1
|
Zouhir S, Contreras-Martel C, Maragno Trindade D, Attrée I, Dessen A, Macheboeuf P. MagC is a NplC/P60-like member of the α-2-macroglobulin Mag complex of Pseudomonas aeruginosa that interacts with peptidoglycan. FEBS Lett 2021; 595:2034-2046. [PMID: 34115884 DOI: 10.1002/1873-3468.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022]
Abstract
Bacterial α-2 macroglobulins (A2Ms) structurally resemble the large spectrum protease inhibitors of the eukaryotic immune system. In Pseudomonas aeruginosa, MagD acts as an A2M and is expressed within a six-gene operon encoding the MagA-F proteins. In this work, we employ isothermal calorimetry (ITC), analytical ultracentrifugation (AUC), and X-ray crystallography to investigate the function of MagC and show that MagC associates with the macroglobulin complex and with the peptidoglycan (PG). However, the catalytic residues of MagC display an inactive conformation that could suggest that it binds to PG but does not degrade it. We hypothesize that MagC could serve as an anchor between the MagD macroglobulin and the PG and could provide stabilization and/or regulation for the entire complex.
Collapse
Affiliation(s)
- Samira Zouhir
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, Brazil
| | | | | | - Ina Attrée
- Unité de Biologie Cellulaire et Infection, CEA, INSERM, CNRS, Université Grenoble Alpes, France
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, Brazil.,CNRS, CEA, IBS, Université Grenoble Alpes, France
| | | |
Collapse
|
2
|
Verhoef D, Tjalma AVR, Cheung KL, Reitsma PH, Bos MHA. Elevated anti-human factor Xa activity in rabbit and rodent plasma: Implications for preclinical assessment of human factor X in animal models of hemostasis. Thromb Res 2020; 198:154-162. [PMID: 33348189 DOI: 10.1016/j.thromres.2020.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022]
Abstract
A wide variety of animal models on thrombosis and hemostasis are used in thrombosis and hemostasis research for the preclinical assessment of hemostatic agents. While the vertebrate coagulome is highly conserved, human and animal plasmas differ considerably when evaluated in coagulation assays such as prothrombin time (PT), activated partial thromboplastin time (APTT), and calibrated automated thrombography (CAT). Here, we have aimed to provide a reference framework for the evaluation of coagulation assays and inhibition of activated human FXa (hFXa) in various animal plasmas. To do so, a side-by-side evaluation of the extrinsic and intrinsic pathway of coagulation was performed by means of PT, APTT, and CAT measurements on (diluted) pooled plasmas from goats, pigs, rabbits, rats, mice, and humans. Plasma anti-FXa activity was assessed by determining the rate of recombinant hFXa inhibition through chromogenic activity analyses and immunoblotting. In general, rabbit, rat, and mouse plasmas exhibited robust clotting upon stimulation of both the extrinsic and intrinsic pathway, produced more thrombin during CAT upon plasma dilution, and displayed relatively high hFXa inhibitory activities. By comparison, goat, porcine, and human plasma displayed a similar profile in PT and APTT assays, produced less thrombin during CAT upon plasma dilution, and displayed comparable hFXa inhibitory activities. In conclusion, the observed differences in clotting parameters and anti-hFXa activity point to a higher anticoagulant threshold in plasma from rabbits, rats, and particularly in mice relative to human, goat, and porcine plasma. Finally, rat plasma was found to be more relevant to the preclinical assessment of human FX(a) in comparison to murine plasma.
