1
|
Leavenworth JD, Yusuf N, Hassan Q. K-Homology Type Splicing Regulatory Protein: Mechanism of Action in Cancer and Immune Disorders. Crit Rev Eukaryot Gene Expr 2024; 34:75-87. [PMID: 37824394 PMCID: PMC11003564 DOI: 10.1615/critreveukaryotgeneexpr.2023048085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
K homology-type splicing regulatory protein (KSRP) is emerging as a key player in cancer biology, and immunology. As a single-strand nucleic acid binding protein it functions in both transcriptional and post-transcriptional regulation, while facilitating multiple stages of RNA metabolism to affect proliferation and control cell fate. However, it must interact with other proteins to determine the fate of its bound substrate. Here we provide an minireview of this important regulatory protein and describe its complex subcellular functions to affect RNA metabolism, stability, miRNA biogenesis and maturation, stress granule function, metastasis, and inflammatory processes.
Collapse
Affiliation(s)
- Jonathan D. Leavenworth
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nabiha Yusuf
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Quamarul Hassan
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Antifeeva IA, Fonin AV, Fefilova AS, Stepanenko OV, Povarova OI, Silonov SA, Kuznetsova IM, Uversky VN, Turoverov KK. Liquid-liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cell Mol Life Sci 2022; 79:251. [PMID: 35445278 PMCID: PMC11073196 DOI: 10.1007/s00018-022-04276-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022]
Abstract
At the turn of the twenty-first century, fundamental changes took place in the understanding of the structure and function of proteins and then in the appreciation of the intracellular space organization. A rather mechanistic model of the organization of living matter, where the function of proteins is determined by their rigid globular structure, and the intracellular processes occur in rigidly determined compartments, was replaced by an idea that highly dynamic and multifunctional "soft matter" lies at the heart of all living things. According this "new view", the most important role in the spatio-temporal organization of the intracellular space is played by liquid-liquid phase transitions of biopolymers. These self-organizing cellular compartments are open dynamic systems existing at the edge of chaos. They are characterized by the exceptional structural and compositional dynamics, and their multicomponent nature and polyfunctionality provide means for the finely tuned regulation of various intracellular processes. Changes in the external conditions can cause a disruption of the biogenesis of these cellular bodies leading to the irreversible aggregation of their constituent proteins, followed by the transition to a gel-like state and the emergence of amyloid fibrils. This work represents a historical overview of changes in our understanding of the intracellular space compartmentalization. It also reflects methodological breakthroughs that led to a change in paradigms in this area of science and discusses modern ideas about the organization of the intracellular space. It is emphasized here that the membrane-less organelles have to combine a certain resistance to the changes in their environment and, at the same time, show high sensitivity to the external signals, which ensures the normal functioning of the cell.
Collapse
Affiliation(s)
- Iuliia A Antifeeva
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Anna S Fefilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Sergey A Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
3
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
4
|
Leptin, Leptin Receptor, KHDRBS1 (KH RNA Binding Domain Containing, Signal Transduction Associated 1), and Adiponectin in Bone Metastasis from Breast Carcinoma: An Immunohistochemical Study. Biomedicines 2020; 8:biomedicines8110510. [PMID: 33213024 PMCID: PMC7698510 DOI: 10.3390/biomedicines8110510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer patients are at a high risk of complications from bone metastasis. Molecular characterization of bone metastases is essential for the discovery of new therapeutic targets. Here, we investigated the expression and the intracellular distribution of KH RNA binding domain containing, signal transduction associated 1 (KHDRBS1), leptin, leptin receptor (LEPR), and adiponectin in bone metastasis from breast carcinoma and looked for correlations between the data. The expression of these proteins is known in breast carcinoma, but it has not been investigated in bone metastatic tissue to date. Immunohistochemical analysis was carried out on bone metastasis specimens, then semiquantitative evaluation of the results and the Pearson test were performed to determine eventual correlations. KHDRBS1 expression was significantly higher in the nuclei than in the cytosol of metastatic cells; LEPR was prevalently observed in the cytosol and the nuclei; leptin and adiponectin were found in metastatic cells and stromal cells; the strongest positive correlation was between nuclear KHDRBS1 and nuclear LEPR expression. Taken together, our findings support the importance of the leptin/LEPR/KHDRBS1 axis and of adiponectin in the progression of bone metastasis and suggest their potential application in pharmacological interventions.
Collapse
|
5
|
Dumbović G, Sanjuan X, Perucho M, Forcales SV. Stimulated emission depletion (STED) super resolution imaging of RNA- and protein-containing domains in fixed cells. Methods 2020; 187:68-76. [PMID: 32360441 DOI: 10.1016/j.ymeth.2020.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
Super resolution microscopy has changed our capability to visualize and understand spatial arrangements of RNA- and protein-containing domains in individual cells. In a previous study, we described a novel lncRNA, Tumor-associated NBL2 transcript (TNBL), which originates from a primate specific macrosatellite repeat. We aimed to describe several aspects of TNBL lncRNA, with one focus being pinpointing its precise location in the nucleus, as well as visualizing its interactions with proteins to deduce its functionality. Using a combination of STimulated Emission Depletion (STED) super resolution microscopy, single molecule RNA (smRNA) FISH against TNBL, and immunofluorescence against SAM68 perinucleolar body, we resolved the spatial complexity of the interaction between TNBL aggregates and SAM68 bodies at the perinucleolar region. Here, we describe protocols for a step-by-step optimized smRNA FISH/IF and STED imaging, detailing parameter settings, and three-dimensional data analysis of spatial positioning of subnuclear structures. These protocols can be employed for single-cell imaging of complex nuclear RNA-protein structures.
Collapse
Affiliation(s)
- Gabrijela Dumbović
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA.
| | - Xavier Sanjuan
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Advanced Light Microscopy Unit, Center for Genomic Regulation, Barcelona, Spain
| | - Manuel Perucho
- Cancer Genetics and Epigenetics, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain; Tumor Initiation and Maintenance Program, Sanford Burnham Prebys (SBP) Medical Discovery Institute, La Jolla, CA, USA
| | - Sonia-V Forcales
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, L' Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
6
|
Short Tandem Repeat-Enriched Architectural RNAs in Nuclear Bodies: Functions and Associated Diseases. Noncoding RNA 2020; 6:ncrna6010006. [PMID: 32093161 PMCID: PMC7151548 DOI: 10.3390/ncrna6010006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear bodies are membraneless, phase-separated compartments that concentrate specific proteins and RNAs in the nucleus. They are believed to serve as sites for the modification, sequestration, and storage of specific factors, and to act as organizational hubs of chromatin structure to control gene expression and cellular function. Architectural (arc) RNA, a class of long noncoding RNA (lncRNA), plays essential roles in the formation of nuclear bodies. Herein, we focus on specific arcRNAs containing short tandem repeat-enriched sequences and introduce their biological functions and recently elucidated underlying molecular mechanism. In various neurodegenerative diseases, abnormal nuclear and cytoplasmic bodies are built on disease-causing RNAs or toxic RNAs with aberrantly expanded short tandem repeat-enriched sequences. We discuss the possible analogous functions of natural arcRNAs and toxic RNAs with short tandem repeat-enriched sequences. Finally, we describe the technical utility of short tandem repeat-enriched arcRNAs as a model for exploring the structures and functions of nuclear bodies, as well as the pathogenic mechanisms of neurodegenerative diseases.
Collapse
|
7
|
Taniuchi K, Ogasawara M. KHSRP-bound small nucleolar RNAs associate with promotion of cell invasiveness and metastasis of pancreatic cancer. Oncotarget 2020; 11:131-147. [PMID: 32010427 PMCID: PMC6968780 DOI: 10.18632/oncotarget.27413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/16/2019] [Indexed: 01/09/2023] Open
Abstract
KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein implicated in a variety of cellular processes, including splicing in the nucleus and mRNA localization and degradation in the cytoplasm. The present study reports that KHSRP promotes invasiveness and metastasis of pancreatic cancer cells. KHSRP was localized in the nucleus and cell protrusions of pancreatic cancer cell lines. Suppression of KHSRP by small interfering RNA decreased the number of cell protrusions and inhibited invasiveness and metastasis of pancreatic cancer cells. KHSRP was localized in cytoplasmic RNA granules in pancreatic cancer cells, and RNA immunoprecipitation-sequencing analysis showed that the majority of enriched RNAs that immunoprecipitated with KHSRP were small nucleolar RNAs (snoRNAs). Specific KHSRP-bound snoRNAs, SNORA18 and SNORA22, associated with formation of cell protrusions. Consequently, SNORA18 and SNORA22 contributed to cell invasiveness and tumor metastasis. Our results provide insight into the link between KHSRP-bound snoRNAs and invasiveness and metastasis of pancreatic cancers. New therapies that prevent binding of KHSRP with specific snoRNAs may hold significant clinical promise.
