10.1016/j.ultramic.2012.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Orlova EV, Saibil HR. Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev 2011; 111:7710-48. [PMID: 21919528 PMCID: PMC3239172 DOI: 10.1021/cr100353t] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Indexed: 12/11/2022]
Affiliation(s)
- E. V. Orlova
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - H. R. Saibil
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
5
|
Zhang X, Zhou ZH. Limiting factors in atomic resolution cryo electron microscopy: no simple tricks. J Struct Biol 2011; 175:253-63. [PMID: 21627992 PMCID: PMC3710782 DOI: 10.1016/j.jsb.2011.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 01/25/2023]
Abstract
To bring cryo electron microscopy (cryoEM) of large biological complexes to atomic resolution, several factors--in both cryoEM image acquisition and 3D reconstruction--that may be neglected at low resolution become significantly limiting. Here we present thorough analyses of four limiting factors: (a) electron-beam tilt, (b) inaccurate determination of defocus values, (c) focus gradient through particles, and (d) particularly for large particles, dynamic (multiple) scattering of electrons. We also propose strategies to cope with these factors: (a) the divergence and direction tilt components of electron-beam tilt could be reduced by maintaining parallel illumination and by using a coma-free alignment procedure, respectively. Moreover, the effect of all beam tilt components, including spiral tilt, could be eliminated by use of a spherical aberration corrector. (b) More accurate measurement of defocus value could be obtained by imaging areas adjacent to the target area at high electron dose and by measuring the image shift induced by tilting the electron beam. (c) Each known Fourier coefficient in the Fourier transform of a cryoEM image is the sum of two Fourier coefficients of the 3D structure, one on each of two curved 'characteristic surfaces' in 3D Fourier space. We describe a simple model-based iterative method that could recover these two Fourier coefficients on the two characteristic surfaces. (d) The effect of dynamic scattering could be corrected by deconvolution of a transfer function. These analyses and our proposed strategies offer useful guidance for future experimental designs targeting atomic resolution cryoEM reconstruction.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, 237 BSRB, 615 Charles E. Young Dr. S., Los Angeles, CA 90095-7364, USA California NanoSystems Institute, University of California, Los Angeles, Box 957227, 570 Westwood Plaza, Bldg 114, Los Angeles, CA 90095-7227, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, 237 BSRB, 615 Charles E. Young Dr. S., Los Angeles, CA 90095-7364, USA California NanoSystems Institute, University of California, Los Angeles, Box 957227, 570 Westwood Plaza, Bldg 114, Los Angeles, CA 90095-7227, USA
| |
Collapse
|
6
|
Liu S, He J, Li K, Dai A, Cai C, Zhang J. Three-dimensional structure of the hepatitis B core antigen particle truncated at residue 154. SCIENCE CHINA. LIFE SCIENCES 2011; 54:171-174. [PMID: 21104034 DOI: 10.1007/s11427-010-4098-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/22/2010] [Indexed: 05/30/2023]
Abstract
The three-dimensional structure of recombinant hepatitis B core antigen (HBcAg) particles truncated at residue 154 (HBcAg-154) was determined to 7.8 Å resolution by cryo-electron microscopy (cryoEM) and computer reconstruction. The capsid of HBcAg-154 is mainly constituted by α-helical folds, highly similar to that of HBcAg-149. The C-terminal region between residues 155 and 183 of the core protein is more crucial to the encapsidation of RNA, and the short C-terminal tail of HBcAg-154 results in a nearly empty capsid.
Collapse
Affiliation(s)
- ShuYu Liu
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | |
Collapse
|
7
|
Zhou ZH. Atomic resolution cryo electron microscopy of macromolecular complexes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 82:1-35. [PMID: 21501817 PMCID: PMC3698602 DOI: 10.1016/b978-0-12-386507-6.00001-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Single-particle cryo electron microscopy (cryoEM) is a technique for determining three-dimensional (3D) structures from projection images of molecular complexes preserved in their "native," noncrystalline state. Recently, atomic or near-atomic resolution structures of several viruses and protein assemblies have been determined by single-particle cryoEM, allowing ab initio atomic model building by following the amino acid side chains or nucleic acid bases identifiable in their cryoEM density maps. In particular, these cryoEM structures have revealed extended arms contributing to molecular interactions that are otherwise not resolved by the conventional structural method of X-ray crystallography at similar resolutions. High-resolution cryoEM requires careful consideration of a number of factors, including proper sample preparation to ensure structural homogeneity, optimal configuration of electron imaging conditions to record high-resolution cryoEM images, accurate determination of image parameters to correct image distortions, efficient refinement and computation to reconstruct a 3D density map, and finally appropriate choice of modeling tools to construct atomic models for functional interpretation. This progress illustrates the power of cryoEM and ushers it into the arsenal of structural biology, alongside conventional techniques of X-ray crystallography and NMR, as a major tool (and sometimes the preferred one) for the studies of molecular interactions in supramolecular assemblies or machines.
Collapse
Affiliation(s)
- Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
8
|
Zernike phase plate cryoelectron microscopy facilitates single particle analysis of unstained asymmetric protein complexes. Structure 2010; 18:17-27. [PMID: 20152149 DOI: 10.1016/j.str.2009.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 11/25/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
Single particle reconstruction from cryoelectron microscopy images, though emerging as a powerful means in structural biology, is faced with challenges as applied to asymmetric proteins smaller than megadaltons due to low contrast. Zernike phase plate can improve the contrast by restoring the microscope contrast transfer function. Here, by exploiting simulated Zernike and conventional defocused cryoelectron microscope images with noise characteristics comparable to those of experimental data, we quantified the efficiencies of the steps in single particle analysis of ice-embedded RNA polymerase II (500 kDa), transferrin receptor complex (290 kDa), and T7 RNA polymerase lysozyme (100 kDa). Our results show Zernike phase plate imaging is more effective as to particle identification and also sorting of orientations, conformations, and compositions. Moreover, our analysis on image alignment indicates that Zernike phase plate can, in principle, reduce the number of particles required to attain near atomic resolution by 10-100 fold for proteins between 100 kDa and 500 kDa.
Collapse
|
9
|
Jiang L, Liu Z, Georgieva D, Kuil ME, Abrahams JP. A novel approximation method of CTF amplitude correction for 3D single particle reconstruction. Ultramicroscopy 2010; 110:350-8. [PMID: 20163916 DOI: 10.1016/j.ultramic.2010.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 11/23/2009] [Accepted: 01/19/2010] [Indexed: 11/27/2022]
Abstract
The typical resolution of three-dimensional reconstruction by cryo-EM single particle analysis is now being pushed up to and beyond the nanometer scale. Correction of the contrast transfer function (CTF) of electron microscopic images is essential for achieving such a high resolution. Various correction methods exist and are employed in popular reconstruction software packages. Here, we present a novel approximation method that corrects the amplitude modulation introduced by the contrast transfer function by convoluting the images with a piecewise continuous function. Our new approach can easily be implemented and incorporated into other packages. The implemented method yielded higher resolution reconstructions with data sets from both highly symmetric and asymmetric structures. It is an efficient alternative correction method that allows quick convergence of the 3D reconstruction and has a high tolerance for noisy images, thus easing a bottleneck in practical reconstruction of macromolecules.
