1
|
Gorzelak P, Torres Jr. L, Kołbuk D, Grun TB, Kowalewski M. Geochemical signatures and nanomechanical properties of echinoid tests from nearshore habitats of Florida: environmental and physiological controls on echinoid biomineralization. PeerJ 2025; 13:e18688. [PMID: 39872031 PMCID: PMC11771306 DOI: 10.7717/peerj.18688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/20/2024] [Indexed: 01/29/2025] Open
Abstract
The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (i.e., by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess in situ the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness. Live specimens of sand dollars and sea biscuits (Mellita tenuis, Encope spp., Leodia sexiesperforata, and Clypeaster subdepressus) were collected from three different salinity regimes: (1) a coastal region of Cedar Key influenced by freshwater input from Suwannee River, with low and fluctuating salinity; (2) St. James Bay with less fluctuating, higher salinity; and (3) Florida Keys with stable, fully marine salinity conditions. No clear relationship was found between the bulk skeletal barium/calcium (Ba/Ca), zinc/calcium (Zn/Ca), sodium/calcium (Na/Ca), cadmium/calcium (Cd/Ca), copper/calcium (Cu/Ca), phosphorous/calcium (P/Ca), lead/calcium (Pb/Ca), boron/calcium (B/Ca), manganese/calcium (Mn/Ca) ratios pooled across all taxa. In contrast, bulk Mg/Ca, strontium/calcium (Sr/Ca), sulfur/calcium (S/Ca) and lithium/calcium (Li/Ca) ratios exhibited notable differences between the three regions, indicating that distribution of these elements can be at least partly influenced by environmental factors such as salinity. However, such patterns were highly variable across taxa and regions, indicating that both environmental and physiological factors influenced geochemical signatures to varying degrees, depending on the species and environmental setting. In addition, regardless of species identity, different types of stereom within single tests were characterized by distinct skeletal Mg/Ca ratios and nanohardness. The inner galleried and coarse labyrinthic stereom typically exhibited a lower Mg/Ca ratio and nanohardness than the outer imperforate stereom layer that locally forms tubercles. Such heterogeneity in Mg distribution within single specimens cannot be ascribed solely to environmental changes, indicating that these echinoids actively regulate their intraskeletal Mg content: the higher magnesium concentration at the tubercles relative to that of the underlying stereom may be interpreted as a strategy for enhancing their mechanical strength to withstand surface friction and wear. The results suggest that the trace element composition of echinoid tests is a complex outcome of environmental and physiological factors.
Collapse
Affiliation(s)
| | - Luis Torres Jr.
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
| | - Dorota Kołbuk
- UCD Earth Institute and School of Biology and Environmental Science, Science Centre West, University College Dublin, Dublin, Ireland
| | - Tobias B. Grun
- Department of Fundamentals of Nature Conservation and Data Management, Bavarian State Office for the Environment, Hof, Germany
| | - Michał Kowalewski
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
2
|
Vidyalakshmi D, Yesudas A, Sivan G, Akhil Prakash E, Priyaja P. Heavy metal accumulation analysis using bivalve, sponge, sea urchin, and gastropod species as bioindicators. MARINE POLLUTION BULLETIN 2024; 202:116374. [PMID: 38663344 DOI: 10.1016/j.marpolbul.2024.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
A comparative assessment of heavy metal accumulation potential in four distinct marine benthic bioindicators: the bivalve Perna perna, the sponge Callyspongia fibrosa, the sea urchin Tripneustes gratilla, and the gastropod Purpura bufo were conducted. These organisms were collected from the same location, and the concentration of ten heavy metals was analyzed in water, sediment and various body parts of the organisms. The bioaccumulation potential was evaluated using the bio-water accumulation factor and bio-sediment accumulation factor. There was significant variation in the bioaccumulation potential of each organism with respect to different metals. The sponge proved to be a reliable indicator of Cd with a highest concentration of 2.60 μg/g. Sea urchin accumulated high concentrations of Cr (16.98 μg/g) and Pb (4.80 μg/g), whereas Cu was predominant (21.05 μg/g) in gastropod, followed by bivalve (17.67 μg/g). The concentration of metals in hard parts was found to be lower than in the tissues.