Collapse
Affiliation(s)
- Keisuke Taniuchi
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Mitsunari Ogasawara
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
8
|
Supramolecular Fuzziness of Intracellular Liquid Droplets: Liquid-Liquid Phase Transitions, Membrane-Less Organelles, and Intrinsic Disorder. Molecules 2019; 24:molecules24183265. [PMID: 31500307 PMCID: PMC6767272 DOI: 10.3390/molecules24183265] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Cells are inhomogeneously crowded, possessing a wide range of intracellular liquid droplets abundantly present in the cytoplasm of eukaryotic and bacterial cells, in the mitochondrial matrix and nucleoplasm of eukaryotes, and in the chloroplast’s stroma of plant cells. These proteinaceous membrane-less organelles (PMLOs) not only represent a natural method of intracellular compartmentalization, which is crucial for successful execution of various biological functions, but also serve as important means for the processing of local information and rapid response to the fluctuations in environmental conditions. Since PMLOs, being complex macromolecular assemblages, possess many characteristic features of liquids, they represent highly dynamic (or fuzzy) protein–protein and/or protein–nucleic acid complexes. The biogenesis of PMLOs is controlled by specific intrinsically disordered proteins (IDPs) and hybrid proteins with ordered domains and intrinsically disordered protein regions (IDPRs), which, due to their highly dynamic structures and ability to facilitate multivalent interactions, serve as indispensable drivers of the biological liquid–liquid phase transitions (LLPTs) giving rise to PMLOs. In this article, the importance of the disorder-based supramolecular fuzziness for LLPTs and PMLO biogenesis is discussed.
Collapse
|
9
|
The Oncogene Metadherin Interacts with the Known Splicing Proteins YTHDC1, Sam68 and T-STAR and Plays a Novel Role in Alternative mRNA Splicing. Cancers (Basel) 2019; 11:cancers11091233. [PMID: 31450747 PMCID: PMC6770463 DOI: 10.3390/cancers11091233] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022] Open
Abstract
Oncogenic metadherin is a key contributor to tumourigenesis with metadherin expression and cytoplasmic localisation previously linked to poor survival. A number of reports have shown metadherin localises specifically to nuclear speckles known to be rich in RNA-binding proteins including the splicing proteins YTHDC1, Sam68 and T-STAR, that have been shown to select alternative splice sites in mRNA of tumour-associated proteins including BRCA, MDM2 and VEGF. Here we investigate the interaction and relationship between metadherin and the splice factors YTHDC1, T-STAR and Sam68. Using a yeast two-hybrid assay and immunoprecipitation we show that metadherin interacts with YTHDC1, Sam68 and T-STAR and demonstrate that T-STAR is significantly overexpressed in prostate cancer tissue compared to benign prostate tissue. We also demonstrate that metadherin influences splice site selection in a dose-dependent manner in CD44v5-luc minigene reporter assays. Finally, we demonstrate that prostate cancer patients with higher metadherin expression have greater expression of the CD44v5 exon. CD44v5 expression could be used to discriminate patients with poor outcomes following radical prostatectomy. In this work we show for the first time that metadherin interacts with, and modulates, the function of key components of splicing associated with cancer development and progression.
Collapse
|
10
|
Dumbović G, Biayna J, Banús J, Samuelsson J, Roth A, Diederichs S, Alonso S, Buschbeck M, Perucho M, Forcales SV. A novel long non-coding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer. Nucleic Acids Res 2018; 46:5504-5524. [PMID: 29912433 PMCID: PMC6009586 DOI: 10.1093/nar/gky263] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/19/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
Primate-specific NBL2 macrosatellite is hypomethylated in several types of tumors, yet the consequences of this DNA hypomethylation remain unknown. We show that NBL2 conserved repeats are close to the centromeres of most acrocentric chromosomes. NBL2 associates with the perinucleolar region and undergoes severe demethylation in a subset of colorectal cancer (CRC). Upon DNA hypomethylation and histone acetylation, NBL2 repeats are transcribed in tumor cell lines and primary CRCs. NBL2 monomers exhibit promoter activity, and are contained within novel, non-polyA antisense lncRNAs, which we designated TNBL (Tumor-associated NBL2 transcript). TNBL is stable throughout the mitotic cycle, and in interphase nuclei preferentially forms a perinucleolar aggregate in the proximity of a subset of NBL2 loci. TNBL aggregates interact with the SAM68 perinucleolar body in a mirror-image cancer specific perinucleolar structure. TNBL binds with high affinity to several proteins involved in nuclear functions and RNA metabolism, such as CELF1 and NPM1. Our data unveil novel DNA and RNA structural features of a non-coding macrosatellite frequently altered in cancer.
Collapse
Affiliation(s)
- Gabrijela Dumbović
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
| | - Josep Biayna
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Carrer de Baldiri Reixac, 10–12, Barcelona 08028, Spain
| | - Jordi Banús
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
| | | | - Anna Roth
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center – University of Freiburg & Faculty of Medicine, University of Freiburg & German Cancer Consortium (DKTK), Freiburg, Germany
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
| | - Marcus Buschbeck
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO - Germans Trias i Pujol, Campus Can Ruti, Badalona, Barcelona 08916, Spain
| | - Manuel Perucho
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Sanford-Burnham-Prebys Medical Discovery Institute (SBP), 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sonia-V Forcales
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Carrer de la Feixa Llarga, s/n, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
11
|
The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. Int J Biol Macromol 2018; 117:1224-1251. [PMID: 29890250 DOI: 10.1016/j.ijbiomac.2018.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
Water represents a common denominator for liquid-liquid phase transitions leading to the formation of the polymer-based aqueous two-phase systems (ATPSs) and a set of the proteinaceous membrane-less organelles (PMLOs). ATPSs have a broad range of biotechnological applications, whereas PMLOs play a number of crucial roles in cellular compartmentalization and often represent a cellular response to the stress. Since ATPSs and PMLOs contain high concentrations of polymers (such as polyethylene glycol (PEG), polypropylene glycol (PPG), Ucon, and polyvinylpyrrolidone (PVP), Dextran, or Ficoll) or biopolymers (peptides, proteins and nucleic acids), it is expected that the separated phases of these systems are characterized by the noticeable changes in the solvent properties of water. These changes in solvent properties can drive partitioning of various compounds (proteins, nucleic acids, organic low-molecular weight molecules, metal ions, etc.) between the phases of ATPSs or between the PMLOs and their surroundings. Although there is a sizable literature on the properties of the ATPS phases, much less is currently known about PMLOs. In this perspective article, we first represent liquid-liquid phase transitions in water, discuss different types of biphasic (or multiphasic) systems in water, and introduce various PMLOs and some of their properties. Then, some basic characteristics of polymer-based ATPSs are presented, with the major focus being on the current understanding of various properties of ATPS phases and solvent properties of water inside them. Finally, similarities and differences between the polymer-based ATPSs and biological PMLOs are discussed.