Collapse
Affiliation(s)
- Linhua Jiang
- Department of Biophysical Structural Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Lyumkis D, Moeller A, Cheng A, Herold A, Hou E, Irving C, Jacovetty EL, Lau PW, Mulder AM, Pulokas J, Quispe JD, Voss NR, Potter CS, Carragher B. Automation in single-particle electron microscopy connecting the pieces. Methods Enzymol 2010; 483:291-338. [PMID: 20888480 DOI: 10.1016/s0076-6879(10)83015-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Throughout the history of single-particle electron microscopy (EM), automated technologies have seen varying degrees of emphasis and development, usually depending upon the contemporary demands of the field. We are currently faced with increasingly sophisticated devices for specimen preparation, vast increases in the size of collected data sets, comprehensive algorithms for image processing, sophisticated tools for quality assessment, and an influx of interested scientists from outside the field who might lack the skills of experienced microscopists. This situation places automated techniques in high demand. In this chapter, we provide a generic definition of and discuss some of the most important advances in automated approaches to specimen preparation, grid handling, robotic screening, microscope calibrations, data acquisition, image processing, and computational infrastructure. Each section describes the general problem and then provides examples of how that problem has been addressed through automation, highlighting available processing packages, and sometimes describing the particular approach at the National Resource for Automated Molecular Microscopy (NRAMM). We contrast the more familiar manual procedures with automated approaches, emphasizing breakthroughs as well as current limitations. Finally, we speculate on future directions and improvements in automated technologies. Our overall goal is to present automation as more than simply a tool to save time. Rather, we aim to illustrate that automation is a comprehensive and versatile strategy that can deliver biological information on an unprecedented scale beyond the scope available with classical manual approaches.
Collapse
Affiliation(s)
- Dmitry Lyumkis
- National Resource for Automated Molecular Microscopy, Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Image restoration techniques are used to obtain, given experimental measurements, the best possible approximation of the original object within the limits imposed by instrumental conditions and noise level in the data. In molecular electron microscopy (EM), we are mainly interested in linear methods that preserve the respective relationships between mass densities within the restored map. Here, we describe the methodology of image restoration in structural EM, and more specifically, we will focus on the problem of the optimum recovery of Fourier amplitudes given electron microscope data collected under various defocus settings. We discuss in detail two classes of commonly used linear methods, the first of which consists of methods based on pseudoinverse restoration, and which is further subdivided into mean-square error, chi-square error, and constrained based restorations, where the methods in the latter two subclasses explicitly incorporates non-white distribution of noise in the data. The second class of methods is based on the Wiener filtration approach. We show that the Wiener filter-based methodology can be used to obtain a solution to the problem of amplitude correction (or "sharpening") of the EM map that makes it visually comparable to maps determined by X-ray crystallography, and thus amenable to comparative interpretation. Finally, we present a semiheuristic Wiener filter-based solution to the problem of image restoration given sets of heterogeneous solutions. We conclude the chapter with a discussion of image restoration protocols implemented in commonly used single particle software packages.
Collapse
Affiliation(s)
- Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas, Houston Medical School, Houston, Texas, USA
| |
Collapse
|
12
|
Cheng L, Zhu J, Hui WH, Zhang X, Honig B, Fang Q, Zhou ZH. Backbone model of an aquareovirus virion by cryo-electron microscopy and bioinformatics. J Mol Biol 2009; 397:852-63. [PMID: 20036256 DOI: 10.1016/j.jmb.2009.12.027] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/07/2009] [Accepted: 12/15/2009] [Indexed: 01/05/2023]
Abstract
Grass carp reovirus (GCRV) is a member of the aquareovirus genus in the Reoviridae family and has a capsid with two shells-a transcription-competent core surrounded by a coat. We report a near-atomic-resolution reconstruction of the GCRV virion by cryo-electron microscopy and single-particle reconstruction. A backbone model of the GCRV virion, including seven conformers of the five capsid proteins making up the 1500 molecules in both the core and the coat, was derived using cryo-electron microscopy density-map-constrained homology modeling and refinement. Our structure clearly showed that the amino-terminal segment of core protein VP3B forms an approximately 120-A-long alpha-helix-rich extension bridging across the icosahedral 2-fold-symmetry-related molecular interface. The presence of this unique structure across this interface and the lack of an external cementing molecule at this location in GCRV suggest a stabilizing role of this extended amino-terminal density. Moreover, part of this amino-terminal extension becomes invisible in the reconstruction of transcription-competent core particles, suggesting its involvement in endogenous viral RNA transcription. Our structure of the VP1 turret represents its open state, and comparison with its related structures at the closed state suggests hinge-like domain movements associated with the mRNA-capping machinery. Overall, this first backbone model of an aquareovirus virion provides a wealth of structural information for understanding the structural basis of GCRV assembly and transcription.
Collapse
Affiliation(s)
- Lingpeng Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095-7364, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Three-dimensional structure of the Chinese Sacbrood bee virus. ACTA ACUST UNITED AC 2009; 44:443-8. [PMID: 18726426 DOI: 10.1007/bf02879612] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2001] [Indexed: 10/22/2022]
Abstract
The RNA of Chinese Sacbrood Bee Virus (CSBV) was purified and used as template to obtain a 1096 bp cDNA fragment by RT-PCR amplification. This DNA fragment was cloned into pGEM-T Easy Vector for sequencing. Analyses of the sequenced CSBV RNA fragment revealed a nucleotide sequence homology of 87.6% and a deduced amino-acid sequence homology of 94.6% with that of the Sacbrood Virus (SBV), indicating that CSBV is a different but highly homologous virus of SBV. The three-dimensional (3D) structure of CSBV was determined at 2.5 nm resolution by using electron cryo-microscopy (cryoEM) and computer reconstruction methods. The 3-D structure showed that the capsid has aT = 1 (or P = 3) icosahedral capsid shell with a smooth surface. There were 12 pentons at its icosahedral vertices (5-fold axes) and 132 holes penetrating the shell. The 3-D structure also revealed densities corresponding to the CSBV genome, suggesting icosahedrally-ordered RNA organization, a novel feature not previously reported for any picornaviruses.
Collapse
|
14
|
Abstract
Single-particle electron microscopy (EM) can provide structural information for a large variety of biological molecules, ranging from small proteins to large macromolecular assemblies, without the need to produce crystals. The year 2008 has become a landmark year for single-particle EM as for the first time density maps have been produced at a resolution that made it possible to trace protein backbones or even to build atomic models. In this review, we highlight some of the recent successes achieved by single-particle EM and describe the individual steps involved in producing a density map by this technique. We also discuss some of the remaining challenges and areas, in which further advances would have a great impact on the results that can be achieved by single-particle EM.
Collapse
Affiliation(s)
- Yifan Cheng
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California-San Francisco, CA 94158, USA.
| | | |
Collapse
|
15
|
Sorzano COS, Otero A, Olmos EM, Carazo JM. Error analysis in the determination of the electron microscopical contrast transfer function parameters from experimental power Spectra. BMC STRUCTURAL BIOLOGY 2009; 9:18. [PMID: 19321015 PMCID: PMC2683171 DOI: 10.1186/1472-6807-9-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 03/26/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The transmission electron microscope is used to acquire structural information of macromolecular complexes. However, as any other imaging device, it introduces optical aberrations that must be corrected if high-resolution structural information is to be obtained. The set of all aberrations are usually modeled in Fourier space by the so-called Contrast Transfer Function (CTF). Before correcting for the CTF, we must first estimate it from the electron micrographs. This is usually done by estimating a number of parameters specifying a theoretical model of the CTF. This estimation is performed by minimizing some error measure between the theoretical Power Spectrum Density (PSD) and the experimentally observed PSD. The high noise present in the micrographs, the possible local minima of the error function for estimating the CTF parameters, and the cross-talking between CTF parameters may cause errors in the estimated CTF parameters. RESULTS In this paper, we explore the effect of these estimation errors on the theoretical CTF. For the CTF model proposed in 1 we show which are the most sensitive CTF parameters as well as the most sensitive background parameters. Moreover, we provide a methodology to reveal the internal structure of the CTF model (which parameters influence in which parameters) and to estimate the accuracy of each model parameter. Finally, we explore the effect of the variability in the detection of the CTF for CTF phase and amplitude correction. CONCLUSION We show that the estimation errors for the CTF detection methodology proposed in 1 does not show a significant deterioration of the CTF correction capabilities of subsequent algorithms. All together, the methodology described in this paper constitutes a powerful tool for the quantitative analysis of CTF models that can be applied to other models different from the one analyzed here.
