1
|
Wang MJ, Sun XY, Jiang L. Ultrastructural comparison of the larval midguts between Trypoxylus dichotomus (Linnaeus, 1771) and Anomala corpulenta (Motschulsky, 1854) (Coleoptera: Scarabaeidae). Tissue Cell 2024; 90:102521. [PMID: 39128192 DOI: 10.1016/j.tice.2024.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Larvae are the most important feeding and developmental stage in the life cycle of insects. Correspondingly, the larval midguts, as the primary digestive organs, undergo diverse specialization among insect lineages. Larvae of Scarabaeoidae, commomly known as white grubs, exhibit diversity on feeding habits at the familial or subfamilial level. However, the ultrastructure of larval midguts is not yet satisfactorily understood. In this study, the larval midguts of Trypoxylus dichotomus and Anomala corpulenta were compared using light and transmission electron microscopy for the first time, to uncover the ultrastructural differences between the midguts of saprophagous and phytophagous white grubs. The larval midguts of both species are tubular with three circles of the gastric caeca, and share morphological similarities in midgut epithelial cells, layers of basal lamina, and the digestive and regenerative cells. However, the midguts of the two species differ significantly in the shape of the gastric caeca and exhibit slightly differences in muscle structure. The morphology of larval midgut is related to the feeding habits.
Collapse
Affiliation(s)
- Mei-Jing Wang
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiao-Yu Sun
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lu Jiang
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
2
|
Taracena-Agarwal ML, Walter-Nuno AB, Bottino-Rojas V, Mejia APG, Xu K, Segal S, Dotson EM, Oliveira PL, Paiva-Silva GO. Juvenile Hormone as a contributing factor in establishing midgut microbiota for fecundity and fitness enhancement in adult female Aedes aegypti. Commun Biol 2024; 7:687. [PMID: 38839829 PMCID: PMC11153597 DOI: 10.1038/s42003-024-06334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Understanding the factors influencing mosquitoes' fecundity and longevity is important for designing better and more sustainable vector control strategies, as these parameters can impact their vectorial capacity. Here, we address how mating affects midgut growth in Aedes aegypti, what role Juvenile Hormone (JH) plays in this process, and how it impacts the mosquito's immune response and microbiota. Our findings reveal that mating and JH induce midgut growth. Additionally, the establishment of a native bacterial population in the midgut due to JH-dependent suppression of the immune response has important reproductive outcomes. Specific downregulation of AMPs with an increase in bacteria abundance in the gut results in increased egg counts and longer lifespans. Overall, these findings provide evidence of a cross-talk between JH response, gut epithelial tissue, cell cycle regulation, and the mechanisms governing the trade-offs between nutrition, immunity, and reproduction at the cellular level in the mosquito gut.
Collapse
Affiliation(s)
- Mabel L Taracena-Agarwal
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA.
| | - Ana Beatriz Walter-Nuno
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Vanessa Bottino-Rojas
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | | | - Kelsey Xu
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Steven Segal
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Ellen M Dotson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pedro L Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Gabriela O Paiva-Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
| |
Collapse
|
3
|
Janeh M, Osman D, Kambris Z. Comparative Analysis of Midgut Regeneration Capacity and Resistance to Oral Infection in Three Disease-Vector Mosquitoes. Sci Rep 2019; 9:14556. [PMID: 31601867 PMCID: PMC6787257 DOI: 10.1038/s41598-019-50994-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/23/2019] [Indexed: 11/09/2022] Open
Abstract
Mosquitoes acquire the pathogens they transmit through ingestion, and the insects' gut constitutes the first line of defense against invading pathogens. Indeed the gut epithelium acts as a physical barrier, activates local antimicrobial peptides production and triggers the systemic immune response. Consequently, gut epithelium is constantly confronted to stress and often suffers cellular damage. We have previously shown that regenerative cells are present in the guts of adult Aedes albopictus, and that chemical damage or bacterial infection leads to the proliferation of these regenerative cells in the midgut. In this study, we extended the analysis of gut cells response to stress to two other important disease vector mosquitoes: Culex pipiens and Anopheles gambiae. We fed mosquitoes on sucrose solutions or on sucrose supplemented with pathogenic bacteria or with damage-inducing chemicals. We also assayed the survival of mosquitoes following the ingestion of pathogenic bacteria. We found that in adult C. pipiens, dividing cells exist in the digestive tract and that these cells proliferate in the midgut after bacterial or chemical damage, similarly to what we previously observed in A. albopictus. In sharp contrast, we did not detect any mitotic cell in the midguts of A. gambiae mosquitoes, neither in normal situation nor after the induction of gut damage. In agreement with this observation, A. gambiae mosquitoes were more sensitive to oral bacterial infections compared to A. albopictus and C. pipiens. This work provides evidence that major differences in gut physiological responses exist between different mosquitoes. The presence of regenerative cells in the mosquito guts and their ability to multiply after gut damage affect the mosquito survival to oral infections, and is also likely to affect its vectorial capacity.