Collapse
|
12
|
Zaslavsky BY, Uversky VN. In Aqua Veritas: The Indispensable yet Mostly Ignored Role of Water in Phase Separation and Membrane-less Organelles. Biochemistry 2018; 57:2437-2451. [PMID: 29303563 DOI: 10.1021/acs.biochem.7b01215] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the common practice of presenting structures of biological molecules on an empty background and the assumption that interactions between biological macromolecules take place within the inert solvent, water represents an active component of various biological processes. This Perspective addresses indispensable, yet mostly ignored, roles of water in biological liquid-liquid phase transitions and in the biogenesis of various proteinaceous membrane-less organelles. We point out that changes in the structure of water reflected in the changes in its abilities to donate and/or accept hydrogen bonds and participate in dipole-dipole and dipole-induced dipole interactions in the presence of various solutes (ranging from small molecules to synthetic polymers and biological macromolecules) might represent a driving force for the liquid-liquid phase separation, define partitioning of various solutes in formed phases, and define the exceptional ability of intrinsically disordered proteins to be engaged in the formation of proteinaceous membrane-less organelles.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa , Florida 33612 , United States.,Laboratory of New Methods in Biology , Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| |
Collapse
|
13
|
Darling AL, Liu Y, Oldfield CJ, Uversky VN. Intrinsically Disordered Proteome of Human Membrane-Less Organelles. Proteomics 2017; 18:e1700193. [PMID: 29068531 DOI: 10.1002/pmic.201700193] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/10/2017] [Indexed: 11/10/2022]
Abstract
It is recognized now that various proteinaceous membrane-less organelles (PMLOs) are commonly found in cytoplasm, nucleus, and mitochondria of various eukaryotic cells (as well as in the chloroplasts of plant cells). Being different from the "traditional" membrane-encapsulated organelles, such as chloroplasts, endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, nucleus, and vacuoles, PMLOs solve the cellular need to facilitate and regulate molecular interactions via reversible and controllable isolation of target molecules in specialized compartments. PMLOs possess liquid-like behavior and are believed to be formed as a result of biological liquid-liquid phase transitions (LLPTs, also known as liquid-liquid phase separation), where an intricate interplay between RNA and intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) may play an important role. This review analyzes the prevalence of intrinsic disorder in proteins associated with various PMLOs found in human cells and considers some of the functional roles of IDPs/IDPRs in biogenesis of these organelles.
Collapse
Affiliation(s)
- April L Darling
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, P. R. China
| | | | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow Region, Russia
| |
Collapse
|
14
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
15
|
Uversky VN. Paradoxes and wonders of intrinsic disorder: Stability of instability. INTRINSICALLY DISORDERED PROTEINS 2017; 5:e1327757. [PMID: 30250771 DOI: 10.1080/21690707.2017.1327757] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 01/03/2023]
Abstract
This article continues a series of short comments on the paradoxes and wonders of the protein intrinsic disorder phenomenon by introducing the "stability of instability" paradox. Intrinsically disordered proteins (IDPs) are characterized by the lack of stable 3D-structure, and, as a result, have an exceptional ability to sustain exposure to extremely harsh environmental conditions (an illustration of the "you cannot break what is already broken" principle). Extended IDPs are known to possess extreme thermal and acid stability and are able either to keep their functionality under these extreme conditions or to rapidly regain their functionality after returning to the normal conditions. Furthermore, sturdiness of intrinsic disorder and its capability to "ignore" harsh conditions provides some interesting and important advantages to its carriers, at the molecular (e.g., the cell wall-anchored accumulation-associated protein playing a crucial role in intercellular adhesion within the biofilm of Staphylococcus epidermidis), supramolecular (e.g., protein complexes, biologic liquid-liquid phase transitions, and proteinaceous membrane-less organelles), and organismal levels (e.g., the recently popularized case of the microscopic animals, tardigrades, or water bears, that use intrinsically disordered proteins to survive desiccation).
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
16
|
Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles. Adv Colloid Interface Sci 2017; 239:97-114. [PMID: 27291647 DOI: 10.1016/j.cis.2016.05.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
It is clear now that eukaryotic cells contain numerous membrane-less organelles, many of which are formed in response to changes in the cellular environment. Being typically liquid in nature, many of these organelles can be described as products of the reversible and highly controlled liquid-liquid phase transitions in biological systems. Many of these membrane-less organelles are complex coacervates containing (almost invariantly) intrinsically disordered proteins and often nucleic acids. It seems that the lack of stable structure in major proteinaceous constituents of these organelles is crucial for the formation of phase-separated droplets. This review considers several biologically relevant liquid-liquid phase transitions, introduces some general features attributed to intrinsically disordered proteins, represents several illustrative examples of intrinsic disorder-based phase separation, and provides some reasons for the abundance of intrinsically disordered proteins in organelles formed as a result of biological liquid-liquid phase transitions.
Collapse
|
17
|
Even Y, Escande ML, Fayet C, Genevière AM. CDK13, a Kinase Involved in Pre-mRNA Splicing, Is a Component of the Perinucleolar Compartment. PLoS One 2016; 11:e0149184. [PMID: 26886422 PMCID: PMC4757566 DOI: 10.1371/journal.pone.0149184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023] Open
Abstract
The perinucleolar compartment (PNC) is a subnuclear stucture forming predominantly in cancer cells; its prevalence positively correlates with metastatic capacity. Although several RNA-binding proteins have been characterized in PNC, the molecular function of this compartment remains unclear. Here we demonstrate that the cyclin-dependent kinase 13 (CDK13) is a newly identified constituent of PNC. CDK13 is a kinase involved in the regulation of gene expression and whose overexpression was found to alter pre-mRNA processing. In this study we show that CDK13 is enriched in PNC and co-localizes all along the cell cycle with the PNC component PTB. In contrast, neither the cyclins K and L, known to associate with CDK13, nor the potential kinase substrates accumulate in PNC. We further show that CDK13 overexpression increases PNC prevalence suggesting that CDK13 may be determinant for PNC formation. This result linked to the finding that CDK13 gene is amplified in different types of cancer indicate that this kinase can contribute to cancer development in human.
Collapse
Affiliation(s)
- Yasmine Even
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Marie-Line Escande
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Claire Fayet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Anne-Marie Genevière
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| |
Collapse
|
18
|
Perinucleolar heterochromatin during the cell differentiation using human leukemic neutrophils as a convenient model. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2015.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
19
|
Uversky VN. The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett 2015; 589:2498-506. [PMID: 26073257 DOI: 10.1016/j.febslet.2015.06.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are important constituents of many protein complexes, playing various structural, functional, and regulatory roles. In such disorder-based protein complexes, functional disorder is used both internally (for assembly, movement, and functional regulation of the different parts of a given complex) and externally (for interactions of a complex with its external regulators). In complex assembly, IDPs/IDPRs serve as the molecular glue that cements complexes or as highly flexible scaffolds. Disorder defines the order of complex assembly and the ability of a protein to be involved in polyvalent interactions. It is at the heart of various binding mechanisms and interaction modes ascribed to IDPs. Disorder in protein complexes is related to multifarious applications of induced folding and induced functional unfolding, or defines the entropic chain activities, such as stochastic machines and binding rheostats. This review opens a FEBS Letters Special Issue on Dynamics, Flexibility, and Intrinsic Disorder in protein assemblies and represents a brief overview of intricate roles played by IDPs and IDPRs in various aspects of protein complexes.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation; Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
20
|
Frege T, Uversky VN. Intrinsically disordered proteins in the nucleus of human cells. Biochem Biophys Rep 2015; 1:33-51. [PMID: 29124132 PMCID: PMC5668563 DOI: 10.1016/j.bbrep.2015.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022] Open
Abstract
Intrinsically disordered proteins are known to perform a variety of important functions such as macromolecular recognition, promiscuous binding, and signaling. They are crucial players in various cellular pathway and processes, where they often have key regulatory roles. Among vital cellular processes intimately linked to the intrinsically disordered proteins is transcription, an intricate biological performance predominantly developing inside the cell nucleus. With this work, we gathered information about proteins that exist in various compartments and sub-nuclear bodies of the nucleus of the human cells, with the goal of identifying which ones are highly disordered and which functions are ascribed to the disordered nuclear proteins.
Collapse
Affiliation(s)
- Telma Frege
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- GenomeNext LLC, 175 South 3rd Street, Suite 200, Columbus OH 43215, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer׳s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- Correspondence to: Department of Molecular, Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC07, Tampa, FL 33612, USA. Tel.: +1 813 974 5816; fax: +1 813 974 7357.
| |
Collapse
|
21
|
Responses of proteins to different ionic environment are linearly interrelated. J Chromatogr A 2015; 1387:32-41. [DOI: 10.1016/j.chroma.2015.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 01/03/2023]
|
22
|
What macromolecular crowding can do to a protein. Int J Mol Sci 2014; 15:23090-140. [PMID: 25514413 PMCID: PMC4284756 DOI: 10.3390/ijms151223090] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/17/2023] Open
Abstract
The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area.