Collapse
Affiliation(s)
- Carlos Oscar S Sorzano
- Escuela Politécnica Superior, Universidad San Pablo-CEU, Campus Urb, Montepríncipe s/n, E-28668 Boadilla del Monte, Madrid, Spain.
| | | | | | | |
Collapse
|
16
|
JONIĆ S, SORZANO C, BOISSET N. Comparison of single-particle analysis and electron tomography approaches: an overview. J Microsc 2008; 232:562-79. [DOI: 10.1111/j.1365-2818.2008.02119.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Cheng L, Fang Q, Shah S, Atanasov IC, Zhou ZH. Subnanometer-resolution structures of the grass carp reovirus core and virion. J Mol Biol 2008; 382:213-22. [PMID: 18625243 DOI: 10.1016/j.jmb.2008.06.075] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/22/2008] [Accepted: 06/25/2008] [Indexed: 01/10/2023]
Abstract
Grass carp reovirus (GCRV) is a member of the Aquareovirus genus of the family Reoviridae, a large family of double-stranded RNA (dsRNA) viruses infecting plants, insects, fishes and mammals. We report the first subnanometer-resolution three-dimensional structures of both GCRV core and virion by cryoelectron microscopy. These structures have allowed the delineation of interactions among the over 1000 molecules in this enormous macromolecular machine and a detailed comparison with other dsRNA viruses at the secondary-structure level. The GCRV core structure shows that the inner proteins have strong structural similarities with those of orthoreoviruses even at the level of secondary-structure elements, indicating that the structures involved in viral dsRNA interaction and transcription are highly conserved. In contrast, the level of similarity in structures decreases in the proteins situated in the outer layers of the virion. The proteins involved in host recognition and attachment exhibit the least similarities to other members of Reoviridae. Furthermore, in GCRV, the RNA-translocating turrets are in an open state and lack a counterpart for the sigma1 protein situated on top of the close turrets observed in mammalian orthoreovirus. Interestingly, the distribution and the organization of GCRV core proteins resemble those of the cytoplasmic polyhedrosis virus, a cypovirus and the structurally simplest member of the Reoviridae family. Our results suggest that GCRV occupies a unique structure niche between the simpler cypoviruses and the considerably more complex mammalian orthoreovirus, thus providing an important model for understanding the structural and functional conservation and diversity of this enormous family of dsRNA viruses.
Collapse
Affiliation(s)
- Lingpeng Cheng
- Department of Microbiology, Immunology and Molecular Genetics, The University of California at Los Angeles, CA 90095-7364, USA
| | | | | | | | | |
Collapse
|
18
|
Zhou ZH. Towards atomic resolution structural determination by single-particle cryo-electron microscopy. Curr Opin Struct Biol 2008; 18:218-28. [PMID: 18403197 PMCID: PMC2714865 DOI: 10.1016/j.sbi.2008.03.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/01/2008] [Accepted: 03/04/2008] [Indexed: 11/19/2022]
Abstract
Recent advances in cryo-electron microscopy and single-particle reconstruction (collectively referred to as 'cryoEM') have made it possible to determine the three-dimensional (3D) structures of several macromolecular complexes at near-atomic resolution ( approximately 3.8-4.5A). These achievements were accomplished by overcoming the challenges in sample handling, instrumentation, image processing, and model building. At near-atomic resolution, many detailed structural features can be resolved, such as the turns and deep grooves of helices, strand separation in beta sheets, and densities for loops and bulky amino acid side chains. Such structural data of the cytoplasmic polyhedrosis virus (CPV), the Epsilon 15 bacteriophage and the GroEL complex have provided valuable constraints for atomic model building using integrative tools, thus significantly enhancing the value of the cryoEM structures. The CPV structure revealed a drastic conformational change from a helix to a beta hairpin associated with RNA packaging and replication, coupling of RNA processing and release, and the long sought-after polyhedrin-binding domain. These latest advances in single-particle cryoEM provide exciting opportunities for the 3D structural determination of viruses and macromolecular complexes that are either too large or too heterogeneous to be investigated by conventional X-ray crystallography or nuclear magnetic resonance (NMR) methods.
Collapse
Affiliation(s)
- Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics and the California NanoSystems Institute, University of California at Los Angeles, 237 BSRB, 615 Charles E. Young Dr. S., Los Angeles, CA 90095-7364, USA.
| |
Collapse
|
19
|
Structures of the human pyruvate dehydrogenase complex cores: a highly conserved catalytic center with flexible N-terminal domains. Structure 2008; 16:104-14. [PMID: 18184588 DOI: 10.1016/j.str.2007.10.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 10/09/2007] [Accepted: 10/27/2007] [Indexed: 11/21/2022]
Abstract
Dihydrolipoyl acetyltransferase (E2) is the central component of pyruvate dehydrogenase complex (PDC), which converts pyruvate to acetyl-CoA. Structural comparison by cryo-electron microscopy (cryo-EM) of the human full-length and truncated E2 (tE2) cores revealed flexible linkers emanating from the edges of trimers of the internal catalytic domains. Using the secondary structure constraints revealed in our 8 A cryo-EM reconstruction and the prokaryotic tE2 atomic structure as a template, we derived a pseudo atomic model of human tE2. The active sites are conserved between prokaryotic tE2 and human tE2. However, marked structural differences are apparent in the hairpin domain and in the N-terminal helix connected to the flexible linker. These permutations away from the catalytic center likely impart structures needed to integrate a second component into the inner core and provide a sturdy base for the linker that holds the pyruvate dehydrogenase for access by the E2-bound regulatory kinase/phosphatase components in humans.
Collapse
|
20
|
Sorzano COS, Jonic S, Núñez-Ramírez R, Boisset N, Carazo JM. Fast, robust, and accurate determination of transmission electron microscopy contrast transfer function. J Struct Biol 2007; 160:249-62. [PMID: 17911028 DOI: 10.1016/j.jsb.2007.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 08/18/2007] [Accepted: 08/22/2007] [Indexed: 01/24/2023]
Abstract
Transmission electron microscopy, as most imaging devices, introduces optical aberrations that in the case of thin specimens are usually modeled in Fourier space by the so-called contrast transfer function (CTF). Accurate determination of the CTF is crucial for its posterior correction. Furthermore, the CTF estimation must be fast and robust if high-throughput three-dimensional electron microscopy (3DEM) studies are to be carried out. In this paper we present a robust algorithm that fits a theoretical CTF model to the power spectrum density (PSD) measured on a specific micrograph or micrograph area. Our algorithm is capable of estimating the envelope of the CTF which is absolutely needed for the correction of the CTF amplitude changes.