Collapse
Affiliation(s)
- Daniël Verhoef
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands; VarmX B.V., Leiden, the Netherlands
| | - Annabelle V R Tjalma
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ka Lei Cheung
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Pieter H Reitsma
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands; VarmX B.V., Leiden, the Netherlands
| | - Mettine H A Bos
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
3
|
Schreuder M, Reitsma PH, Bos MHA. Reversal Agents for the Direct Factor Xa Inhibitors: Biochemical Mechanisms of Current and Newly Emerging Therapies. Semin Thromb Hemost 2020; 46:986-998. [DOI: 10.1055/s-0040-1709134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractThe direct oral anticoagulants targeting coagulation factor Xa or thrombin are widely used as alternatives to vitamin K antagonists in the management of venous thromboembolism and nonvalvular atrial fibrillation. In case of bleeding or emergency surgery, reversal agents are helpful to counteract the anticoagulant therapy and restore hemostasis. While idarucizumab has been established as an antidote for the direct thrombin inhibitor dabigatran, reversal strategies for the direct factor Xa inhibitors have been a focal point in clinical care over the past years. In the absence of specific reversal agents, the off-label use of (activated) prothrombin complex concentrate and recombinant factor VIIa have been suggested as effective treatment options during inhibitor-induced bleeding complications. Meanwhile, several specific reversal agents have been developed. In this review, an overview of the current state of nonspecific and specific reversal agents for the direct factor Xa inhibitors is provided, focusing on the biochemistry and mechanism of action and the preclinical assessment of newly emerging therapies.
Collapse
Affiliation(s)
- Mark Schreuder
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter H. Reitsma
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mettine H. A. Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Abstract
α2-macroglobulins are broad-spectrum endopeptidase inhibitors, which have to date been characterised from metazoans (vertebrates and invertebrates) and Gram-negative bacteria. Their structural and biochemical properties reveal two related modes of action: the "Venus flytrap" and the "snap-trap" mechanisms. In both cases, peptidases trigger a massive conformational rearrangement of α2-macroglobulin after cutting in a highly flexible bait region, which results in their entrapment. In some homologs, a second action takes place that involves a highly reactive β-cysteinyl-γ-glutamyl thioester bond, which covalently binds cleaving peptidases and thus contributes to the further stabilization of the enzyme:inhibitor complex. Trapped peptidases are still active, but have restricted access to their substrates due to steric hindrance. In this way, the human α2-macroglobulin homolog regulates proteolysis in complex biological processes, such as nutrition, signalling, and tissue remodelling, but also defends the host organism against attacks by external toxins and other virulence factors during infection and envenomation. In parallel, it participates in several other biological functions by modifying the activity of cytokines and regulating hormones, growth factors, lipid factors and other proteins, which has a great impact on physiology. Likewise, bacterial α2-macroglobulins may participate in defence by protecting cell wall components from attacking peptidases, or in host-pathogen interactions through recognition of host peptidases and/or antimicrobial peptides. α2-macroglobulins are more widespread than initially thought and exert multifunctional roles in both eukaryotes and prokaryotes, therefore, their on-going study is essential.
Collapse
Affiliation(s)
- Irene Garcia-Ferrer
- Proteolysis Lab, Structural Biology Unit, "María de Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain
- Present address: EMBL Grenoble, 71 Avenue des Martyrs; 38042 CS 90181, Grenoble Cedex 9, France
| | - Aniebrys Marrero
- Proteolysis Lab, Structural Biology Unit, "María de Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain
- Present address: Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Structural Biology Unit, "María de Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain
| | - Theodoros Goulas
- Proteolysis Lab, Structural Biology Unit, "María de Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain.