Collapse
|
23
|
Uversky VN, Kuznetsova IM, Turoverov KK, Zaslavsky B. Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Lett 2014; 589:15-22. [PMID: 25436423 DOI: 10.1016/j.febslet.2014.11.028] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/10/2014] [Accepted: 11/19/2014] [Indexed: 12/25/2022]
Abstract
Here, we hypothesize that intrinsically disordered proteins (IDPs) serve as important drivers of the intracellular liquid-liquid phase separations that generate various membrane-less organelles. This hypothesis is supported by the overwhelming abundance of IDPs in these organelles. Assembly and disassembly of these organelles are controlled by changes in the concentrations of IDPs, their posttranslational modifications, binding of specific partners, and changes in the pH and/or temperature of the solution. Each resulting phase provides a distinct solvent environment for other solutes leading to their unequal distribution within phases. The specificity and efficiency of such partitioning is determined by the nature of the IDP(s) and defines "targeted" enrichment of specific molecules in the resulting membrane-less organelles that determines their specific activities.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation; Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation; St. Petersburg State Polytechnical University, St. Petersburg, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation; St. Petersburg State Polytechnical University, St. Petersburg, Russian Federation
| | - Boris Zaslavsky
- AnalizaDx Inc., 3615 Superior Ave., Suite 4407B, Cleveland, OH 44114, USA
| |
Collapse
|
24
|
Rossbach O, Hung LH, Khrameeva E, Schreiner S, König J, Curk T, Zupan B, Ule J, Gelfand MS, Bindereif A. Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L. RNA Biol 2014; 11:146-55. [PMID: 24526010 DOI: 10.4161/rna.27991] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a multifunctional RNA-binding protein that is involved in many different processes, such as regulation of transcription, translation, and RNA stability. We have previously characterized hnRNP L as a global regulator of alternative splicing, binding to CA-repeat, and CA-rich RNA elements. Interestingly, hnRNP L can both activate and repress splicing of alternative exons, but the precise mechanism of hnRNP L-mediated splicing regulation remained unclear. To analyze activities of hnRNP L on a genome-wide level, we performed individual-nucleotide resolution crosslinking-immunoprecipitation in combination with deep-sequencing (iCLIP-Seq). Sequence analysis of the iCLIP crosslink sites showed significant enrichment of C/A motifs, which perfectly agrees with the in vitro binding consensus obtained earlier by a SELEX approach, indicating that in vivo hnRNP L binding targets are mainly determined by the RNA-binding activity of the protein. Genome-wide mapping of hnRNP L binding revealed that the protein preferably binds to introns and 3' UTR. Additionally, position-dependent splicing regulation by hnRNP L was demonstrated: The protein represses splicing when bound to intronic regions upstream of alternative exons, and in contrast, activates splicing when bound to the downstream intron. These findings shed light on the longstanding question of differential hnRNP L-mediated splicing regulation. Finally, regarding 3' UTR binding, hnRNP L binding preferentially overlaps with predicted microRNA target sites, indicating global competition between hnRNP L and microRNA binding. Translational regulation by hnRNP L was validated for a subset of predicted target 3'UTRs.
Collapse
Affiliation(s)
- Oliver Rossbach
- Institute of Biochemistry; University of Giessen; Giessen, Germany
| | - Lee-Hsueh Hung
- Institute of Biochemistry; University of Giessen; Giessen, Germany
| | - Ekaterina Khrameeva
- Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow, Russia; Department of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow, Russia
| | - Silke Schreiner
- Institute of Biochemistry; University of Giessen; Giessen, Germany
| | - Julian König
- Institute of Molecular Biology (IMB); Mainz, Germany; Institute of Neurology; University College London; London, United Kingdom
| | - Tomaž Curk
- Faculty of Computer and Information Science; University of Ljubljana; Ljubljana, Slovenia
| | - Blaž Zupan
- Faculty of Computer and Information Science; University of Ljubljana; Ljubljana, Slovenia
| | - Jernej Ule
- Institute of Neurology; University College London; London, United Kingdom
| | - Mikhail S Gelfand
- Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow, Russia; Department of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow, Russia
| | | |
Collapse
|
25
|
Abstract
NSP 5a3a is a novel structural protein found to be over-expressed in certain cancer cell lines in-vitro such as Hela, Saos-2, and MCF-7 while barely detectable levels in normal body tissues except for Testis. This particular isoform has been known to interact with cyto- nuclear proteins B23, known to be involved in multi-faceted cellular processes such as cell division, apoptosis, ribosome biogenesis, and rRNA processing, as well as with hnRNP-L, known to be involved with RNA metabolism and rRNA processing. A previous preliminary investigation of NSP 5a3a as a potential target in Head and Neck Carcinoma revealed a novel p73 dependent mechanism through which NSP 5a3a induced apoptosis in Head and Neck cell lines when over-expressed in-vitro. Our present investigation further elucidated a novel dual axis signaling point by which NSP 5a3a induces apoptosis in Head and Neck cell line HN30 through p73-DAXX and TRAF2-TRADD. Interestingly, this novel mechanism appears independent of canonical caspases involved in the intrinsic mitochondrial pathway as well as those in the death receptor pathway thru TRAF2 and TRADD.
Collapse
|
26
|
Abstract
Interference with stress granule (SG) accumulation is gaining increased appreciation as a common strategy used by diverse viruses to facilitate their replication and to cope with translational arrest. Here, we examined the impact of infection by herpes simplex virus 2 (HSV-2) on SG accumulation by monitoring the localization of the SG components T cell internal antigen 1 (TIA-1), Ras-GTPase-activating SH3-domain-binding protein (G3BP), and poly(A)-binding protein (PABP). Our results indicate that SGs do not accumulate in HSV-2-infected cells and that HSV-2 can interfere with arsenite-induced SG accumulation early after infection. Surprisingly, SG accumulation was inhibited despite increased phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), implying that HSV-2 encodes previously unrecognized activities designed to maintain translation initiation downstream of eIF2α. SG accumulation was not inhibited in HSV-2-infected cells treated with pateamine A, an inducer that works independently of eIF2α phosphorylation. The SGs that accumulated following pateamine A treatment of infected cells contained G3BP and PABP but were largely devoid of TIA-1. We also identified novel nuclear structures containing TIA-1 that form late in infection. These structures contain the RNA binding protein 68-kDa Src-associated in mitosis (Sam68) and were noticeably absent in infected cells treated with inhibitors of viral DNA replication, suggesting that they arise as a result of late events in the virus replicative cycle.
Collapse
|
27
|
Scherrer K. Regulation of gene expression and the transcription factor cycle hypothesis. Biochimie 2012; 94:1057-68. [PMID: 22234303 DOI: 10.1016/j.biochi.2011.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/09/2011] [Indexed: 11/26/2022]
Abstract
Post-genomic data show unexpected extent of the transcribed genome and the size of individual primary transcripts. Hence, most cis-regulatory modules (CRMs) binding transcription factors (TFs) at promotor, enhancer and other sites are actually transcribed within full domain transcripts (FDTs). The ensemble of these CRMs placed way upstream of exon clusters, downstream and in intronic or intergenic positions represent a program of gene expression which has been formally analysed within the Gene and Genon concept [1,2]. This concept has emphasised the necessity to separate product information from regulative information to allow information-theoretic analysis of gene expression. Classically, TFs have been assumed to act at DNA level exclusively but evidence has accumulated indicating eventual post-transcriptional functions. The transcription factor cycle (TFC) hypothesis suggests the transfer of DNA-bound factors to nascent RNA. Exerting downstream functions in RNA processing and transport, these factors would be liberated by RNA processing and cycle back to the DNA maintaining active transcription. Sequestered on RNA in absence of processing they would constitute a negative feedback loop. The TFC concept may explain epigenetic regulation in mitosis and meiosis. In mitosis control factors may survive as single proteins but also attached to FDTs as organised complexes. This process might perpetuate in cell division conditioning of chromatin for transcription. As observed on lampbrush chromosomes formed in avian and amphibian oogenesis, in meiosis the genome is fully transcribed and oocytes conserve high Mr RNA of high sequence complexity. When new interphase chromosomes form in daughter cells and early embryogenesis, TFs and other factors attached to RNA might be reinserted onto the DNA.