Collapse
Affiliation(s)
- C O S Sorzano
- Unidad de Biocomputación, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma s/n, 28049 Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
21
|
Sorzano COS, Jonic S, Cottevieille M, Larquet E, Boisset N, Marco S. 3D electron microscopy of biological nanomachines: principles and applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:995-1013. [PMID: 17611751 DOI: 10.1007/s00249-007-0203-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 06/01/2007] [Accepted: 06/11/2007] [Indexed: 11/21/2022]
Abstract
Transmission electron microscopy is a powerful technique for studying the three-dimensional (3D) structure of a wide range of biological specimens. Knowledge of this structure is crucial for fully understanding complex relationships among macromolecular complexes and organelles in living cells. In this paper, we present the principles and main application domains of 3D transmission electron microscopy in structural biology. Moreover, we survey current developments needed in this field, and discuss the close relationship of 3D transmission electron microscopy with other experimental techniques aimed at obtaining structural and dynamical information from the scale of whole living cells to atomic structure of macromolecular complexes.
Collapse
Affiliation(s)
- C O S Sorzano
- Bioengineering Lab, Escuela Politécnica Superior, Univ. San Pablo CEU, Campus Urb, Montepríncipe s/n, 28668, Boadilla del Monte, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Wang L, Bose PS, Sigworth FJ. Using cryo-EM to measure the dipole potential of a lipid membrane. Proc Natl Acad Sci U S A 2006; 103:18528-33. [PMID: 17116859 PMCID: PMC1693696 DOI: 10.1073/pnas.0608714103] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dipole potential of a lipid bilayer membrane accounts for its much larger permeability to anions than cations and affects the conformation and function of membrane proteins. The absolute value of the dipole potential has been very difficult to measure, although its value has been estimated to range from 200 to 1,000 mV from ion translocation rates, the surface potential of lipid monolayers, and molecular dynamics calculations. Here, a point charge probe method was used to investigate the dipole potentials of both ester and ether lipid membranes. The interactions between electrons and lipid molecules were recorded by phase-contrast imaging using cryo-EM. The magnitude and the profile of the dipole potential along the bilayer normal were obtained by subtracting the contribution of the atomic potential from the cryo-EM image intensity. The peak dipole potential was estimated to be 510 and 260 mV for diphytanoylphosphatidylcholine and diphytanylphosphatidylcholine, respectively.
Collapse
Affiliation(s)
- Liguo Wang
- *Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT 06520; and
| | - Pulkit S. Bose
- Department of Chemistry, Fresno Pacific University, 1717 South Chestnut Avenue, Fresno, CA 93702
| | - Fred J. Sigworth
- *Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT 06520; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Sherman MB, Guenther RH, Tama F, Sit TL, Brooks CL, Mikhailov AM, Orlova EV, Baker TS, Lommel SA. Removal of divalent cations induces structural transitions in red clover necrotic mosaic virus, revealing a potential mechanism for RNA release. J Virol 2006; 80:10395-406. [PMID: 16920821 PMCID: PMC1641784 DOI: 10.1128/jvi.01137-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of Red clover necrotic mosaic virus (RCNMV), an icosahedral plant virus, was resolved to 8.5 A by cryoelectron microscopy. The virion capsid has prominent surface protrusions and subunits with a clearly defined shell and protruding domains. The structures of both the individual capsid protein (CP) subunits and the entire virion capsid are consistent with other species in the Tombusviridae family. Within the RCNMV capsid, there is a clearly defined inner cage formed by complexes of genomic RNA and the amino termini of CP subunits. An RCNMV virion has approximately 390 +/- 30 Ca2+ ions bound to the capsid and 420 +/- 25 Mg2+ ions thought to be in the interior of the capsid. Depletion of both Ca2+ and Mg2+ ions from RCNMV leads to significant structural changes, including (i) formation of 11- to 13-A-diameter channels that extend through the capsid and (ii) significant reorganization within the interior of the capsid. Genomic RNA within native capsids containing both Ca2+ and Mg2+ ions is extremely resistant to nucleases, but depletion of both of these cations results in nuclease sensitivity, as measured by a significant reduction in RCNMV infectivity. These results indicate that divalent cations play a central role in capsid dynamics and suggest a mechanism for the release of viral RNA in low-divalent-cation environments such as those found within the cytoplasm of a cell.
Collapse
Affiliation(s)
- Michael B Sherman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jonić S, Sorzano COS, Cottevieille M, Larquet E, Boisset N. A novel method for improvement of visualization of power spectra for sorting cryo-electron micrographs and their local areas. J Struct Biol 2006; 157:156-67. [PMID: 16987671 DOI: 10.1016/j.jsb.2006.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 06/23/2006] [Accepted: 06/28/2006] [Indexed: 11/28/2022]
Abstract
In a context of automation of cryo-electron microscopy, we developed a novel method for improving visibility of diffraction rings in the power spectra of cryo-electron micrographs of vitreous ice (without carbon film or high concentration of diffracting material). We used these enhanced spectra to semi-automatically detect and remove micrographs and/or local areas introducing errors in the global 3D map (drifted and charged areas) or those unable to increase global signal-to-noise ratio (non-diffracting areas). Our strategy also allows a detection of micrographs/areas with a strong astigmatism. These images should be removed when using algorithms that do not correct astigmatism. Our sorting method is simple and fast since it uses the normalized cross-correlation between enhanced spectra and their copies rotated by 90 degrees. It owes its success mainly to the novel pre-processing of power spectra. The improved visibility also allows an easier visual check of accuracy of sorting. We show that our algorithm can even improve the visibility of diffraction rings of cryo-electron micrographs of pure water. Moreover, we show that this visibility depends strongly on ice thickness. This algorithm is implemented in the Xmipp (open-source image processing package) and is freely available for implementation in any other software package.
Collapse
Affiliation(s)
- S Jonić
- Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie, UMR 7590, CNRS, P7, IPG, 140 rue de Lourmel, 75015 Paris, France.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Splicing is an essential step of gene expression in which introns are removed from pre-mRNA to generate mature mRNA that can be translated by the ribosome. This reaction is catalyzed by a large and dynamic macromolecular RNP complex called the spliceosome. The spliceosome is formed by the stepwise integration of five snRNPs composed of U1, U2, U4, U5, and U6 snRNAs and more than 150 proteins binding sequentially to pre-mRNA. To study the structure of this particularly dynamic RNP machine that undergoes many changes in composition and conformation, single-particle cryo-electron microscopy (cryo-EM) is currently the method of choice. In this review, we present the results of these cryo-EM studies along with some new perspectives on structural and functional aspects of splicing, and we outline the perspectives and limitations of the cryo-EM technique in obtaining structural information about macromolecular complexes, such as the spliceosome, involved in splicing.
Collapse
Affiliation(s)
- Holger Stark
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | | |
Collapse
|
26
|
Fernández JJ, Li S, Crowther RA. CTF determination and correction in electron cryotomography. Ultramicroscopy 2006; 106:587-96. [PMID: 16616422 DOI: 10.1016/j.ultramic.2006.02.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 11/23/2022]
Abstract
Electron cryotomography (cryoET) has the potential to elucidate the structure of complex biological specimens at molecular resolution but technical and computational improvements are still needed. This work addresses the determination and correction of the contrast transfer function (CTF) of the electron microscope in cryoET. Our approach to CTF detection and defocus determination depends on strip-based periodogram averaging, extended throughout the tilt series to overcome the low contrast conditions found in cryoET. A method for CTF correction that deals with the defocus gradient in images of tilted specimens is also proposed. These approaches to CTF determination and correction have been applied here to several examples of cryoET of pleomorphic specimens and of single particles. CTF correction is essential for improving the resolution, particularly in those studies that combine cryoET with single particle averaging techniques.