Collapse
Affiliation(s)
- D Vidyalakshmi
- Department of Marine biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India
| | - Aneena Yesudas
- Department of Marine biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India
| | - Gopika Sivan
- Department of Marine biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India
| | - E Akhil Prakash
- Department of Marine biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India
| | - P Priyaja
- Department of Marine biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India.
| |
Collapse
|
3
|
Yesudas A, Vidyalakshmi D, Sivan G, Shameem K, Akhil Prakash E, Priyaja P. Comparative analysis of temporal variation of heavy metal accumulation by two sea urchin species from a harbour region, including pre and post COVID 19 lock down period. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162879. [PMID: 36933728 DOI: 10.1016/j.scitotenv.2023.162879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 05/06/2023]
Abstract
Sea urchins are marine invertebrates belonging to phylum Echinodermata, recognized as relevant biological tool for assessing environmental pollution. In the present study, we assessed the bioaccumulation potential of different heavy metals by two sea urchin species, Stomopneustes variolaris Lamarck, 1816 and Echinothrix diadema Linnaeus, 1758, collected from a harbour region, along the south west coast of India, during four different sampling periods for 2 years, from the same sea urchin bed. Heavy metals like Pb, Cr, As, Cd, Co, Se, Cu, Zn, Mn and Ni were analysed from water, sediment and different body parts of sea urchins, such as shell, spine, tooth, gut and gonad. The sampling periods also included the pre and post COVID 19 lockdown period during which the harbour activities were closed. The bio-water accumulation factor (BWAF), bio-sediment accumulation factor (BSAF) and the metal content/test weight index (MTWI) were calculated, in order to compare the bioaccumulation of metals by both the species. The results showed that S. variolaris had higher bioaccumulation potential than E. diadema, for metals like Pb, As, Cr, Co and Cd especially in the soft body parts like gut and gonad. The hard parts of S. variolaris like shell, spine, and tooth also accumulated more Pb, Cu, Ni and Mn than E. diadema. Following the lockdown period, there was a decline in the concentration of all heavy metals in water, whereas in sediment, Pb, Cr, and Cu levels were reduced. The gut and gonad tissues of both the urchins showed a decrease in the concentration of most of the heavy metals following the lockdown phase and no significant reduction was observed in the hard parts. This study reveals the use of S. variolaris as an excellent bioindicator of heavy metal contamination in the marine environment which can be employed for coastal monitoring programs.
Collapse
Affiliation(s)
- Aneena Yesudas
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India
| | - D Vidyalakshmi
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India
| | - Gopika Sivan
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India
| | - K Shameem
- Department of Chemical Oceanography, Cochin University of Science and Technology, Kerala, India
| | - E Akhil Prakash
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India
| | - P Priyaja
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India.
| |
Collapse
|
4
|
Peng M, Liu Z, Li Z, Qian S, Liu X, Li J. The temptin gene of the clade Lophotrochozoa is involved in formation of the prismatic layer during biomineralization in molluscs. Int J Biol Macromol 2021; 188:800-810. [PMID: 34339790 DOI: 10.1016/j.ijbiomac.2021.07.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022]
Abstract
The biomineralization mechanism of mollusc shell has been studied for a long time, but there is a lack of understanding about the relationship between the shell formation in vitro and the signaling system in vivo. In this study, we cloned a novel shell matrix protein gene (hc-temptin), which only be characterized as a water-borne protein pheromone of molluscs in previous studies, from the freshwater mussel Hyriopsis cumingii. By bioinformatics analysis we found that temptin was a gene unique to the clade Lophotrochozoa, and it exists in all mollusc taxa except Cephalopoda. The current data supported the premise that temptin was generated in the early emergence of molluscs and that it maintained a high mutation rate to evolve relative independently. The specificity of hc-temptin expression in the mantle tissue suggests its potential to participate in biomineralization. Its sequence contained typical Ca2+ binding sites. Our experiments involving the pearl formation process, damaged shell repair process, and RNAi experiment showed that hc-temptin was a shell matrix protein that plays an important role in formation of the prismatic layer. The results of this study provided new insights about the origin of the temptin gene and its role in molluscs.