Collapse
Affiliation(s)
- Klaus Scherrer
- Inst. J. Monod, CNRS and University Paris Diderot, 9, rue Larrey, 75005 Paris, France
| |
Collapse
|
28
|
Mao YS, Zhang B, Spector DL. Biogenesis and function of nuclear bodies. Trends Genet 2011; 27:295-306. [PMID: 21680045 DOI: 10.1016/j.tig.2011.05.006] [Citation(s) in RCA: 500] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 12/17/2022]
Abstract
Nuclear bodies including nucleoli, Cajal bodies, nuclear speckles, Polycomb bodies, and paraspeckles are membraneless subnuclear organelles. They are present at steady-state and dynamically respond to basic physiological processes as well as to various forms of stress, altered metabolic conditions and alterations in cellular signaling. The formation of a specific nuclear body has been suggested to follow a stochastic or ordered assembly model. In addition, a seeding mechanism has been proposed to assemble, maintain, and regulate particular nuclear bodies. In coordination with noncoding RNAs, chromatin modifiers and other machineries, various nuclear bodies have been shown to sequester and modify proteins, process RNAs and assemble ribonucleoprotein complexes, as well as epigenetically regulate gene expression. Understanding the functional relationships between the 3D organization of the genome and nuclear bodies is essential to fully uncover the regulation of gene expression and its implications for human disease.
Collapse
Affiliation(s)
- Yuntao S Mao
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
29
|
Abstract
When cells are observed by phase contrast microscopy, nucleoli are among the most conspicuous structures. The nucleolus was formally described between 1835 and 1839, but it was another century before it was discovered to be associated with a specific chromosomal locus, thus defining it as a cytogenetic entity. Nucleoli were first isolated in the 1950s, from starfish oocytes. Then, in the early 1960s, a boomlet of studies led to one of the epochal discoveries in the modern era of genetics and cell biology: that the nucleolus is the site of ribosomal RNA synthesis and nascent ribosome assembly. This epistemologically repositioned the nucleolus as not merely an aspect of nuclear anatomy but rather as a cytological manifestation of gene action-a major heuristic advance. Indeed, the finding that the nucleolus is the seat of ribosome production constitutes one of the most vivid confluences of form and function in the history of cell biology. This account presents the nucleolus in both historical and contemporary perspectives. The modern era has brought the unanticipated discovery that the nucleolus is plurifunctional, constituting a paradigm shift.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, 01605, USA.
| |
Collapse
|
30
|
Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DLJ. The nucleolus: structure/function relationship in RNA metabolism. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:415-31. [PMID: 21956940 DOI: 10.1002/wrna.39] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nucleolus is the ribosome factory of the cells. This is the nuclear domain where ribosomal RNAs are synthesized, processed, and assembled with ribosomal proteins. Here we describe the classical tripartite organization of the nucleolus in mammals, reflecting ribosomal gene transcription and pre-ribosomal RNA (pre-rRNA) processing efficiency: fibrillar center, dense fibrillar component, and granular component. We review the nucleolar organization across evolution from the bipartite organization in yeast to the tripartite organization in humans. We discuss the basic principles of nucleolar assembly and nucleolar structure/function relationship in RNA metabolism. The control of nucleolar assembly is presented as well as the role of pre-existing machineries and pre-rRNAs inherited from the previous cell cycle. In addition, nucleoli carry many essential extra ribosomal functions and are closely linked to cellular homeostasis and human health. The last part of this review presents recent advances in nucleolar dysfunctions in human pathology such as cancer and virus infections that modify the nucleolar organization.
Collapse
Affiliation(s)
- Danièle Hernandez-Verdun
- Nuclei and cell cycle, Institut Jacques Monod-UMR 7592 CNRS, Université Paris Diderot, 75205 Paris cedex 13, France.
| | | | | | | | | |
Collapse
|
31
|
Abstract
There are many significant morphological alterations of a nucleus of cancer cell that are detectable by light microscopy on routine staining. These changes are often associated with deranged cellular functions of cancer cell. It is difficult to understand the exact relationship between nuclear morphology and alteration of nuclear structural organization in cancer. Herein, the salient visual and subvisual morphological changes of cancer nuclei and their possible etiology and significance have been reviewed.
Collapse
Affiliation(s)
- Pranab Dey
- Department of Cytology, PGIMER, Chandigarh 160012, India.
| |
Collapse
|
32
|
Fujimura K, Kano F, Murata M. Dual localization of the RNA binding protein CUGBP-1 to stress granule and perinucleolar compartment. Exp Cell Res 2008; 314:543-53. [DOI: 10.1016/j.yexcr.2007.10.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 10/24/2007] [Accepted: 10/24/2007] [Indexed: 11/29/2022]
|
33
|
Platani M, Lamond AI. Nuclear organisation and subnuclear bodies. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2008; 35:1-22. [PMID: 15113077 DOI: 10.1007/978-3-540-74266-1_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Melpomeni Platani
- Wellcome Trust Biocentre, MSI/WTB Complex, DD1 5EH, Dundee, Scotland, United Kingdom
| | | |
Collapse
|
34
|
Pan F, Hüttelmaier S, Singer RH, Gu W. ZBP2 facilitates binding of ZBP1 to beta-actin mRNA during transcription. Mol Cell Biol 2007; 27:8340-51. [PMID: 17893325 PMCID: PMC2169170 DOI: 10.1128/mcb.00972-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cytoplasmic mRNA localization regulates gene expression by spatially restricting protein translation. Recent evidence has shown that nuclear proteins (such as hnRNPs) are required to form mRNPs capable of cytoplasmic localization. ZBP1 and ZBP2, two hnRNP K homology domain-containing proteins, were previously identified by their binding to the zipcode, the sequence element necessary and sufficient for beta-actin mRNA localization. ZBP1 colocalizes with nascent beta-actin mRNA in the nucleus but is predominantly a cytoplasmic protein. ZBP2, in contrast, is predominantly nuclear. We hypothesized that the two proteins cooperate to localize beta-actin mRNA and sought to address where and how this might occur. We demonstrate that ZBP2, a homologue of the splicing factor KSRP, binds initially to nascent beta-actin transcripts and facilitates the subsequent binding of the shuttling ZBP1. ZBP1 then associates with the RNA throughout the nuclear export and cytoplasmic localization process.
Collapse
Affiliation(s)
- Feng Pan
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
35
|
Rybaczek D, Bodys A, Maszewski J. H2AX foci in late S/G2- and M-phase cells after hydroxyurea- and aphidicolin-induced DNA replication stress in Vicia. Histochem Cell Biol 2007; 128:227-41. [PMID: 17636317 DOI: 10.1007/s00418-007-0311-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 06/25/2007] [Indexed: 01/18/2023]
Abstract
Immunocytochemistry using alpha-phospho-H2AX antibodies shows that hydroxyurea (HU), an inhibitor of ribonucleotide reductase, and aphidicolin (APH), an inhibitor of DNA-polymerases alpha and delta, may promote formation of phospho-H2AX foci in late S/G2-phase cells in root meristems of Vicia faba. Although fluorescent foci spread throughout the whole area of nucleoplasm, large phospho-H2AX aggregates in HU-treated cells allocate mainly in perinucleolar regions. A strong tendency of ATR/ATM-dependent phospho-Chk1S317 kinase to focus in analogous compartments, as opposed to phospho-Chk2T68 and to both effector kinases in APH-treated cells, may suggest that selected elements of the intra-S-phase cell cycle checkpoints share overlapping locations with DNA repair factors known to concentrate in phospho-H2AX aggregates. APH-induced phosphorylation of H2AX exhibits little or no overlap with the areas positioned close to nucleoli. Following G2-M transition of the HU- and APH-pretreated cells, altered chromatin structures are still discernible as large phospho-H2AX foci in the vicinity of chromosomes. Both in HU- and APH-treated roots, immunofluorescence analysis revealed a dominant fraction of small foci and a less frequent population of large phospho-H2AX aggregates, similar to those observed in animal cells exposed to ionizing radiation. The extent of H2AX phosphorylation has been found considerably reduced in root meristem cells treated with HU and caffeine. The frequencies of phospho-H2AX foci observed during mitosis and caffeine-mediated premature chromosome condensation (PCC) suggest that there may be functional links between the checkpoint mechanisms that control genome integrity and those activities which operate throughout the unperturbed mitosis in plants.