Collapse
Affiliation(s)
- J J Fernández
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
27
|
Sorzano COS, Marabini R, Velázquez-Muriel J, Bilbao-Castro JR, Scheres SHW, Carazo JM, Pascual-Montano A. XMIPP: a new generation of an open-source image processing package for electron microscopy. J Struct Biol 2005; 148:194-204. [PMID: 15477099 DOI: 10.1016/j.jsb.2004.06.006] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 06/04/2004] [Indexed: 11/30/2022]
Abstract
X-windows based microscopy image processing package (Xmipp) is a specialized suit of image processing programs, primarily aimed at obtaining the 3D reconstruction of biological specimens from large sets of projection images acquired by transmission electron microscopy. This public-domain software package was introduced to the electron microscopy field eight years ago, and since then it has changed drastically. New methodologies for the analysis of single-particle projection images have been added to classification, contrast transfer function correction, angular assignment, 3D reconstruction, reconstruction of crystals, etc. In addition, the package has been extended with functionalities for 2D crystal and electron tomography data. Furthermore, its current implementation in C++, with a highly modular design of well-documented data structures and functions, offers a convenient environment for the development of novel algorithms. In this paper, we present a general overview of a new generation of Xmipp that has been re-engineered to maximize flexibility and modularity, potentially facilitating its integration in future standardization efforts in the field. Moreover, by focusing on those developments that distinguish Xmipp from other packages available, we illustrate its added value to the electron microscopy community.
Collapse
Affiliation(s)
- C O S Sorzano
- Unidad de Biocomputación, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma s/n, 28049 Cantoblanco, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
28
|
Sorzano COS, de la Fraga LG, Clackdoyle R, Carazo JM. Normalizing projection images: a study of image normalizing procedures for single particle three-dimensional electron microscopy. Ultramicroscopy 2004; 101:129-38. [PMID: 15450658 DOI: 10.1016/j.ultramic.2004.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 04/08/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
In the process of three-dimensional reconstruction of single particle biological macromolecules several hundreds, or thousands, of projection images are taken from tens or hundreds of independently digitized micrographs. These different micrographs show differences in the background grey level and particle contrast and, therefore, have to be normalized by scaling their pixel values before entering the reconstruction process. In this work several normalization procedures are studied using a statistical comparison framework. We finally show that the use of the different normalization methods affects the reconstruction quality, providing guidance on the choice of normalization procedures.
Collapse
Affiliation(s)
- C O S Sorzano
- Biocomputing Unit, National Center of Biotechnology (CSIC), Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Cheng L, Chen S, Brannan JM, Jakana J, Zhang Q, Zhou ZH, Zhang J. Three-dimensional structure determination of capsid of Aedes albopictus C6/36 cell densovirus. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2004; 47:224-8. [PMID: 15524279 DOI: 10.1007/bf03182767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The three-dimensional structure of capsid of Aedes albopictus C6/36 densovirus was determined to 14-A resolution by electron cryomicroscopy and computer reconstruction. The triangulation number of the capsid is 1. There are 12 holes in each triangular face and a spike on each 5-fold vertex. The validity of the capsid and nucleic acid densities in the reconstructions was discussed.
Collapse
Affiliation(s)
- Lingpeng Cheng
- State Key Laboratory for Bio-control, Zhongshan University, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Liu J, Taylor DW, Taylor KA. A 3-D reconstruction of smooth muscle alpha-actinin by CryoEm reveals two different conformations at the actin-binding region. J Mol Biol 2004; 338:115-25. [PMID: 15050827 DOI: 10.1016/j.jmb.2004.02.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 02/05/2004] [Accepted: 02/11/2004] [Indexed: 11/20/2022]
Abstract
Cryoelectron microscopy was used to obtain a 3-D image at 2.0 nm resolution of 2-D arrays of smooth muscle alpha-actinin. The reconstruction reveals a well-resolved long central domain with 90 degrees of left-handed twist and near 2-fold symmetry. However, the molecular ends which contain the actin binding and calmodulin-like domains, have different structures oriented approximately 90 degrees to each other. Atomic structures for the alpha-actinin domains were built by homology modeling and assembled into an atomic model. Model building suggests that in the 2-D arrays, the two calponin homology domains that comprise the actin-binding domain have a closed conformation at one end and an open conformation at the other end due to domain swapping. The open and closed conformations of the actin-binding domain suggests flexibility that may underlie Ca2+ regulation. The approximately 90 degrees orientation difference at the molecular ends may underlie alpha-actinin's ability to crosslink actin filaments in nearly any orientation.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | |
Collapse
|
31
|
Sorzano COS, Marabini R, Herman GT, Censor Y, Carazo JM. Transfer function restoration in 3D electron microscopy via iterative data refinement. Phys Med Biol 2004; 49:509-22. [PMID: 15005161 DOI: 10.1088/0031-9155/49/4/003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three-dimensional electron microscopy (3D-EM) is a powerful tool for visualizing complex biological systems. As with any other imaging device, the electron microscope introduces a transfer function (called in this field the contrast transfer function, CTF) into the image acquisition process that modulates the various frequencies of the signal. Thus, the 3D reconstructions performed with these CTF-affected projections are also affected by an implicit 3D transfer function. For high-resolution electron microscopy, the effect of the CTF is quite dramatic and limits severely the achievable resolution. In this work we make use of the iterative data refinement (IDR) technique to ameliorate the effect of the CTF. It is demonstrated that the approach can be successfully applied to noisy data.
Collapse
Affiliation(s)
- C O S Sorzano
- Escuela Politécnica Superior, Universidad San Pablo-CEU, Campus Urb Montepríncipe, s/n, 28668 Boadilla del Monte, Madrid, Spain
| | | | | | | | | |
Collapse
|
32
|
Yu XK, O'Connor CM, Atanasov I, Damania B, Kedes DH, Zhou ZH. Three-dimensional structures of the A, B, and C capsids of rhesus monkey rhadinovirus: insights into gammaherpesvirus capsid assembly, maturation, and DNA packaging. J Virol 2004; 77:13182-93. [PMID: 14645575 PMCID: PMC296048 DOI: 10.1128/jvi.77.24.13182-13193.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhesus monkey rhadinovirus (RRV) exhibits high levels of sequence homology to human gammaherpesviruses, such as Kaposi's sarcoma-associated herpesvirus, and grows to high titers in cell cultures, making it a good model system for studying gammaherpesvirus capsid structure and assembly. We have purified RRV A, B, and C capsids, thus for the first time allowing direct structure comparisons by electron cryomicroscopy and three-dimensional reconstruction. The results show that the shells of these capsids are identical and are each composed of 12 pentons, 150 hexons, and 320 triplexes. Structural differences were apparent inside the shells and through the penton channels. The A capsid is empty, and its penton channels are open. The B capsid contains a scaffolding core, and its penton channels are closed. The C capsid contains a DNA genome, which is closely packaged into regularly spaced density shells (25 A apart), and its penton channels are open. The different statuses of the penton channels suggest a functional role of the channels during capsid maturation, and the overall structural similarities of RRV capsids to alphaherpesvirus capsids suggest a common assembly and maturation pathway. The RRV A capsid reconstruction at a 15-A resolution, the best achieved for gammaherpesvirus particles, reveals overall structural similarities to alpha- and betaherpesvirus capsids. However, the outer regions of the capsid, including densities attributed to the Ta triplex and the small capsomer-interacting protein (SCIP or ORF65), exhibit prominent differences from their structural counterparts in alphaherpesviruses. This structural disparity suggests that SCIP and the triplex, together with tegument and envelope proteins, confer structural and potentially functional specificities to alpha-, beta-, and gammaherpesviruses.