Collapse
Affiliation(s)
- Maoxiao Peng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Zhenming Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Zhi Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | | | - Xiaojun Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314000, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
5
|
Devens HR, Davidson PL, Deaker DJ, Smith KE, Wray GA, Byrne M. Ocean acidification induces distinct transcriptomic responses across life history stages of the sea urchin Heliocidaris erythrogramma. Mol Ecol 2020; 29:4618-4636. [PMID: 33002253 PMCID: PMC8994206 DOI: 10.1111/mec.15664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 09/01/2023]
Abstract
Ocean acidification (OA) from seawater uptake of rising carbon dioxide emissions impairs development in marine invertebrates, particularly in calcifying species. Plasticity in gene expression is thought to mediate many of these physiological effects, but how these responses change across life history stages remains unclear. The abbreviated lecithotrophic development of the sea urchin Heliocidaris erythrogramma provides a valuable opportunity to analyse gene expression responses across a wide range of life history stages, including the benthic, post-metamorphic juvenile. We measured the transcriptional response to OA in H. erythrogramma at three stages of the life cycle (embryo, larva, and juvenile) in a controlled breeding design. The results reveal a broad range of strikingly stage-specific impacts of OA on transcription, including changes in the number and identity of affected genes; the magnitude, sign, and variance of their expression response; and the developmental trajectory of expression. The impact of OA on transcription was notably modest in relation to gene expression changes during unperturbed development and much smaller than genetic contributions from parentage. The latter result suggests that natural populations may provide an extensive genetic reservoir of resilience to OA. Taken together, these results highlight the complexity of the molecular response to OA, its substantial life history stage specificity, and the importance of contextualizing the transcriptional response to pH stress in light of normal development and standing genetic variation to better understand the capacity for marine invertebrates to adapt to OA.
Collapse
Affiliation(s)
| | | | - Dione J Deaker
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| | - Kathryn E Smith
- The Laboratory, The Marine Biological Association, Plymouth, UK
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Maria Byrne
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Kim YY, Darkins R, Broad A, Kulak AN, Holden MA, Nahi O, Armes SP, Tang CC, Thompson RF, Marin F, Duffy DM, Meldrum FC. Hydroxyl-rich macromolecules enable the bio-inspired synthesis of single crystal nanocomposites. Nat Commun 2019; 10:5682. [PMID: 31831739 PMCID: PMC6908585 DOI: 10.1038/s41467-019-13422-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/05/2019] [Indexed: 11/24/2022] Open
Abstract
Acidic macromolecules are traditionally considered key to calcium carbonate biomineralisation and have long been first choice in the bio-inspired synthesis of crystalline materials. Here, we challenge this view and demonstrate that low-charge macromolecules can vastly outperform their acidic counterparts in the synthesis of nanocomposites. Using gold nanoparticles functionalised with low charge, hydroxyl-rich proteins and homopolymers as growth additives, we show that extremely high concentrations of nanoparticles can be incorporated within calcite single crystals, while maintaining the continuity of the lattice and the original rhombohedral morphologies of the crystals. The nanoparticles are perfectly dispersed within the host crystal and at high concentrations are so closely apposed that they exhibit plasmon coupling and induce an unexpected contraction of the crystal lattice. The versatility of this strategy is then demonstrated by extension to alternative host crystals. This simple and scalable occlusion approach opens the door to a novel class of single crystal nanocomposites.
Collapse
Affiliation(s)
- Yi-Yeoun Kim
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Robert Darkins
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alexander Broad
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alexander N Kulak
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Mark A Holden
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Ouassef Nahi
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Chiu C Tang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Rebecca F Thompson
- The Astbury Biostructure Laboratory, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frederic Marin
- UMR CNRS 6282 Biogeosciences, Université de Bourgogne-Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Dorothy M Duffy
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
7
|
Albéric M, Stifler CA, Zou Z, Sun CY, Killian CE, Valencia S, Mawass MA, Bertinetti L, Gilbert PUPA, Politi Y. Growth and regrowth of adult sea urchin spines involve hydrated and anhydrous amorphous calcium carbonate precursors. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 1:100004. [PMID: 32647811 PMCID: PMC7337052 DOI: 10.1016/j.yjsbx.2019.100004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 01/25/2023]
Abstract
In various mineralizing marine organisms, calcite or aragonite crystals form through the initial deposition of amorphous calcium carbonate (ACC) phases with different hydration levels. Using X-ray PhotoEmission Electron spectroMicroscopy (X-PEEM), ACCs with varied spectroscopic signatures were previously identified. In particular, ACC type I and II were recognized in embryonic sea urchin spicules. ACC type I was assigned to hydrated ACC based on spectral similarity with synthetic hydrated ACC. However, the identity of ACC type II has never been unequivocally determined experimentally. In the present study we show that synthetic anhydrous ACC and ACC type II identified here in sea urchin spines, have similar Ca L2,3-edge spectra. Moreover, using X-PEEM chemical mapping, we revealed the presence of ACC-H2O and anhydrous ACC in growing stereom and septa regions of sea urchin spines, supporting their role as precursor phases in both structures. However, the distribution and the abundance of the two ACC phases differ substantially between the two growing structures, suggesting a variation in the crystal growth mechanism; in particular, ACC dehydration, in the two-step reaction ACC-H2O → ACC → calcite, presents different kinetics, which are proposed to be controlled biologically.