Collapse
Affiliation(s)
- Dorota Rybaczek
- Department of Cytophysiology, University of Łódź, ul. Pilarskiego 14, 90231, Łódź, Poland.
| | | | | |
Collapse
|
36
|
Zhang LF, Huynh KD, Lee JT. Perinucleolar Targeting of the Inactive X during S Phase: Evidence for a Role in the Maintenance of Silencing. Cell 2007; 129:693-706. [PMID: 17512404 DOI: 10.1016/j.cell.2007.03.036] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 12/11/2006] [Accepted: 03/01/2007] [Indexed: 11/16/2022]
Abstract
In mammalian females, two X chromosomes are epigenetically distinguished as active and inactive chromosomes to balance X-linked gene dosages between males and females. How the Xs are maintained differently in the same nucleus remains unknown. Here, we demonstrate that the inactive X (Xi) is targeted to a distinct nuclear compartment following pairing with its homologous partner. During mid-to-late S phase, 80%-90% of Xi contact the nucleolus and reside within a Snf2h-enriched ring. Autosomes carrying ectopic X-inactivation center sequences are also targeted to the perinucleolar compartment. Deleting Xist results in a loss of nucleolar association and an inability to maintain Xi heterochromatin, leading to Xi reactivation at the single gene level. We propose that the Xi must continuously visit the perinucleolar compartment to maintain its epigenetic state. These data raise a mechanism by which chromatin states can be replicated by spatial and temporal separation in the nucleus.
Collapse
Affiliation(s)
- Li-Feng Zhang
- Howard Hughes Medical Institute, Boston, MA 02114 USA
| | | | | |
Collapse
|
37
|
Abstract
The perinucleolar compartment (PNC) is a sub-nuclear structure that preferentially localizes to the nucleolar periphery. The PNC is found predominantly in transformed cells both in vitro and in vivo. PNC prevalence (the percentage of cells containing at least one PNC) positively correlates with the progression of breast cancer and patient survival. PNCs are highly enriched with newly synthesized RNA polymerase III transcripts and RNA-binding proteins. The structural integrity of the PNC is dependent upon the transcription of these RNAs and a critical level of the polypyrimidine tract binding (PTB) protein, as assayed by the localization of other PNC-associated proteins. These observations suggest a model in which the PNC is a dynamic, functional organelle that forms under specific physiological conditions favoring cellular transformation and might be involved in the metabolism of RNA polymerase III transcripts.
Collapse
Affiliation(s)
- K Kopp
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
38
|
Shin C, Kleiman FE, Manley JL. Multiple properties of the splicing repressor SRp38 distinguish it from typical SR proteins. Mol Cell Biol 2005; 25:8334-43. [PMID: 16135820 PMCID: PMC1234314 DOI: 10.1128/mcb.25.18.8334-8343.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SR protein SRp38 is a general splicing repressor that is activated by dephosphorylation during mitosis and in response to heat shock. Here we describe experiments that provide insights into the mechanism by which SRp38 functions in splicing repression. We first show that SRp38 redistributes and colocalizes with snRNPs, but not with a typical SR protein, SC35, during mitosis and following heat shock. Supporting the functional significance of this association, a micrococcal nuclease-sensitive component, i.e., an snRNP(s), completely rescued heat shock-induced splicing repression in vitro, and purified U1 snRNP did so partially. SRp38 contains an N-terminal RNA binding domain (RBD) and a C-terminal RS domain composed of two subdomains (RS1 and RS2 domains). Unexpectedly, an RS1 deletion mutant derivative specifically inhibited the second step of splicing, while an RS2 deletion mutant retained significant dephosphorylation-dependent repression activity. Using chimeric SRp38/SC35 proteins, we show that SC35-RBD/SRp38-RS can function as a general splicing activator and that the dephosphorylated version can act as a strong splicing repressor. SRp38-RBD/SC35-RS, however, was essentially inactive in these assays. Together, our results help to define the unusual features of SRp38 that distinguish it from other SR proteins.
Collapse
Affiliation(s)
- Chanseok Shin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
39
|
Barbie DA, Conlan LA, Kennedy BK. Nuclear tumor suppressors in space and time. Trends Cell Biol 2005; 15:378-85. [PMID: 15936946 DOI: 10.1016/j.tcb.2005.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Revised: 04/25/2005] [Accepted: 05/24/2005] [Indexed: 11/21/2022]
Abstract
Numerous studies have identified key binding partners and functional activities of nuclear tumor-suppressor proteins such as the retinoblastoma protein, p53 and BRCA1. Historically, less attention has been given to the subnuclear locations of these proteins. Here, we describe several recent studies that promote the view that regulated association with subcompartments of the nucleus is inherent to tumor-suppressor function.
Collapse
Affiliation(s)
- David A Barbie
- Department of Internal Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
40
|
Kamath RV, Thor AD, Wang C, Edgerton SM, Slusarczyk A, Leary D, Wang J, Wiley E, Jovanovic B, Wu Q, Nayar R, Kovarik P, Shi F, Huang S. Perinucleolar Compartment Prevalence Has an Independent Prognostic Value for Breast Cancer. Cancer Res 2005. [DOI: 10.1158/0008-5472.246.65.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
The perinucleolar compartment (PNC) is a multicomponent nuclear structure enriched with RNAs transcribed by RNA pol III and RNA binding proteins. Studies in cultured cells showed an association between PNC and transformed phenotype. To evaluate the relationship between structure and malignancy in vivo, we examined PNC prevalence (the percentage of cells containing at least one PNC) in normal and cancerous paraffin-embedded breast tissues using immunohistochemistry against a PNC-associated protein. Five hundred nuclei in the most active area of each sample were scored for PNC prevalence. The results show that PNC prevalence significantly correlates with the progression of breast cancer (by the criteria of staging). PNC prevalence in primary tumors, lymph nodes, and distant metastases shows a stepwise increase from a median of 23% in primary tumors to ∼100% in distant metastases. In addition, univariate and multivariate (controlling for tumor size and grade) analyses show that early-stage patients with invasive ductal carcinomas containing a higher PNC prevalence have a significantly poorer prognosis. These findings link PNC prevalence with the progression of breast cancer in vivo and suggest that PNC-containing cells have metastatic advantages. These findings also show the potential of PNC prevalence as a prognostic marker for breast cancer.
Collapse
Affiliation(s)
| | - Ann D. Thor
- 5Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Chen Wang
- 1Cell and Molecular Biology, Departments of
| | - Susan M. Edgerton
- 5Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | | | - D.J. Leary
- 1Cell and Molecular Biology, Departments of
| | - J. Wang
- 5Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | | | - B. Jovanovic
- 3Preventive Medicine, Northwestern University Medical School
| | - Q. Wu
- 6Department of Pathology, Sun Yet-Sen University Cancer Center, Guangzhou, People's Republic of China
| | | | - P. Kovarik
- 4Department of Pathology, John H. Stroger, Jr., Hospital of Cook County, Chicago, Illinois
| | - F. Shi
- 4Department of Pathology, John H. Stroger, Jr., Hospital of Cook County, Chicago, Illinois
| | - Sui Huang
- 1Cell and Molecular Biology, Departments of
| |
Collapse
|
41
|
Sleeman JE. Dynamics of the mammalian nucleus: can microscopic movements help us to understand our genes? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:2775-2793. [PMID: 15539370 DOI: 10.1098/rsta.2004.1463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The cell is the basic building block of human life. Each of us has existed as a single cell--the fertilized egg--and each of us is made up of billions of cells specialized in many different ways to form our tissues and organs. The nucleus of the cell, described as far back as 1682, is known to be the site of storage of chromosomes that carry the essential and unique DNA blueprint for life. With the recent publication of the entire human genome, our knowledge of exactly what our genes say has increased immeasurably. This, however, is only a small part of the story. In order for the chromosomal genes to function correctly, a complex cellular machinery must rewrite (or transcribe) the genetic instructions of the DNA into a temporary messenger molecule, messenger RNA (mRNA), rearrange (or splice) this message into a readable format and then produce a protein that accurately represents the DNA code. It is these protein molecules that are the functional result of the genetic information. This whole process is termed 'gene expression'. Both transcription and splicing of the mRNA message are carried out in the nucleus. These events must be performed accurately and efficiently in a minute volume already full of highly packaged DNA. An ever-increasing number of sub-nuclear structures have been described, from the nucleolus (first described in 1835) to newly discovered 'paraspeckles' and 'clastosomes'. In fact, as increasing numbers of molecular probes become available, so the complexity of nuclear structure appears to expand. The functions of some of these structures are currently unknown. Those whose functions are, at least partly, understood play roles in gene expression. Interestingly, alterations in nuclear structure are associated with human diseases such as spinal muscular atrophy and promyelocytic leukaemia, suggesting that the control of nuclear organization may be vital to health. The dynamic nature of the structure of the mammalian nucleus has come under increasing scrutiny over the past few years. This has largely been driven by advances in microscopy as well as the advent of in vivo labelling techniques for sub-nuclear structures. It is now possible, using a protein originally isolated from jellyfish, to visualize sub-nuclear structures in living cultured cells. Together with three-dimensional time-lapse microscopy and an ever-expanding range of photo-bleaching techniques, this technology allows us to ask detailed questions about movements of sub-nuclear structures themselves and of the proteins contained within them. It has recently become clear that sub-nuclear structures are capable of moving within the nucleus and of physically interacting with each other. It is also now known that there is a constant flux of molecules into and out of these mobile structures as well as exchange of molecules between them, rather like passengers travelling on the London Underground. The challenge for the future is to relate dynamic events at the microscopic and molecular levels back to the organism as a whole. Only by understanding how the information encoded on genes is accurately expressed at the right time and in the right place can we really take advantage of the knowledge currently available to us.