Collapse
Affiliation(s)
- Xue-Kui Yu
- Department of PathologyLaboratory Medicine, University of Texas at Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
33
|
Saad AS. Wavelets filtering for classification of very noisy electron microscopic single particles images--application on structure determination of VP5-VP19C recombinant. BMC STRUCTURAL BIOLOGY 2003; 3:9. [PMID: 14667245 PMCID: PMC317332 DOI: 10.1186/1472-6807-3-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2003] [Accepted: 12/11/2003] [Indexed: 11/10/2022]
Abstract
Background Images of frozen hydrated [vitrified] virus particles were taken close-to-focus in an electron microscope containing structural signals at high spatial frequencies. These images had very low contrast due to the high levels of noise present in the image. The low contrast made particle selection, classification and orientation determination very difficult. The final purpose of the classification is to improve the signal-to-noise ratio of the particle representing the class, which is usually the average. In this paper, the proposed method is based on wavelet filtering and multi-resolution processing for the classification and reconstruction of this very noisy data. A multivariate statistical analysis (MSA) is used for this classification. Results The MSA classification method is noise dependant. A set of 2600 projections from a 3D map of a herpes simplex virus -to which noise was added- was classified by MSA. The classification shows the power of wavelet filtering in enhancing the quality of class averages (used in 3D reconstruction) compared to Fourier band pass filtering. A 3D reconstruction of a recombinant virus (VP5-VP19C) is presented as an application of multi-resolution processing for classification and reconstruction. Conclusion The wavelet filtering and multi-resolution processing method proposed in this paper offers a new way for processing very noisy images obtained from electron cryo-microscopes. The multi-resolution and filtering improves the speed and accuracy of classification, which is vital for the 3D reconstruction of biological objects. The VP5-VP19C recombinant virus reconstruction presented here is an example, which demonstrates the power of this method. Without this processing, it is not possible to get the correct 3D map of this virus.
Collapse
Affiliation(s)
- Ali Samir Saad
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, P,O, Box, 10219, Riyadh 11433, Kingdom of Saudi Arabia.
| |
Collapse
|
34
|
Velázquez-Muriel JA, Sorzano COS, Fernández JJ, Carazo JM. A method for estimating the CTF in electron microscopy based on ARMA models and parameter adjustment. Ultramicroscopy 2003; 96:17-35. [PMID: 12623169 DOI: 10.1016/s0304-3991(02)00377-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work, a powerful parametric spectral estimation technique, 2D-auto regressive moving average modeling (ARMA), has been applied to contrast transfer function (CTF) detection in electron microscopy. Parametric techniques such as auto regressive (AR) and ARMA models allow a more exact determination of the CTF than traditional methods based only on the Fourier transform of the complete image or parts of it and performing some average (periodogram averaging). Previous works revealed that AR models can be used to improve CTF estimation and the detection of its zeros. ARMA models reduce the model order and the computing time, and more interestingly, achieve increased accuracy. ARMA models are generated from electron microscopy (EM) images, and then a stepwise search algorithm is used to fit all the parameters of a theoretical CTF model in the ARMA model previously calculated. Furthermore, this adjustment is truly two-dimensional, allowing astigmatic images to be properly treated. Finally, an individual CTF can be assigned to every point of the micrograph, by means of an interpolation at the functional level, provided that a CTF has been estimated in each one of a set of local areas. The user need only know a few a priori parameters of the experimental conditions of his micrographs, for turning this technique into an automatic and very powerful tool for CTF determination, prior to CTF correction in 3D-EM. The programs developed for the above tasks have been integrated into the X-Windows-based Microscopy Image Processing Package (Xmipp) software package, and are fully accessible at www.biocomp.cnb.uam.es.
Collapse
|
35
|
Liu J, Wendt T, Taylor D, Taylor K. Refined model of the 10S conformation of smooth muscle myosin by cryo-electron microscopy 3D image reconstruction. J Mol Biol 2003; 329:963-72. [PMID: 12798686 DOI: 10.1016/s0022-2836(03)00516-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The actin-activated ATPase activity of smooth muscle myosin and heavy meromyosin (smHMM) is regulated by phosphorylation of the regulatory light chain (RLC). Complete regulation requires two intact myosin heads because single-headed myosin subfragments are always active. 2D crystalline arrays of the 10S form of intact myosin, which has a dephosphorylated RLC, were produced on a positively charged lipid monolayer and imaged in 3D at 2.0 nm resolution by cryo-electron microscopy of frozen, hydrated specimens. An atomic model of smooth muscle myosin was constructed from the X-ray structures of the smooth muscle myosin motor domain and essential light chain and a homology model of the RLC was produced based on the skeletal muscle S1 structure. The initial model of the 10S myosin, based on the previous reconstruction of smHMM, was subjected to real space refinement to obtain a quantitative fit to the density. The smHMM was likewise refined and both refined models reveal the same asymmetric interaction between the upper 50 kDa domain of the "blocked" head and parts of the catalytic, converter domains and the essential light chain of the "free" head observed previously. This observation suggests that this interaction is not simply due to crystallographic packing but is enforced by elements of the myosin heads. The 10S reconstruction shows additional alpha-helical coiled-coil not seen in the earlier smHMM reconstruction, but the location of one segment of S2 is the same in both.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | | | |
Collapse
|
36
|
Zhou ZH, Zhang H, Jakana J, Lu XY, Zhang JQ. Cytoplasmic polyhedrosis virus structure at 8 A by electron cryomicroscopy: structural basis of capsid stability and mRNA processing regulation. Structure 2003; 11:651-63. [PMID: 12791254 DOI: 10.1016/s0969-2126(03)00091-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The single-shelled cytoplasmic polyhedrosis virus (CPV) is a unique member of the Reoviridae. Despite lacking protective outer shells, it exhibits striking capsid stability and is capable of endogenous RNA transcription and processing. The 8 A three-dimensional structure of CPV by electron cryomicroscopy reveals secondary structure elements present in the capsid proteins CSP, LPP, and TP, which have alpha+beta folds. The extensive nonequivalent interactions between CSP and LPP, the unique CSP protrusion domain, and the perfect inter-CSP surface complementarities may account for the enhanced capsid stability. The slanted disposition of TP functional domains and the stacking of channel constrictions suggest an iris diaphragm-like mechanism for opening/closing capsid pores and turret channels in regulating the highly coordinated steps of mRNA transcription, processing, and release.
Collapse
Affiliation(s)
- Z Hong Zhou
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
37
|
Sander B, Golas MM, Stark H. Automatic CTF correction for single particles based upon multivariate statistical analysis of individual power spectra. J Struct Biol 2003; 142:392-401. [PMID: 12781666 DOI: 10.1016/s1047-8477(03)00072-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three-dimensional electron cryomicroscopy of randomly oriented single particles is a method that is suitable for the determination of three-dimensional structures of macromolecular complexes at molecular resolution. However, the electron-microscopical projection images are modulated by a contrast transfer function (CTF) that prevents the calculation of three-dimensional reconstructions of biological complexes at high resolution from uncorrected images. We describe here an automated method for the accurate determination and correction of the CTF parameters defocus, twofold astigmatism and amplitude-contrast proportion from single-particle images. At the same time, the method allows the frequency-dependent signal decrease (B factor) and the non-convoluted background signal to be estimated. The method involves the classification of the power spectra of single-particle images into groups with similar CTF parameters; this is done by multivariate statistical analysis (MSA) and hierarchically ascending classification (HAC). Averaging over several power spectra generates class averages with enhanced signal-to-noise ratios. The correct CTF parameters can be deduced from these class averages by applying an iterative correlation procedure with theoretical CTF functions; they are then used to correct the raw images. Furthermore, the method enables the tilt axis of the sample holder to be determined and allows the elimination of individual poor-quality images that show high drift or charging effects.