Collapse
Affiliation(s)
- Maria Janeh
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, 1300, Tripoli, Lebanon
| | - Zakaria Kambris
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
4
|
Baia-da-Silva DC, Orfanó AS, Nacif-Pimenta R, de Melo FF, Simões S, Cabral I, Lacerda MVG, Guerra MDGB, Monteiro WM, Secundino NFC, Pimenta PFP. The Midgut Muscle Network of Anopheles aquasalis (Culicidae, Anophelinae): Microanatomy and Structural Modification After Blood Meal and Plasmodium vivax (Haemosporida, Plasmodiidae) Infection. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:421-431. [PMID: 30508123 DOI: 10.1093/jme/tjy199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 06/09/2023]
Abstract
The mosquito midgut is divided into two regions named anterior midgut (AMG) and posterior midgut (PMG). The midgut expands intensely after the blood ingestion to accommodate a large amount of ingested food. To efficiently support the bloodmeal-induced changes, the organization of the visceral muscle fibers has significant adjustments. This study describes the spatial organization of the Anopheles aquasalis (Culicidae, Anophelinae) midgut muscle network and morphological changes after bloodmeal ingestion and infection with Plasmodium vivax (Haemosporida, Plasmodiidae). The midgut muscle network is composed of two types of fibers: longitudinal and circular. The two types of muscle fibers are composed of thick and thin filaments, similar to myosin and actin, respectively. Invagination of sarcoplasm membrane forms the T-system tubules. Sarcoplasmic reticulum cisternae have been observed in association with these invaginations. At different times after the bloodmeal, the fibers in the AMG are not modified. A remarkable dilation characterizes the transitional area between the AMG and the PMG. In the PMG surface, after the completion of bloodmeal ingestion, the stretched muscle fibers became discontinued. At 72 h after bloodmeal digestion, it is possible to observe the presence of disorganized muscle fibers in the midgut regions. The Plasmodium oocyst development along the basal layer of the midgut does not have a significant role in the visceral musculature distribution. This study provides features of the visceral musculature at different blood feeding times of An. aquasalis and shows important changes in midgut topography including when the mosquitoes are infected with P. vivax.
Collapse
Affiliation(s)
- Djane C Baia-da-Silva
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
| | - Alessandra S Orfanó
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Barro Preto, Belo Horizonte, MG, Brazil
| | - Rafael Nacif-Pimenta
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Barro Preto, Belo Horizonte, MG, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - Suzan Simões
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
| | - Iria Cabral
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
| | - Marcus Vinicíus Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz - Manaus, Manaus, AM, Brazil
| | - Maria das Graças Barbosa Guerra
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
| | - Nagila F C Secundino
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Barro Preto, Belo Horizonte, MG, Brazil
| | - Paulo F P Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Barro Preto, Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
Scudeler EL, Garcia ASG, Pinheiro PFF, Santos DCD. Neem oil (Azadirachta indica A. Juss) affects the ultrastructure of the midgut muscle of Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae). Acta Histochem 2017; 119:84-91. [PMID: 27939524 DOI: 10.1016/j.acthis.2016.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 01/31/2023]
Abstract
Cytomorphological changes, by means of ultrastructural analyses, have been used to determine the effects of the biopesticide neem oil on the muscle fibers of the midgut of the predator Ceraeochrysa claveri. Insects, throughout the larval period, were fed eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% or 2%. In the adult stage, the midgut was collected from female insects at two stages of adulthood (newly emerged and at the start of oviposition) and processed for ultrastructural analyses. In the newly emerged insects obtained from neem oil treatments, muscle fibers showed a reduction of myofilaments as well as swollen mitochondria and an accumulation of membranous structures. Muscular fibers responded to those cellular injuries with the initiation of detoxification mechanisms, in which acid phosphatase activity was observed in large vesicles located at the periphery of the muscle fiber. At the start of oviposition in the neem oil treated insects, muscle fibers exhibited signs of degeneration, containing vacant areas in which contractile myofilaments were reduced or completely absent, and an accumulation of myelin structures, a dilatation of cisternae of sarcoplasmic reticulum, and mitochondrial swelling and cristolysis were observed. Enzymatic activity for acid phosphatase was present in large vesicles, indicating that mechanisms of lytic activity during the cell injury were utilized but insufficient for recovery from all the cellular damage. The results indicate that the visceral muscle layer is also the target of action of neem oil, and the cytotoxic effects observed may compromise the function of that organ.