| |
Collapse
|
5
|
Robert-Genthon M, Casabona MG, Neves D, Couté Y, Cicéron F, Elsen S, Dessen A, Attrée I. Unique features of a Pseudomonas aeruginosa α2-macroglobulin homolog. mBio 2013; 4:e00309-13. [PMID: 23919994 PMCID: PMC3735191 DOI: 10.1128/mbio.00309-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/11/2013] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Human pathogens frequently use protein mimicry to manipulate host cells in order to promote their survival. Here we show that the opportunistic pathogen Pseudomonas aeruginosa synthesizes a structural homolog of the human α2-macroglobulin, a large-spectrum protease inhibitor and important player of innate immunity. Small-angle X-ray scattering analysis demonstrated that the fold of P. aeruginosa MagD (PA4489) is similar to that of the human macroglobulin and undergoes a conformational modification upon binding of human neutrophil elastase. MagD synthesis is under the control of a general virulence regulatory pathway including the inner membrane sensor RetS and the RNA-binding protein RsmA, and MagD undergoes cleavage from a 165-kDa to a 100-kDa form in all clinical isolates tested. Fractionation and immunoprecipitation experiments showed that MagD is translocated to the bacterial periplasm and resides within the inner membrane in a complex with three other molecular partners, MagA, MagB, and MagF, all of them encoded by the same six-gene genetic element. Inactivation of the whole 10-kb operon on the PAO1 genome resulted in mislocalization of uncleaved, in trans-provided MagD as well as its rapid degradation. Thus, pathogenic bacteria have acquired a homolog of human macroglobulin that plays roles in host-pathogen interactions potentially through recognition of host proteases and/or antimicrobial peptides; it is thus essential for bacterial defense. IMPORTANCE The pathogenesis of Pseudomonas aeruginosa is multifactorial and relies on surface-associated and secreted proteins with different toxic activities. Here we show that the bacterium synthesizes a 160-kDa structural homolog of the human large-spectrum protease inhibitor α2-macroglobulin. The bacterial protein is localized in the periplasm and is associated with the inner membrane through the formation of a multimolecular complex. Its synthesis is coregulated at the posttranscriptional level with other virulence determinants, suggesting that it has a role in bacterial pathogenicity and/or in defense against the host immune system. Thus, this new P. aeruginosa macromolecular complex may represent a future target for antibacterial developments.
Collapse
Affiliation(s)
| | | | - David Neves
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Rehman AA, Ahsan H, Khan FH. α-2-Macroglobulin: a physiological guardian. J Cell Physiol 2013; 228:1665-75. [PMID: 23086799 DOI: 10.1002/jcp.24266] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/12/2012] [Indexed: 12/18/2022]
Abstract
Alpha macroglobulins are large glycoproteins which are present in the body fluids of both invertebrates and vertebrates. Alpha-2-macroglobulin (α2 M), a key member of alpha macroglobulin superfamily, is a high-molecular weight homotetrameric glycoprotein. α2 M has many diversified and complex functions, but it is primarily known by its ability to inhibit a broad spectrum of proteases without the direct blockage of the protease active site. α2 M is also known to be involved in the regulation, transport, and a host of other functions. For example, apart from inhibiting proteinases, it regulates binding of transferrin to its surface receptor, binds defensin and myelin basic protein, etc., binds several important cytokines, including basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), nerve growth factor (NGF), interleukin-1β (IL-1β), and interleukin-6 (IL-6), and modify their biological activity. α2 M also binds a number of hormones and regulates their activity. α2 M is said to protect the body against various infections, and hence, can be used as a biomarker for the diagnosis and prognosis of a number of diseases. However, this multipurpose antiproteinse is not "fail safe" and could be damaged by reactive species generated endogenously or exogenously, leading to various pathophysiological conditions.
Collapse
Affiliation(s)
- Ahmed A Rehman
- Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | | | | |
Collapse
|
7
|
Neves D, Estrozi LF, Job V, Gabel F, Schoehn G, Dessen A. Conformational states of a bacterial α2-macroglobulin resemble those of human complement C3. PLoS One 2012; 7:e35384. [PMID: 22530012 PMCID: PMC3328433 DOI: 10.1371/journal.pone.0035384] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/16/2012] [Indexed: 01/09/2023] Open
Abstract
α(2) macroglobulins (α(2)Ms) are broad-spectrum protease inhibitors that play essential roles in the innate immune system of eukaryotic species. These large, multi-domain proteins are characterized by a broad-spectrum bait region and an internal thioester, which, upon cleavage, becomes covalently associated to the target protease, allowing its entrapment by a large conformational modification. Notably, α(2)Ms are part of a larger protein superfamily that includes proteins of the complement system, such as C3, a multi-domain macromolecule which is also characterized by an internal thioester-carrying domain and whose activation represents the pivotal step in the complement cascade. Recently, α(2)M/C3-like genes were identified in a large number of bacterial genomes, and the Escherichia coli α(2)M homolog (ECAM) was shown to be activated by proteases. In this work, we have structurally characterized ECAM by electron microscopy and small angle scattering (SAXS) techniques. ECAM is an elongated, flexible molecule with overall similarities to C3 in its inactive form; activation by methylamine, chymotrypsin, or elastase induces a conformational modification reminiscent of the one undergone by the transformation of C3 into its active form, C3b. In addition, the proposed C-terminus of ECAM displays high flexibility and different conformations, and could be the recognition site for partner macromolecules. This work sheds light on a potential bacterial defense mechanism that mimics structural rearrangements essential for activation of the complement cascade in eukaryotes, and represents a possible novel target for the development of antibacterials.