Collapse
Affiliation(s)
- Marie Albéric
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA
| | - Zhaoyong Zou
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan, China
| | - Chang-Yu Sun
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA.,Materials Science Program, University of Wisconsin, Madison, WI 53706, USA
| | - Christopher E Killian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Sergio Valencia
- Helmholtz-Zentrum Berlin für Materialen & Energie, 12489 Berlin, Germany
| | | | - Luca Bertinetti
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA.,Departments of Chemistry, Geoscience, Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA
| | - Yael Politi
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
8
|
Fau M, Villier L. Post-metamorphic ontogeny of Zoroaster fulgens Thomson, 1873 (Asteroidea, Forcipulatacea). J Anat 2018; 233:644-665. [PMID: 30294788 PMCID: PMC6182998 DOI: 10.1111/joa.12881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 11/29/2022] Open
Abstract
The complete ontogenetic development of an asteroid skeleton has never been described formally for any species. Here, we describe in detail the post-metamorphic ontogeny of Zoroaster fulgens Thomson, 1873. The major novelty of our work is the description of patterns of plate addition, the ontogeny of the internal ossicles, as well as the variability of ossicles according to their position along series. Seven specimens collected in the Rockall Basin (North Atlantic) were dissected with bleach and their anatomy was documented using a scanning electron microscope. The external anatomy was additionally observed on more than 30 specimens. We found that the overall structure of the skeleton does not change much between juveniles and adults, but the shape of individual ossicle changes during growth. Allometric scaling was particularly visible on the orals, ambulacrals and adambulacrals. The shape of an ossicle is more dependent of its position along the arm series than of its individual size. Many morphological features differentiate progressively during ontogeny, while others are expressed consistently among specimens. The study of this ontogenetic series allows discussing the homology between the structures present on the ossicles of Z. fulgens in particular and other forcipulatacean sea stars in general (i.e. muscles insertions and articulation areas). The new data obtained in this study provide a comprehensive framework of the anatomy and ontogeny of Z. fulgens that will help resolve taxonomic and phylogenetic controversies in the future.
Collapse
Affiliation(s)
- Marine Fau
- Department of GeosciencesUniversity of FribourgFribourgSwitzerland
| | - Loïc Villier
- Centre de Recherche sur la Paléobiodiversité et les PaléoenvironnementsSorbonne UniversitéParisFrance
| |
Collapse
|
9
|
Merino M, Vicente E, Gonzales KN, Torres FG. Ageing and degradation determines failure mode on sea urchin spines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1086-1092. [DOI: 10.1016/j.msec.2017.04.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 12/28/2016] [Accepted: 04/27/2017] [Indexed: 11/16/2022]
|
10
|
Iglikowska A, Najorka J, Voronkov A, Chełchowski M, Kukliński P. Variability in magnesium content in Arctic echinoderm skeletons. MARINE ENVIRONMENTAL RESEARCH 2017; 129:207-218. [PMID: 28624116 DOI: 10.1016/j.marenvres.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 05/27/2023]
Abstract
In this study, 235 measurements of magnesium concentration in echinoderm's skeletons were compiled, including 30 species and 216 specimens collected from northern and western Barents Sea. We aimed to reveal the scale of Mg variation in the skeletons of Arctic echinoderms. Furthermore, we attempted to examine whether the Mg concentration in echinoderm skeletons is determined primarily by biological factors or is a passive result of environmental influences. We found that the Mg concentration in echinoderm skeletons was characteristic for particular echinoderm classes or was even species-specific. The highest Mg contents were observed in asteroids, followed by ophiuroids, crinoids, and holothuroids, with the lowest values in echinoids. These results strongly imply that biological factors play an important role in controlling the incorporation of Mg into the skeletons of the studied individuals.