Collapse
Affiliation(s)
- Elton Luiz Scudeler
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, Brazil.
| | - Ana Silvia Gimenes Garcia
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, Brazil.
| | | | - Daniela Carvalho Dos Santos
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
6
|
Godoy RSM, Fernandes KM, Martins GF. Midgut of the non-hematophagous mosquito Toxorhynchites theobaldi (Diptera, Culicidae). Sci Rep 2015; 5:15836. [PMID: 26514271 PMCID: PMC4626790 DOI: 10.1038/srep15836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 02/05/2023] Open
Abstract
In most mosquito species, the females require a blood-feeding for complete egg development. However, in Toxorhynchites mosquitoes, the eggs develop without blood-feeding, and both females and males exclusively feed on sugary diets. The midgut is a well-understood organ in blood-feeding mosquitoes, but little is known about it in non-blood-feeding ones. In the present study, the detailed morphology of the midgut of Toxorhynchites theobaldi were investigated using histochemical and ultrastructural methods. The midgut of female and male T. theobaldi adults consists of a long, slender anterior midgut (AMG), and a short, dilated posterior midgut (PMG). The AMG is subdivided into AMG1 (short, with folds) and AMG2 (long, without folds). Nerve branches and enteroendocrine cells are present in AMG and PMG, respectively. Compared with the PMG of blood-feeding female mosquitoes, the PMG of T. theobaldi is smaller; however, in both mosquitoes, PMG seems be the main region of food digestion and absorption, and protein secretion. The epithelial folds present in the AMG of T. theobaldi have not been reported in other mosquitoes; however, the midgut muscle organization and endocrine control of the digestion process are conserved in both T. theobaldi and blood-feeding mosquitoes.
Collapse
Affiliation(s)
- Raquel S M Godoy
- Departamento de Biologia Geral-Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brasil
| | - Kenner M Fernandes
- Departamento de Biologia Geral-Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brasil
| | - Gustavo F Martins
- Departamento de Biologia Geral-Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brasil
| |
Collapse
|
7
|
Onken H, Moffett DF. Fluid absorption in the isolated midgut of adult female yellow fever mosquitoes (Aedes aegypti). ACTA ACUST UNITED AC 2015; 218:2023-9. [PMID: 25944920 DOI: 10.1242/jeb.119529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/22/2015] [Indexed: 11/20/2022]
Abstract
The transepithelial voltage (Vte) and the volume of isolated posterior midguts of adult female yellow fever mosquitoes (Aedes aegypti) were monitored. In all experiments, the initial Vte after filling the midgut was lumen negative, but subsequently became lumen positive at a rate of approximately 1 mV min(-1). Simultaneously, the midgut volume decreased, indicating spontaneous fluid absorption. When the midguts were filled and bathed with mosquito saline, the average rate of fluid absorption was 36.5±3.0 nl min(-1) (N=4, ±s.e.m.). In the presence of theophylline (10 mmol l(-1)), Vte reached significantly higher lumen-positive values, but the rate of fluid absorption was not affected (N=6). In the presence of NaCN (5 mmol l(-1)), Vte remained close to 0 mV (N=4) and fluid absorption was reduced (14.4±1.3 nl min(-1), N=3, ±s.e.m.). When midguts were filled with buffered NaCl (154 mmol l(-1) plus 1 mmol l(-1) HEPES) and bathed in mosquito saline with theophylline, fluid absorption was augmented (50.0±5.8 nl min(-1), N=12, ±s.e.m.). Concanamycin A (10 µmol l(-1)), ouabain (1 mmol l(-1)), and acetazolamide (1 mmol l(-1)) affected Vte in different ways, but all reduced fluid absorption by 60-70% of the value before addition of the drugs.