Collapse
Affiliation(s)
- Judith E Sleeman
- University of Dundee, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
42
|
Handwerger KE, Cordero JA, Gall JG. Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol Biol Cell 2004; 16:202-11. [PMID: 15509651 PMCID: PMC539164 DOI: 10.1091/mbc.e04-08-0742] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear organelles, unlike many cytoplasmic organelles, lack investing membranes and are thus in direct contact with the surrounding nucleoplasm. Because the properties of the nucleoplasm and nuclear organelles influence the exchange of molecules from one compartment to another, it is important to understand their physical structure. We studied the density of the nucleoplasm and the density and permeability of nucleoli, Cajal bodies (CBs), and speckles in the Xenopus oocyte nucleus or germinal vesicle (GV). Refractive indices were measured by interferometry within intact GVs isolated in oil. The refractive indices were used to estimate protein concentrations for nucleoplasm (0.106 g/cm3), CBs (0.136 g/cm3), speckles (0.162 g/cm3), and the dense fibrillar region of nucleoli (0.215 g/cm3). We determined similar protein concentrations for nuclear organelles isolated in aqueous media, where they are no longer surrounded by nucleoplasm. To examine the permeability of nuclear organelles, we injected fluorescent dextrans of various molecular masses (3-2000 kDa) into the cytoplasm or directly into the GV and measured the extent to which they penetrated the organelles. Together, the interferometry and dextran penetration data show that organelles in the Xenopus GV have a low-density, sponge-like structure that provides access to macromolecules from the nucleoplasm.
Collapse
Affiliation(s)
- Korie E Handwerger
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210, USA
| | | | | |
Collapse
|
43
|
Zimber A, Nguyen QD, Gespach C. Nuclear bodies and compartments: functional roles and cellular signalling in health and disease. Cell Signal 2004; 16:1085-104. [PMID: 15240004 DOI: 10.1016/j.cellsig.2004.03.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Accepted: 03/17/2004] [Indexed: 01/08/2023]
Abstract
There is much interest in recent years in the possible role of different nuclear compartments and subnuclear domains in the regulation of gene expression, signalling, and cellular functions. The nucleus contains inositol phosphates, actin and actin-binding proteins and myosin isoforms, multiple protein kinases and phosphatases targeting Cdk-1 and Cdk-2, MAPK/SAPK, and Src-related kinases and their substrates, suggesting the implication of several signalling pathways in the intranuclear organization and function of nuclear bodies (NBs). NBs include the well-characterized Cajal bodies (CBs; or coiled bodies), the nucleolus, perinucleolar and perichromatin regions, additional NBs best illustrated by the promyelocytic leukemia nuclear bodies [PML-NBs, also named PML oncogenic dots (PODs), ND10, Kr-bodies] and similar intranuclear foci containing multi-molecular complexes with major role in DNA replication, surveillance, and repair, as well as messenger RNA and ribosomal RNA synthesis and assembly. Chromatin modifying proteins, such as the CBP acetyltransferase and type I histone deacetylase, accumulate at PML-NBs. PML-NBs and Cajal bodies are very dynamic and mobile within the nuclear space and are regulated by cellular stress (heat shock, apoptosis, senescence, heavy metal exposure, viral infection, and DNA damage responses). NBs strongly interact, using signalling mechanisms for the directional and ordered traffic of essential molecular components. NBs organize the delivery and storage of essential RNAs and proteins that play a role in transcription, pre-mRNA biosynthesis and splicing, and the sequestration and/or degradation of regulatory proteins, such as heterogenous nuclear ribonuclear proteins (hnRNPs), p53, Rb1, CBP, STAT3, and others. The objective of this review is to summarize some aspects of these nuclear structures/bodies/domains, including their proposed roles in cellular signalling and in human diseases, mainly neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- Amazia Zimber
- Department of Animal Sciences, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | |
Collapse
|
44
|
Abstract
Nuclear architecture - the spatial arrangement of chromosomes and other nuclear components - provides a framework for organizing and regulating the diverse functional processes within the nucleus. There are characteristic differences in the nuclear architectures of cancer cells, compared with normal cells, and some anticancer treatments restore normal nuclear structure and function. Advances in understanding nuclear structure have revealed insights into the process of malignant transformation and provide a basis for the development of new diagnostic tools and therapeutics.
Collapse
Affiliation(s)
- Daniele Zink
- University of Munich (LMU), Department of Biology II, Goethestr. 31, 80336 Munich, Germany.
| | | | | |
Collapse
|
45
|
McLaren M, Asai K, Cochrane A. A novel function for Sam68: enhancement of HIV-1 RNA 3' end processing. RNA (NEW YORK, N.Y.) 2004; 10:1119-29. [PMID: 15208447 PMCID: PMC1370602 DOI: 10.1261/rna.5263904] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Both cis elements and host cell proteins can significantly affect HIV-1 RNA processing and viral gene expression. Previously, we determined that the exon splicing silencer (ESS3) within the terminal exon of HIV-1 not only reduces use of the adjacent 3' splice site but also prevents Rev-induced export of the unspliced viral RNA to the cytoplasm. In this report, we demonstrate that loss of unspliced viral RNA export is correlated with the inhibition of 3' end processing by the ESS3. Furthermore, we find that the host factor Sam68, a stimulator of HIV-1 protein expression, is able to reverse the block to viral RNA export mediated by the ESS3. The reversal is associated with a stimulation of 3' end processing of the unspliced viral RNA. Our findings identify a novel activity for the ESS3 and Sam68 in regulating HIV-1 RNA polyadenylation. Furthermore, the observations provide an explanation for how Sam68, an exclusively nuclear protein, modulates cytoplasmic utilization of the affected RNAs. Our finding that Sam68 is also able to enhance 3' end processing of a heterologous RNA raises the possibility that it may play a similar role in regulating host gene expression.
Collapse
Affiliation(s)
- Meredith McLaren
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
46
|
Saitoh N, Spahr CS, Patterson SD, Bubulya P, Neuwald AF, Spector DL. Proteomic analysis of interchromatin granule clusters. Mol Biol Cell 2004; 15:3876-90. [PMID: 15169873 PMCID: PMC491843 DOI: 10.1091/mbc.e04-03-0253] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A variety of proteins involved in gene expression have been localized within mammalian cell nuclei in a speckled distribution that predominantly corresponds to interchromatin granule clusters (IGCs). We have applied a mass spectrometry strategy to identify the protein composition of this nuclear organelle purified from mouse liver nuclei. Using this approach, we have identified 146 proteins, many of which had already been shown to be localized to IGCs, or their functions are common to other already identified IGC proteins. In addition, we identified 32 proteins for which only sequence information is available and thus these represent novel IGC protein candidates. We find that 54% of the identified IGC proteins have known functions in pre-mRNA splicing. In combination with proteins involved in other steps of pre-mRNA processing, 81% of the identified IGC proteins are associated with RNA metabolism. In addition, proteins involved in transcription, as well as several other cellular functions, have been identified in the IGC fraction. However, the predominance of pre-mRNA processing factors supports the proposed role of IGCs as assembly, modification, and/or storage sites for proteins involved in pre-mRNA processing.