Collapse
Affiliation(s)
- A Iglikowska
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland.
| | - J Najorka
- Core Research Laboratories, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - A Voronkov
- Institute of Marine Research, N-9294, Tromsø, Norway.
| | - M Chełchowski
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland.
| | - P Kukliński
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland.
| |
Collapse
|
11
|
Drozdov AL, Sharmankina VV, Zemnukhova LA, Polyakova NV. Chemical composition of spines and tests of sea urchins. BIOL BULL+ 2017. [DOI: 10.1134/s1062359016060078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Immel F, Broussard C, Catherinet B, Plasseraud L, Alcaraz G, Bundeleva I, Marin F. The Shell of the Invasive Bivalve Species Dreissena polymorpha: Biochemical, Elemental and Textural Investigations. PLoS One 2016; 11:e0154264. [PMID: 27213644 PMCID: PMC4877012 DOI: 10.1371/journal.pone.0154264] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/11/2016] [Indexed: 11/18/2022] Open
Abstract
The zebra mussel Dreissena polymorpha is a well-established invasive model organism. Although extensively used in environmental sciences, virtually nothing is known of the molecular process of its shell calcification. By describing the microstructure, geochemistry and biochemistry/proteomics of the shell, the present study aims at promoting this species as a model organism in biomineralization studies, in order to establish a bridge with ecotoxicology, while sketching evolutionary conclusions. The shell of D. polymorpha exhibits the classical crossed-lamellar/complex crossed lamellar combination found in several heterodont bivalves, in addition to an external thin layer, the characteristics of which differ from what was described in earlier publication. We show that the shell selectively concentrates some heavy metals, in particular uranium, which predisposes D. polymorpha to local bioremediation of this pollutant. We establish the biochemical signature of the shell matrix, demonstrating that it interacts with the in vitro precipitation of calcium carbonate and inhibits calcium carbonate crystal formation, but these two properties are not strongly expressed. This matrix, although overall weakly glycosylated, contains a set of putatively calcium-binding proteins and a set of acidic sulphated proteins. 2D-gels reveal more than fifty proteins, twenty of which we identify by MS-MS analysis. We tentatively link the shell protein profile of D. polymorpha and the peculiar recent evolution of this invasive species of Ponto-Caspian origin, which has spread all across Europe in the last three centuries.
Collapse
Affiliation(s)
- Françoise Immel
- Laboratoire de Biogenèse Membranaire UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
- Biogéosciences UMR6282, CNRS, Université de Bourgogne Franche-Comté, Dijon, France
- * E-mail: (FI); (FM)
| | - Cédric Broussard
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
- Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bastien Catherinet
- Biogéosciences UMR6282, CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurent Plasseraud
- ICMUB UMR6302, CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Gérard Alcaraz
- UPSP PROXISS, Département Agronomie Environnement AgroSupDijon, Dijon, France
| | - Irina Bundeleva
- Biogéosciences UMR6282, CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Frédéric Marin
- Biogéosciences UMR6282, CNRS, Université de Bourgogne Franche-Comté, Dijon, France
- * E-mail: (FI); (FM)
| |
Collapse
|
13
|
Feng Q. Principles of calcium-based biomineralization. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2016; 52:141-97. [PMID: 21877266 DOI: 10.1007/978-3-642-21230-7_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The chapter provides some basic information on the formation principles of calcium carbonate in biological systems in marine environment in the point of view of materials science in order to provide strategies for biomimetic design and preparation of new functional materials. Many researchers try to explain the principles of biomineralization and get some valuable conclusions. This chapter introduces some calcium-based biominerals in aquatic organisms which mainly include calcium carbonate and calcium phosphate. Then it gives a presentation of the hierarchical structure of calcium carbonate-based and calcium phosphate-based biominerals, e.g., mollusc shell, pearl, carp otolith, tooth, and bone. Moreover, the chapter explains the principles of calcium carbonate mineralization from the aspects of the effects of additives and templates; it also gives some explanations to the principles of calcium phosphate mineralization.