Collapse
Affiliation(s)
- Horst Onken
- Department of Biological Sciences, Wagner College, Staten Island, NY 10301, USA
| | - David F Moffett
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
8
|
Cázares-Raga FE, Chávez-Munguía B, González-Calixto C, Ochoa-Franco AP, Gawinowicz MA, Rodríguez MH, Hernández-Hernández FC. Morphological and proteomic characterization of midgut of the malaria vector Anopheles albimanus at early time after a blood feeding. J Proteomics 2014; 111:100-12. [PMID: 25132141 DOI: 10.1016/j.jprot.2014.07.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/16/2014] [Accepted: 07/29/2014] [Indexed: 01/27/2023]
Abstract
The midgut of anopheline mosquito is the entry of Plasmodium, the causative agent of malaria.When the mosquito feeds on parasite infected host, Plasmodium parasites reach the midgut and must confront digestive enzymes, the innate immune response and go across the peritrophic matrix (PM), a thick extracellular sheath secreted by the mosquito midgut epithelial cells. Then, to continue its development, the parasite must reach the salivary glands to achieve transmission to a vertebrate host. We report here the morphological and biochemical descriptions of the midgut changes after a blood meal in Anopheles albimanus. Before blood feeding, midgut epithelial cells contained numerous electrondense vesicles distributed in the central to apical side. These vesicles were secreted to the luminal side of the midgut after a blood meal. At early times after blood ingest, the PM is formed near microvilli as a granulous amorphous material and after it consolidates forming a highly organized fibrillar structure, constituted by layers of electrondense and electronlucent regions. Proteomic comparative analysis of sugar and blood fed midguts showed several molecules that modify their abundance after blood intake; these include innate immunity, cytoskeletal, stress response, signaling, and digestive, detoxifying and metabolism enzymes. Biological significance In the midgut of mosquitoes during bloodfeeding, many simultaneous processes occur, including digestion, innate immune activities, cytoskeleton modifications, construction of a peritrophic matrix and hormone production, between others. Mechanical forces are very intense during bloodfeeding and epithelial and muscular cells must resist the stress, modifying the actin cytoskeleton and coordinating intracellular responses by signaling. Microorganisms present in midgut contents reproduce and interact with epithelial cells triggering innate immune response. When infectious agents are present in the blood meal they must traverse the peritrophic matrix, an envelope formed from secretion products of epithelial cells, and evade the immune system in order to reach the epithelium and continue their journey towards salivary glands, in preparation for the transmission to the new hosts. During all these processes, proteins of mosquitoes are modified in order to deal with mechanical and biological challenges, and the aim of this work is to study these changes.
Collapse
Affiliation(s)
- F E Cázares-Raga
- Depto. de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, D.F., Mexico
| | - B Chávez-Munguía
- Depto. de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, D.F., Mexico
| | - C González-Calixto
- Depto. de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, D.F., Mexico
| | - A P Ochoa-Franco
- Depto. de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, D.F., Mexico
| | - M A Gawinowicz
- Herbert Irving Comprehensive Cancer Center, Columbia University, NY, USA
| | - M H Rodríguez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - F C Hernández-Hernández
- Depto. de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, D.F., Mexico.
| |
Collapse
|
9
|
Stoffolano JG, Guerra L, Carcupino M, Gambellini G, Fausto AM. The diverticulated crop of adult Phormia regina. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:251-260. [PMID: 20109581 DOI: 10.1016/j.asd.2010.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/15/2009] [Accepted: 01/15/2010] [Indexed: 05/28/2023]
Abstract
The crop of adult Phormia regina consists of a duct that diverges from the esophagus, just in front of the cardia, and extends ventrally and posteriorly into the thorax and abdomen where it forms a bilobed sac. Flattened epithelial cells produce the cuticular lining of the crop. When empty, or partially full, the epithelial cells and cuticular lining form folds extending into the lumen, thus providing for expansion as the crop sac fills. Covering the sac on the hemolymph side is a layer of anastomosed, intrinsic muscles connected to one another by intercellular cytoplasmic bridges. Mitochondria are located at the periphery of the sarcomere. Also inside the sarcomere are glycogen, sarcoplasmic reticula, and transverse tubular systems (T-system). I, A, and Z-bands are present and the Z-bands are not in register making the muscle-type supercontractile. Important structures, not previously researched and associated with the crop muscles, are the crop nerves. Coming off the corpora cardiaca, and running down each side of the crop duct, is a pair of nerves, each housing several axons. These nerves extend to and branch over the crop sac. Here they penetrate the muscle mass and form neuromuscular junctions where electron-dense droplets of neurosecretion are released. Based on the literature, and research in our laboratory, it has now been shown that these nerves carry adipokinetic hormone, Drosophila insulin-like peptide, and a dromyosuppressin-like neuropeptide.