Collapse
Affiliation(s)
- Noriko Saitoh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hall MP, Huang S, Black DL. Differentiation-induced colocalization of the KH-type splicing regulatory protein with polypyrimidine tract binding protein and the c-src pre-mRNA. Mol Biol Cell 2003; 15:774-86. [PMID: 14657238 PMCID: PMC329392 DOI: 10.1091/mbc.e03-09-0692] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have examined the subcellular localization of the KH-type splicing regulatory protein (KSRP). KSRP is a multidomain RNA-binding protein implicated in a variety of cellular processes, including splicing in the nucleus and mRNA localization in the cytoplasm. We find that KSRP is primarily nuclear with a localization pattern that most closely resembles that of polypyrimidine tract binding protein (PTB). Colocalization experiments of KSRP with PTB in a mouse neuroblastoma cell line determined that both proteins are present in the perinucleolar compartment (PNC), as well as in other nuclear enrichments. In contrast, HeLa cells do not show prominent KSRP staining in the PNC, even though PTB labeling identified the PNC in these cells. Because both PTB and KSRP interact with the c-src transcript to affect N1 exon splicing, we examined the localization of the c-src pre-mRNA by fluorescence in situ hybridization. The src transcript is present in specific foci within the nucleus that are presumably sites of src transcription but are not generally perinucleolar. In normally cultured neuroblastoma cells, these src RNA foci contain PTB, but little KSRP. However, upon induced neuronal differentiation of these cells, KSRP occurs in the same foci with src RNA. PTB localization remains unaffected. This differentiation-induced localization of KSRP with src RNA correlates with an increase in src exon N1 inclusion. These results indicate that PTB and KSRP do indeed interact with the c-src transcript in vivo, and that these associations change with the differentiated state of the cell.
Collapse
Affiliation(s)
- Megan P. Hall
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095
| | - Sui Huang
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Douglas L. Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095
- Corresponding author. E-mail address:
| |
Collapse
|
48
|
Lau PP, Chan L. Involvement of a chaperone regulator, Bcl2-associated athanogene-4, in apolipoprotein B mRNA editing. J Biol Chem 2003; 278:52988-96. [PMID: 14559896 DOI: 10.1074/jbc.m310153200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apobec-1 is the catalytic subunit of a multicomponent editosome complex that mediates apolipoprotein B (apoB) mRNA editing. We isolated a novel apobec-1-interacting protein by yeast two-hybrid cloning and identified the protein as BAG-4. BAG-4, a chaperone-regulating protein, also known as SODD (silencer of death domains), is a member of the BAG family of proteins. In this report, we found that apobec-1 is localized in the perinucleolar compartment in HepG2 cells and rat liver MCR-RH7777 cells. BAG-4 binds to apobec-1 via its N-terminal region independent of the BAG domain. It is ubiquitously expressed with predominant occurrence in human pancreas, heart, brain, and placenta. Immunoprecipitation experiments confirmed that BAG-4 interacts with Hsc70/Hsp90 in HepG2 cells. BAG-4 tagged with green fluorescent protein (GFP) or FLAG was localized both in cytoplasm of mouse BNLCL.2 liver cells and human liver hepatoma HepG2 cells. After heat shock, GFP-BAG-4 co-localizes with Hsc70 in the nucleus in HepG2 cells, whereas GFP-BAG-4 mutants lacking the BAG domain remain perinuclear. BAG-4 has no effects on apoB mRNA editing in vitro. However, unlike other apobec-1 complementation factors studied to date, antisense knockdown of BAG-4 in BNLCL.2 cells and in MCR-RH7777 cells increases rather than decreases endogenous apoB mRNA editing. Overexpression of BAG-4 in MCR-RH7777 cells also suppresses apoB mRNA editing. ApoB-48 production also increases with antisense BAG-4 expression in MCR-RH7777 cells. We previously showed that apoB mRNA editing is an intranuclear event (Lau, P. P., Xiong, W. J., Zhu, H. J., Chen, S. H., and Chan, L. (1991) J. Biol. Chem. 266, 20550-20554). Thus, BAG-4 overexpression down-regulates apoB mRNA editing by shuttling apobec-1 from the intranuclear perinucleolar compartment to the cytoplasm. We propose that BAG-4 functions as a negative regulator for apobec-1-mediated apoB mRNA editing through its ability to suppress the Hsp/Hsc70 chaperone activity and thereby editosome formation and, as a consequence, prevents nuclear localization of the apobec-1 editosome.
Collapse
Affiliation(s)
- Paul P Lau
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
49
|
Hayano T, Yanagida M, Yamauchi Y, Shinkawa T, Isobe T, Takahashi N. Proteomic analysis of human Nop56p-associated pre-ribosomal ribonucleoprotein complexes. Possible link between Nop56p and the nucleolar protein treacle responsible for Treacher Collins syndrome. J Biol Chem 2003; 278:34309-19. [PMID: 12777385 DOI: 10.1074/jbc.m304304200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nop56p is a component of the box C/D small nucleolar ribonucleoprotein complexes that direct 2'-O-methylation of pre-rRNA during its maturation. Genetic analyses in yeast have shown that Nop56p plays important roles in the early steps of pre-rRNA processing. However, its precise function remains elusive, especially in higher eukaryotes. Here we describe the proteomic characterization of human Nop56p (hNop56p)-associated pre-ribosomal ribonucleoprotein complexes. Mass spectrometric analysis of purified pre-ribosomal ribonucleoprotein complexes identified 61 ribosomal proteins, 16 trans-acting factors probably involved in ribosome biogenesis, and 29 proteins whose function in ribosome biogenesis is unknown. Identification of pre-rRNA species within hNop56p-associated pre-ribosomal ribonucleoprotein complexes, coupled with the known functions of yeast orthologs of the probable trans-acting factors identified in human, demonstrated that hNop56p functions in the early to middle stages of 60 S subunit synthesis in human cells. Interestingly, the nucleolar phosphoprotein treacle, which is responsible for the craniofacial disorder associated with Treacher Collins syndrome, was found to be a constituent of hNop56p-associated pre-rRNP complexes. The association of hNop56p and treacle within the complexes was independent of rRNA integrity, indicating a direct interaction. In addition, the protein compositions of the treacle-associated and hNop56p-associated pre-ribosomal ribonucleoprotein complexes were very similar, suggesting functional similarities between these two complexes with respect to ribosome biogenesis in human cells.
Collapse
Affiliation(s)
- Toshiya Hayano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
An organism ultimately reflects the coordinate expression of its genome. The misexpression of a gene can have catastrophic consequences for an organism, yet the mechanics of transcription is a local phenomenon within the cell nucleus. Chromosomal and nuclear position often dictate the activity of a specific gene. Transcription occurs in territories and in discrete localized foci within these territories. The proximity of a gene or trans-acting factor to heterochromatin can have profound functional significance. The organization of heterochromatin changes with cell development, thus conferring temporal changes on gene activity. The protein-protein interactions that engage the trans-acting factor also contribute to context-dependent transcription. Multi-protein assemblages known as enhanceosomes govern gene expression by local committee thus dictating regional transcription factor function. Local DNA architecture can prescribe enhancesome membership. The local bending of the double helix, typically mediated by architectural transcription factors, is often critical for stabilizing enhanceosomes formed from trans-acting proteins separated over small and large distances. The recognition element to which a transcription factor binds is of functional significance because DNA may act as an allosteric ligand influencing the conformation and thus the activity of the transactivation domain of the binding protein, as well as the recruitment of other proteins to the enhanceosome. Here, we review and attempt to integrate these local determinants of gene expression.
Collapse
Affiliation(s)
- Marta Alvarez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|