Collapse
Affiliation(s)
- B Sander
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
38
|
Lo P, Yu X, Atanasov I, Chandran B, Zhou ZH. Three-dimensional localization of pORF65 in Kaposi's sarcoma-associated herpesvirus capsid. J Virol 2003; 77:4291-7. [PMID: 12634386 PMCID: PMC150664 DOI: 10.1128/jvi.77.7.4291-4297.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of the six herpesvirus capsid proteins, the smallest capsid proteins (SCPs) share the least sequence homology among herpesvirus family members and have been implicated in virus specificity during infection. The herpes simplex virus-1 (HSV-1) SCP was shown to be horn shaped and to specifically bind the upper domain of each major capsid protein in hexons but not in pentons. In Kaposi's sarcoma-associated herpesvirus (KSHV), the protein encoded by the ORF65 gene (pORF65) is the putative SCP but its location remains controversial due to the absence of such horn-shaped densities from both the pentons and hexons of the KSHV capsid reconstructions. To directly locate the KSHV SCP, we have used electron cryomicroscopy and three-dimensional reconstruction techniques to compare the three-dimensional structure of KSHV capsids to that of anti-pORF65 antibody-labeled capsids. Our difference map shows prominent antibody densities bound to the tips of the hexons but not to pentons, indicating that KSHV SCP is attached to the upper domain of the major capsid protein in hexons but not to that in pentons, similar to HSV-1 SCP. The lack of horn-shaped densities on the hexons indicates that KSHV SCP exhibits structural features that are substantially different from those of HSV-1 SCP. The location of SCP at the outermost regions of the capsid suggests a possible role in mediating capsid interactions with the tegument and cytoskeletal proteins during infection.
Collapse
Affiliation(s)
- Pierrette Lo
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
39
|
Meissner U, Stohr M, Kusche K, Burmester T, Stark H, Harris JR, Orlova EV, Markl J. Quaternary structure of the European spiny lobster (Palinurus elephas) 1x6-mer hemocyanin from cryoEM and amino acid sequence data. J Mol Biol 2003; 325:99-109. [PMID: 12473454 DOI: 10.1016/s0022-2836(02)01173-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Arthropod hemocyanins are large respiratory proteins that are composed of up to 48 subunits (8 x 6-mer) in the 75kDa range. A 3D reconstruction of the 1 x 6-mer hemocyanin from the European spiny lobster Palinurus elephas has been performed from 9970 single particles using cryoelectron microscopy. An 8A resolution of the hemocyanin 3D reconstruction has been obtained from about 600 final class averages. Visualisation of structural elements such as alpha-helices has been achieved. An amino acid sequence alignment shows the high sequence identity (>80%) of the hemocyanin subunits from the European spiny lobster P.elephas and the American spiny lobster Panulirus interruptus. Comparison of the P.elephas hemocyanin electron microscopy (EM) density map with the known P.interruptus X-ray structure shows a close structural correlation, demonstrating the reliability of both methods for reconstructing proteins. By molecular modelling, we have found the putative locations for the amino acid sequence (597-605) and the C-terminal end (654-657), which are absent in the available P.interruptus X-ray data.
Collapse
Affiliation(s)
- Ulrich Meissner
- Institute of Zoology, University of Mainz, Muellerweg 6, D-55099 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhou ZH, Chiu W. Determination of icosahedral virus structures by electron cryomicroscopy at subnanometer resolution. ADVANCES IN PROTEIN CHEMISTRY 2003; 64:93-124. [PMID: 13677046 DOI: 10.1016/s0065-3233(03)01003-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Z Hong Zhou
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
41
|
Abstract
The EMXtalOrg software package organizes and processes electron microscope (EM) data from indexed images of tilted two-dimensional (2D) protein crystals. The package, which is freely available, was written to facilitate the processing of amplitude and phase (aph) data from 2D EM projections into three-dimensional (3D) reconstructions. The suite takes as input contrast transfer function corrected aph files and generates lattice line data to yield HKL files which can be output for viewing 3D structures with existing data visualization programs. Additionally, the package offers a number of other processing features, and provides a convenient graphical interface for several image processing programs devoted to the analysis of 2D crystals. The package is written in the Python scripting language using the Tcl/ Tk toolkit for the graphical user interface, making it portable and easy to modify by the user. The package provides an integrated environment to simplify the process of obtaining 3D structures from 2D crystals.
Collapse
Affiliation(s)
- Jason McDermott
- Vollum Institute, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland 97201-3098, USA.
| | | |
Collapse
|
42
|
Zhang H, Yu XK, Lu XY, Zhang JQ, Zhou ZH. Molecular interactions and viral stability revealed by structural analyses of chemically treated cypovirus capsids. Virology 2002; 298:45-52. [PMID: 12093172 DOI: 10.1006/viro.2002.1473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoplasmic polyhedrosis virus (CPV, genus Cypovirus) is a unique member of the family Reoviridae which lacks the outer protective shells that exist in all other members, yet exhibits unusual stability. We have analyzed the effects of different acidic, basic, detergent, and urea treatments on CPV capsids. The integrity of the CPV capsids was unaffected under high-pH conditions that disrupted the orthoreovirus inner core, consistent with its ability to maintain structural integrity in extremely alkaline environments during infection. However, it was sensitive to low pH, detergents, and urea, similarly to other viruses in this family. The three-dimensional structure comparisons by electron cryomicroscopy of the intact empty CPV capsid with the "spikeless" capsid whose turrets were removed by chemical treatments revealed the interaction footprint of the turret on the capsid shell. The observed structural changes associated with the removal of the turret suggest critical structural roles of the turret in maintaining capsid integrity in addition to its enzymatic activities.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, 77030, USA
| | | | | | | | | |
Collapse
|
43
|
Zhou ZH, McCarthy DB, O'Connor CM, Reed LJ, Stoops JK. The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc Natl Acad Sci U S A 2001; 98:14802-7. [PMID: 11752427 PMCID: PMC64939 DOI: 10.1073/pnas.011597698] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The three-dimensional reconstruction of the bovine kidney pyruvate dehydrogenase complex (M(r) approximately 7.8 x 10(6)) comprising about 22 molecules of pyruvate dehydrogenase (E(1)) and about 6 molecules of dihydrolipoamide dehydrogenase (E(3)) with its binding protein associated with the 60-subunit dihydrolipoamide acetyltransferase (E(2)) core provides considerable insight into the structural and functional organization of the largest multienzyme complex known. The structure shows that potentially 60 centers for acetyl-CoA synthesis are organized in sets of three at each of the 20 vertices of the pentagonal dodecahedral core. These centers consist of three E(1) molecules bound to one E(2) trimer adjacent to an E(3) molecule in each of 12 pentagonal openings. The E(1) components are anchored to the E(1)-binding domain of the E(2) subunits through an approximately 50-A-long linker. Three of these linkers emanate from the outside edges of the triangular base of the E(2) trimer and form a cage around its base that may shelter the lipoyl domains and the E(1) and E(2) active sites. The docking of the atomic structures of E(1) and the E(1) binding and lipoyl domains of E(2) in the electron microscopy map gives a good fit and indicates that the E(1) active site is approximately 95 A above the base of the trimer. We propose that the lipoyl domains and its tether (swinging arm) rotate about the E(1)-binding domain of E(2,) which is centrally located 45-50 A from the E(1), E(2), and E(3) active sites, and that the highly flexible breathing core augments the transfer of intermediates between active sites.