Collapse
Affiliation(s)
- John G Stoffolano
- Department of Plant, Soil, and Insect Sciences, Division of Entomology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
10
|
VO MAI, LINSER PAULJ, BOWERS DORIAF. Organ-associated muscles in Aedes albopictus (Diptera: Culicidae) respond differentially to Sindbis virus. JOURNAL OF MEDICAL ENTOMOLOGY 2010; 47:215-25. [PMID: 20380303 PMCID: PMC2866116 DOI: 10.1603/me09041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Differential host cell responses to the alphavirus Sindbis were observed in visceral muscles of the adult female mosquito Aedes albopictus. Following intrathoracic inoculation with SIN, muscles associated with the midgut, hindgut, and ovary resulted in clearance, persistence, and refractoriness to virus, respectively. Prominent sarcomeres characteristic of myofilaments were identified in muscles associated with these three organs by phalloidin labeling of actin, confirming these cells as muscle. The location of virus antigen mimicked the distribution of actin in both mid- and hindgut-associated muscles. Furthermore, these myofilaments remained intact following virus clearance from midgut muscles and during virus persistence in hindgut muscles. Changes in the temporal onset of virus antigen following high titer inoculum compared with standard titer inoculum was observed in anterior midgut muscles, but not in muscles associated with the posterior midgut or hindgut. Muscle bundles closely approximated the gut surface, while a wispy association was displayed at the ovary surface. Prominent ultrastructural differences were observed in the basal lamina attached to the gut compared with the ovary. Additionally, ultrastructural evidence for virus-associated pathology was observed in gut-associated muscles and gut epithelium. Visceral muscles, all composed of the same tissue type, but associated to three different organs in the insect abdomen, responded differentially to Sindbis. We speculate that variations in structure, function or physiology and ultrastructure inherent to insect host cells or organs interactions reflect the complicated milieu of the organism and contribute to differential virus phenotypic expression in muscle cells.
Collapse
Affiliation(s)
- MAI VO
- Florida State University, College of Medicine, Tallahassee, FL 32306
| | - PAUL J. LINSER
- Whitney Laboratory, University of Florida, St. Augustine, FL 32080
| | - DORIA F. BOWERS
- Corresponding author: Department of Biology, University of North Florida, Jacksonville, FL 32224,
| |
Collapse
|
11
|
Bernick EP, Moffett SB, Moffett DF. Ultrastructure and morphology of midgut visceral muscle in early pupal Aedes aegypti mosquitoes. Tissue Cell 2007; 40:127-41. [PMID: 18160088 DOI: 10.1016/j.tice.2007.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/23/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
Abstract
These studies focus on the pupal Aedes aegypti midgut muscularis for the first 26 h following larval-pupal transition. The midgut muscularis of Ae. aegypti pupae during this first half of the pupal stadium is a grid of both circularly and longitudinally oriented muscle bands, arranged in a manner resembling that of the larvae. While many muscle bands exhibit signs of degeneration during the time period studied, not all bands degrade, nor is this degradation simultaneous. Band deterioration involves destruction of internal elements while the muscle fiber plasma membrane remains intact. Deterioration of contractile elements may involve proteosome-like structures and associated enzymes. Many features of the larval muscularis including cruciform cells, bifurcating circular bands, and bifurcating longitudinal bands of muscle are retained during the time period investigated. Neuromuscular junctions along some muscle bands are retained through at least 16 h into the pupal stadium. The selective nature of muscle fiber degradation, coupled with the retention of larval features and neural input, may allow for limited functionality of the muscularis during metamorphosis. Evidence of sexual dimorphism in the midgut muscularis of male and female Ae. aegypti pupae was not observed during the time period studied.