Collapse
Affiliation(s)
- David Neves
- Institut de Biologie Structurale, Université Grenoble I, Grenoble, France.
| | | | | | | | | | | |
Collapse
|
8
|
Arnold JN, Wallis R, Willis AC, Harvey DJ, Royle L, Dwek RA, Rudd PM, Sim RB. Interaction of Mannan Binding Lectin with α2 Macroglobulin via Exposed Oligomannose Glycans. J Biol Chem 2006; 281:6955-63. [PMID: 16407218 DOI: 10.1074/jbc.m511432200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serum collectin mannan-binding lectin (MBL) binds to oligomannose and GlcNAc-terminating glycans present on microorganisms. Using a commercial affinity chromatography resin containing immobilized MBL we screened human and mouse serum for endogenous MBL-binding targets. We isolated the serum protease inhibitor alpha(2) macroglobulin (alpha2M), a heavily glycosylated thiol ester protein (TEP) composed of four identical 180-kDa subunits, each of which has eight N-linked glycosylation sites. alpha2M has previously been reported to interact with MBL; however, the interaction was not characterized. We investigated the mechanism of formation of complexes between alpha2M and MBL and concluded that they form by the direct binding of oligomannose glycans Man(5-7) occupying Asn-846 on alpha2M to the lectin domains (carbohydrate recognition domains) of MBL. The oligomannose glycans are accessible for lectin binding on both active alpha2M (thiol ester intact) and protease-cleaved alpha2M (thiol ester cleaved). We demonstrate that MBL is able to interact with alpha2M in the fluid phase, but the interaction does not inhibit the binding of MBL to mannan-coated surfaces. In addition to alpha2M, two other members of the TEP family, C3 and C4, which also contain oligomannose glycans, were captured from human serum using the MBL resin. MBL binding may be a conserved feature of the TEPs, dating from their ancestral origins. We suggest that the inhibition of proteases on the surface of microorganisms by an ancestral alpha2M-like TEP may generate "arrays" of oligomannose glycans to which MBL or other lectins can bind. Binding would lead to opsonization or activation of enzyme systems such as complement.
Collapse
Affiliation(s)
- James N Arnold
- Medical Research Council Immunochemistry Unit and Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kolodziej SJ, Wagenknecht T, Strickland DK, Stoops JK. The three-dimensional structure of the human alpha 2-macroglobulin dimer reveals its structural organization in the tetrameric native and chymotrypsin alpha 2-macroglobulin complexes. J Biol Chem 2002; 277:28031-7. [PMID: 12015318 DOI: 10.1074/jbc.m202714200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three-dimensional electron microscopy reconstructions of the human alpha(2)-macroglobulin (alpha(2)M) dimer and chymotrypsin-transformed alpha(2)M reveal the structural arrangement of the two dimers that comprise native and proteinase-transformed molecules. They consist of two side-by-side extended strands that have a clockwise and counterclockwise twist about their major axes in the native and transformed structures, respectively. This and other studies show that there are major contacts between the two strands at both ends of the molecule that evidently sequester the receptor binding domains. Upon proteinase cleavage of the bait domains and subsequent thiol ester cleavages, which occur near the central region of the molecule, the two strands separate by 40 A at both ends of the structure to expose the receptor binding domains and form the arm-like extensions of the transformed alpha(2)M. During the transformation of the structure, the strands untwist to expose the alpha(2)M central cavity to the proteinase. This extraordinary change in the architecture of alpha(2)M functions to completely engulf two molecules of chymotrypsin within its central cavity and to irreversibly encapsulate them.
Collapse
Affiliation(s)
- Steven J Kolodziej
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|