Collapse
Affiliation(s)
- Z H Zhou
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Three-dimensional structure determination of macromolecules and macromolecular complexes is an integral part of understanding biological functions. For large protein and macromolecular complexes structure determination is often performed using electron cryomicroscopy where projection images of individual macromolecular complexes are combined to produce a three-dimensional reconstruction. Single particle methods have been devised to perform this structure determination for macromolecular complexes with little or no underlying symmetry. These computational methods generally involve an iterative process of aligning unique views of the macromolecular images followed by determination of the angular components that define those views. In this review, this structure determination process is described with the aim of clarifying a seemingly complex structural method.
Collapse
|
45
|
Tang J, Taylor DW, Taylor KA. The three-dimensional structure of alpha-actinin obtained by cryoelectron microscopy suggests a model for Ca(2+)-dependent actin binding. J Mol Biol 2001; 310:845-58. [PMID: 11453692 DOI: 10.1006/jmbi.2001.4789] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional structure of alpha-actinin from rabbit skeletal muscle was determined by cryoelectron microscopy in combination with homology modeling of the separate domain structures based on results previously determined by X-ray crystallography and nuclear magnetic resonance spectroscopy. alpha-Actinin was induced to form two-dimensional arrays on a positively charged lipid monolayer and micrographs were collected from unstained, frozen hydrated specimens at tilt angles from 0 degrees to 60 degrees. Interpretation of the 15 A-resolution three-dimensional structure was done by manually docking homologous models of the three key domains, actin-binding, three-helix motif and the C-terminal calmodulin-like domains. The initial model was refined quantitatively to improve its fit to the experimental reconstruction. The molecular model of alpha-actinin provides the first view of the overall structure of a complete actin cross-linking protein. The structure is characterized by close proximity of the C-terminal, calmodulin-like domain to the linker between the two calponin-homology domains that comprise the actin-binding domain. This location suggests a hypothesis to explain the involvement of the C-terminal domain in Ca(2+)-dependent actin binding of non-muscle isoforms.
Collapse
Affiliation(s)
- J Tang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | |
Collapse
|
46
|
Zhou ZH, Liao W, Cheng RH, Lawson JE, McCarthy DB, Reed LJ, Stoops JK. Direct evidence for the size and conformational variability of the pyruvate dehydrogenase complex revealed by three-dimensional electron microscopy. The "breathing" core and its functional relationship to protein dynamics. J Biol Chem 2001; 276:21704-13. [PMID: 11285267 DOI: 10.1074/jbc.m101765200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural studies by three-dimensional electron microscopy of the Saccharomyces cerevisiae truncated dihydrolipoamide acetyltransferase (tE(2)) component of the pyruvate dehydrogenase complex reveal an extraordinary example of protein dynamics. The tE(2) forms a 60-subunit core with the morphology of a pentagonal dodecahedron and consists of 20 cone-shaped trimers interconnected by 30 bridges. Frozen-hydrated and stained molecules of tE(2) in the same field vary in size approximately 20%. Analyses of the data show that the size distribution is bell-shaped, and there is an approximately 40-A difference in the diameter of the smallest and largest structures that corresponds to approximately 14 A of variation in the length of the bridge between interconnected trimers. Companion studies of mature E(2) show that the complex of the intact subunit exhibits a similar size variation. The x-ray structure of Bacillus stearothermophilus tE(2) shows that there is an approximately 10-A gap between adjacent trimers and that the trimers are interconnected by the potentially flexible C-terminal ends of two adjacent subunits. We propose that this springlike feature is involved in a thermally driven expansion and contraction of the core and, since it appears to be a common feature in the phylogeny of pyruvate dehydrogenase complexes, protein dynamics is an integral component of the function of these multienzyme complexes.
Collapse
Affiliation(s)
- Z H Zhou
- Department of Pathology and Laboratory Medicine, University of Texas, Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Shao C, Zhou ZH, Lu G. Three-dimensional structure of the inner core of rice dwarf virus. ACTA ACUST UNITED AC 2001; 44:192-8. [DOI: 10.1007/bf02879325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2000] [Indexed: 10/22/2022]
|
49
|
Ono S, McGough A, Pope BJ, Tolbert VT, Bui A, Pohl J, Benian GM, Gernert KM, Weeds AG. The C-terminal tail of UNC-60B (actin depolymerizing factor/cofilin) is critical for maintaining its stable association with F-actin and is implicated in the second actin-binding site. J Biol Chem 2001; 276:5952-8. [PMID: 11050090 DOI: 10.1074/jbc.m007563200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin depolymerizing factor (ADF)/cofilin changes the twist of actin filaments by binding two longitudinally associated actin subunits. In the absence of an atomic model of the ADF/cofilin-F-actin complex, we have identified residues in ADF/cofilin that are essential for filament binding. Here, we have characterized the C-terminal tail of UNC-60B (a nematode ADF/cofilin isoform) as a novel determinant for its association with F-actin. Removal of the C-terminal isoleucine (Ile152) by carboxypeptidase A or truncation by mutagenesis eliminated F-actin binding activity but strongly enhanced actin depolymerizing activity. Replacement of Ile152 by Ala had a similar but less marked effect; F-actin binding was weakened and depolymerizing activity slightly enhanced. Truncation of both Arg151 and Ile152 or replacement of Arg151 with Ala also abolished F-actin binding and enhanced depolymerizing activity. Loss of F-actin binding in these mutants was accompanied by loss or greatly decreased severing activity. All of the variants of UNC-60B interacted with G-actin in an indistinguishable manner from wild type. Cryoelectron microscopy showed that UNC-60B changed the twist of F-actin to a similar extent to vertebrate ADF/cofilins. Helical reconstruction and structural modeling of UNC-60B-F-actin complex reveal how the C terminus of UNC-60B might be involved in one of the two actin-binding sites.
Collapse
Affiliation(s)
- S Ono
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yin Z, Zheng Y, Doerschuk PC. An ab initio algorithm for low-resolution 3-D reconstructions from cryoelectron microscopy images. J Struct Biol 2001; 133:132-42. [PMID: 11472085 DOI: 10.1006/jsbi.2001.4356] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A statistical method for determining low-resolution 3-D reconstructions of virus particles from cryoelectron microscope images by an ab initio algorithm is described. The method begins with a novel linear reconstruction method that generates a spherically symmetric reconstruction, which is followed by a nonlinear reconstruction method implementing an expectation-maximization procedure using the spherically symmetric reconstruction as an initial condition and resulting in a reconstruction with icosahedral symmetry. An important characteristic of the complete method is that very little need be known about the particle before the reconstruction is computed, in particular, only the type of symmetry and inner and outer radii. The method is demonstrated on synthetic cowpea mosaic virus data, and its robustness to 5% errors in the contrast transfer function, 5% errors in the location of the center of the particles in the images, and 5% distortion in the 3-D structure from which the images are derived is demonstrated numerically.
Collapse
Affiliation(s)
- Z Yin
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907-1285, USA
| | | | | |
Collapse
|