Collapse
Affiliation(s)
- E P Bernick
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States.
| | | | | |
Collapse
|
12
|
Okuda K, de Almeida F, Mortara RA, Krieger H, Marinotti O, Bijovsky AT. Cell death and regeneration in the midgut of the mosquito, Culex quinquefasciatus. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:1307-15. [PMID: 17716685 DOI: 10.1016/j.jinsphys.2007.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/06/2007] [Accepted: 07/10/2007] [Indexed: 05/16/2023]
Abstract
Haematophagy, the utilization of blood as food, has evolved independently among insects such as mosquitoes, bedbugs, fleas, and others. Accordingly, several distinct biological adaptations have occurred in order to facilitate the finding, ingestion and digestion of blood from vertebrate sources. Although blood meals are essential for survival and reproduction of these insects, mechanical and chemical stresses are caused by the ingestion of a sizable meal (frequently twice or more times the weight of the insect) containing large amounts of cytotoxic molecules such as haem. Here we present data showing that the stresses caused by a blood meal induce cell death in the midgut epithelium of Culex quinquefasciatus mosquitoes. The process involves apoptosis, ejection of dead cells to the midgut lumen and differentiation of basal regenerative cells to replace the lost digestive cells. The basal cell differentiation in blood-fed mosquito midguts represents an additional mechanism by which insects cope with the stresses caused by blood meals. C. quinquefasciatus adult females are unable to replace lost cells following a third or fourth blood meal, which may have a significant impact on mosquito longevity, reproduction and vectorial capacity.
Collapse
Affiliation(s)
- Kendi Okuda
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Bernick EP, Moffett SB, Moffett DF. Organization, ultrastructure, and development of midgut visceral muscle in larval Aedes aegypti. Tissue Cell 2007; 39:277-92. [PMID: 17675126 PMCID: PMC2045685 DOI: 10.1016/j.tice.2007.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/24/2007] [Accepted: 05/28/2007] [Indexed: 11/23/2022]
Abstract
The midgut muscularis of larvae of the mosquito Aedes aegypti takes the form of a grid of longitudinal and circular muscle bands. The longitudinal and circular bands overlap at near right angles at many areas of intersection. The longitudinal bands run the length of the midgut. However, some bands of circular muscle, located in the anterior midgut, pass only partway around the gut. An unusual feature was observed at some regions where longitudinal and circular bands of muscle intersect: filaments oriented at near right angles to one another were present in the same membrane-bound fiber. These cruciform regions send contractile elements into both circular and longitudinal bands. The muscularis was fixed in a contracted state, so most of the sarcomeres are represented by complete overlap of myosin and lighter staining actin filaments. Features characteristic of supercontracting muscle, including perforated Z-lines, were seen in sarcomeres of circular muscle bands. Small invaginations resembling transverse tubules were present but a sarcoplasmic reticulum was not observed. While occasional cells that may be neurons or neurosecretory cells were observed, a network that might serve to coordinate the segmentation and peristaltic movement of the muscularis was not apparent.
Collapse
Affiliation(s)
- E P Bernick
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | |
Collapse
|
14
|
Kim M, Robich RM, Rinehart JP, Denlinger DL. Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:1226-33. [PMID: 17078965 PMCID: PMC1839883 DOI: 10.1016/j.jinsphys.2006.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/07/2006] [Accepted: 09/11/2006] [Indexed: 05/11/2023]
Abstract
Two actin genes cloned from Culex pipiens L. are upregulated during adult diapause. Though actins 1 and 2 were expressed throughout diapause, both genes were most highly expressed early in diapause. These changes in gene expression were accompanied by a conspicuous redistribution of polymerized actin that was most pronounced in the midguts of diapausing mosquitoes that were exposed to low temperature. In nondiapausing mosquitoes reared at 25 degrees C and in diapausing mosquitoes reared at 18 degrees C, polymerized actin was clustered at high concentrations at the intersections of the muscle fibers that form the midgut musculature. When adults 7-10 days post-eclosion were exposed to low temperature (-5 degrees C for 12 h), the polymerized actin was evenly distributed along the muscle fibers in both nondiapausing and diapausing mosquitoes. Exposure of older adults (1 month post-eclosion) to low temperature (-5 degrees C for 12 h) elicited an even greater distribution of polymerized actin, an effect that was especially pronounced in diapausing mosquitoes. These changes in gene expression and actin distribution suggest a role for actins in enhancing survival of diapausing adults during the low temperatures of winter by fortification of the cytoskeleton.