Collapse
Affiliation(s)
- Qingling Feng
- Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China,
| |
Collapse
|
14
|
Zhang Y, Chai S, Ma Y, Qi L. Investigations on the microstructures of sea urchin spines via selective dissolution. CrystEngComm 2016. [DOI: 10.1039/c6ce02074g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Kanold JM, Guichard N, Immel F, Plasseraud L, Corneillat M, Alcaraz G, Brümmer F, Marin F. Spine and test skeletal matrices of the Mediterranean sea urchin Arbacia lixula--a comparative characterization of their sugar signature. FEBS J 2015; 282:1891-905. [PMID: 25702947 DOI: 10.1111/febs.13242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 11/27/2022]
Abstract
Calcified structures of sea urchins are biocomposite materials that comprise a minor fraction of organic macromolecules, such as proteins, glycoproteins and polysaccharides. These macromolecules are thought to collectively regulate mineral deposition during the process of calcification. When occluded, they modify the properties of the mineral. In the present study, the organic matrices (both soluble and insoluble in acetic acid) of spines and tests from the Mediterranean black sea urchin Arbacia lixula were extracted and characterized, in order to determine whether they exhibit similar biochemical signatures. Bulk characterizations were performed by mono-dimensional SDS/PAGE, FT-IR spectroscopy, and an in vitro crystallization assay. We concentrated our efforts on characterization of the sugar moieties. To this end, we determined the monosaccharide content of the soluble and insoluble organic matrices of A. lixula spines and tests by HPAE-PAD, together with their respective lectin-binding profiles via enzyme-linked lectin assay. Finally, we performed in situ localization of N-acetyl glucosamine-containing saccharides on spines and tests using gold-conjugated wheatgerm agglutinin. Our data show that the test and spine matrices exhibit different biochemical signatures with regard to their saccharidic fraction, suggesting that future studies should analyse the regulation of mineral deposition by the matrix in these two mineralized structures in detail. This study re-emphasizes the importance of non-protein moieties, i.e. sugars, in calcium carbonate systems, and highlights the need to clearly identify their function in the biomineralization process.
Collapse
Affiliation(s)
- Julia M Kanold
- Department of Zoology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Germany
| | - Nathalie Guichard
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| | - Françoise Immel
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| | - Laurent Plasseraud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Faculté des Sciences Mirande, Université de Bourgogne, Dijon, France
| | - Marion Corneillat
- Unité Propre Soutien de Programme PROXISS, Département Agronomie Environnement AgroSupDijon, Dijon Cedex, France
| | - Gérard Alcaraz
- Unité Propre Soutien de Programme PROXISS, Département Agronomie Environnement AgroSupDijon, Dijon Cedex, France
| | - Franz Brümmer
- Department of Zoology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Germany
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| |
Collapse
|
16
|
Kanold JM, Immel F, Broussard C, Guichard N, Plasseraud L, Corneillat M, Alcaraz G, Brümmer F, Marin F. The test skeletal matrix of the black sea urchin Arbacia lixula. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:24-34. [DOI: 10.1016/j.cbd.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/13/2014] [Accepted: 12/18/2014] [Indexed: 11/26/2022]
|
17
|
Long X, Ma Y, Qi L. Biogenic and synthetic high magnesium calcite - a review. J Struct Biol 2013; 185:1-14. [PMID: 24291472 DOI: 10.1016/j.jsb.2013.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 09/23/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
Abstract
Systematic studies on the Mg distributions, the crystal orientations, the formation mechanisms and the mechanical properties of biogenic high-Mg calcites in different marine organisms were summarized in detail in this review. The high-Mg calcites in the hard tissues of marine organisms mentioned generally own a few common features as follows. Firstly, the Mg distribution is not uniform in most of the minerals. Secondly, high-Mg calcite biominerals are usually composed of nanoparticles that own almost the same crystallographic orientations and thus they behave like single crystals or mesocrystals. Thirdly, the formation of thermodynamically unstable high-Mg calcites in marine organisms under mild conditions is affected by three key factors, that is, the formation of amorphous calcium (magnesium) carbonate precursor, the control of polymorph via biomolecules and the high Mg/Ca ratios in modern sea. Lastly, the existence of Mg ions in the Mg-containing calcite may improve the mechanical properties of biogenic minerals. Furthermore, the key progress in the synthesis of high-Mg calcites in the laboratory based on the formation mechanisms of the biogenic high-Mg calcites was reviewed. Many researchers have realized the synthesis of high-Mg calcites in the laboratory under ambient conditions with the help of intermediate amorphous phase, mixed solvents, organic/inorganic surfaces and soluble additives. Studies on the structural analysis and formation mechanisms of thermodynamically unstable biogenic high-Mg calcite minerals may shed light on the preparation of functional materials with enhanced mechanical properties.