Collapse
|
15
|
Okuda K, de Souza Caroci A, Ribolla PEM, de Bianchi AG, Bijovsky AT. Functional morphology of adult female Culex quinquefasciatus midgut during blood digestion. Tissue Cell 2002; 34:210-9. [PMID: 12182814 DOI: 10.1016/s0040-8166(02)00032-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The adult female Culex quinquefasciatus midgut comprises a narrow anterior and a dilated posterior region, with epithelia composed of a monolayer of adjacent epithelial cells joined at the apical portion by septate junctions. Densely packed apical microvilli and an intricate basal labyrinth characterise each cell pole. Our morphological studies suggest that, during blood digestion, the anterior midgut region also participates in an initial absorptive stage which is probably related to the intake of water, salts and other small molecules. This activity peaked by 6h after bloodmeal feeding (ABF) and ended approximately 18 h ABF, when the peritrophic membrane was already formed. After this time, absorption only occurred in the posterior region, with morphologic and biochemical evidence of high synthetic activity related to the secretion of proteases. Chymotrypsin, elastase, aminopeptidase, and trypsin reached their maximum activity at around 36 h ABF. Digestion products were apparently absorbed and transported to the basal labyrinth, from where they should be released to the hemolymph. At 72 h ABF, proteolysis had already ended and protein levels had returned to those observed before blood meal. The epithelium of the posterior region, however, did not return to its initial morphology, appearing quite disorganised. Additionally, from 48 h ABF onwards some epithelial cells showed morphological signals of apoptosis.
Collapse
Affiliation(s)
- K Okuda
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
16
|
Koehler A, Zia C, Desser SS. Structural organization of the midgut musculature in black flies (Simuliumspp.). CAN J ZOOL 2002. [DOI: 10.1139/z02-072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural organization of the midgut musculature of females of the ornithophilic species Simulium rugglesi and the mammalophilic species Simulium venustum were examined by confocal microscopy. In addition, the association between the longitudinal and circular muscles of fed S. rugglesi was investigated by transmission electron microscopy. Longitudinal and circular muscles in both species are arranged orthogonally, forming a gridlike pattern. In S. rugglesi the estimated number of longitudinal and circular muscles was 181 and 90, respectively, whereas in S. venustum there were approximately 156 longitudinal and 69 circular muscles. Longitudinal muscles are arranged in unevenly spaced sets of parallel bundles. Branching of longitudinal muscles occurs randomly along the length of the midgut in S. rugglesi and anteriorly and posteriorly to the most expanded region of the posterior midgut in S. venustum. Circular muscles exhibit less variation in bundle spacing and a more organized branching pattern. Each circular muscle bundle shares fibers with the neighboring bundles, interconnecting them along the length of the midgut. Ultrastructural observations on the midgut of S. rugglesi showed connections between longitudinal and circular muscles. A comparison of the findings from this study with those from studies on mosquitoes revealed similarities in the arrangement and structure of the midgut musculature.
Collapse
|
17
|
Abstract
Recent debate in Plasmodium ookinete invasion has been centered on whether the parasite chooses a specific cell type to cross the midgut epithelium in the mosquito. A few publications have described the mosquito midgut being composed of complex surface-structures, histochemically and biochemically diverse cell types, and have proposed that Plasmodium gallinaceum ookinetes prefers a specific cell type (Ross cell) in Aedes aegypti for crossing the midgut epithelium. Two recent publications reported, however, that with differential interference contrast microscopy, all midgut epithelial cells in uninfected mosquitoes appear structurally similar and argued that ookinetes do not invade a specific cell type. These observations are discussed here in the context of the 'Ross cell' hypothesis.
Collapse
Affiliation(s)
- Mohammed Shahabuddin
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Shahabuddin M, Costero A. Spatial distribution of factors that determine sporogonic development of malaria parasites in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:231-240. [PMID: 11167092 DOI: 10.1016/s0965-1748(00)00142-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mosquitoes transmit malaria, but only a few species permit the complete development and transmission of the parasite. Also, only a fraction of the ingested parasites develop in the vector. The attrition occurs in different compartments during the parasite's complex developmental scheme in the insect. A number of factors, both physical and biochemical, that affect the development have been proposed or demonstrated. Each of these factors is located within a specific space in the insect. We have divided this space into six compartments, which are distinct in their biochemical and biophysical nature: Endoperitrophic space, Peritrophic matrix, Ectopretrophic space, Midgut epithelium, Haemocoel and Salivary gland. Because factors that influence a particular stage of parasite development share the same microenvironment within these compartments, they must be considered collectively to exploit them for designing effective transmission blocking strategies. In this article we discuss these factors according to their spatial location in the mosquito.
Collapse
Affiliation(s)
- M Shahabuddin
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA.
| | | |
Collapse
|