Collapse
Affiliation(s)
- Xia Long
- Beijing National laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, PR China
| | - Yurong Ma
- Beijing National laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, PR China.
| | - Limin Qi
- Beijing National laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, PR China
| |
Collapse
|
18
|
Han Z, Yan H, Zhou S, Zhao H, Zhang Y, Zhang N, Yao C, Zhao L, Han C. Precipitation of calcite induced by Synechocystis sp. PCC6803. World J Microbiol Biotechnol 2013; 29:1801-11. [PMID: 23543209 DOI: 10.1007/s11274-013-1341-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/25/2013] [Indexed: 11/28/2022]
Abstract
Calcite with laminate structure was successfully prepared by culturing Synechocystis sp. PCC6803 with different concentrations of calcium chloride (CaCl₂) in BG11 media. S. PCC6803 was examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser confocal scanning microscope (LCSM) and energy dispersive spectroscopy (EDS). The effects of Ca²⁺ concentrations and pH values on calcification were investigated and the micro morphs of the CaCO₃ crystals were observed by means of SEM. These results showed that CaCO₃ crystals could be more easily formed with increasing the concentration of CaCl₂ in S. PCC6803 culture solution. S. PCC6803 could largely bind calcium ions, most of which were present in extracellular polymeric substances and on the cell wall. Inside the cells there were a lot of circular areas rich in calcium ions without the crystallization of calcium. Some cells produced a thicker gelatinous sheath outside of the translucent organic thin layer. And the cells inside also produced major changes that the original chloroplasts were almost transformed into starch grains whose sizes were from 0.5 to 1 μm with relatively uniform in sizes. At the same time the cell sizes significantly reduced to only about 8-9 μm almost changing to half of its original diameters. The calcite crystals with a highly preferred orientation induced by S. PCC6803 were observed with X-ray diffraction (XRD). A critical implication was that S. PCC6803 could induce bio-calcification and then mediate the further growth of CaCO₃ crystals in the biological system.
Collapse
Affiliation(s)
- Zuozhen Han
- Shandong Provincial Key Lab of Depositional Mineralization and Sedimentary Minerals, College of Geological Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gorzelak P, Stolarski J, Mazur M, Meibom A. Micro- to nanostructure and geochemistry of extant crinoidal echinoderm skeletons. GEOBIOLOGY 2013; 11:29-43. [PMID: 23121244 DOI: 10.1111/gbi.12012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/25/2012] [Indexed: 06/01/2023]
Abstract
This paper reports the results of micro- to nanostructural and geochemical analyses of calcitic skeletons from extant deep-sea stalked crinoids. Fine-scale (SEM, FESEM, AFM) observations show that the crinoid skeleton is composed of carbonate nanograins, about 20-100 nm in diameter, which are partly separated by what appears to be a few nm thick organic layers. Sub-micrometre-scale geochemical mapping of crinoid ossicles using a NanoSIMS ion microprobe, combined with synchrotron high-spatial-resolution X-ray micro-fluorescence (μ-XRF) maps and X-ray absorption near-edge structure spectroscopy (XANES) show that high Mg concentration in the central region of the stereom bars correlates with the distribution of S-sulphate, which is often associated with sulphated polysaccharides in biocarbonates. These data are consistent with biomineralization models suggesting a close association between organic components (including sulphated polysaccharides) and Mg ions. Additionally, geochemical analyses (NanoSIMS, energy dispersive spectroscopy) reveal that significant variations in Mg occur at many levels: within a single stereom trabecula, within a single ossicle and within a skeleton of a single animal. Together, these data suggest that physiological factors play an important role in controlling Mg content in crinoid skeletons and that great care should be taken when using their skeletons to reconstruct, for example, palaeotemperatures and Mg/Ca palaeo-variations of the ocean.
Collapse
Affiliation(s)
- P Gorzelak
- Department of Biogeology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | |
Collapse
|
20
|
Debreuil J, Tambutté É, Zoccola D, Deleury E, Guigonis JM, Samson M, Allemand D, Tambutté S. Molecular cloning and characterization of first organic matrix protein from sclerites of red coral, Corallium rubrum. J Biol Chem 2012; 287:19367-76. [PMID: 22505718 PMCID: PMC3365975 DOI: 10.1074/jbc.m112.352005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/12/2012] [Indexed: 11/30/2022] Open
Abstract
We report here for the first time the isolation and characterization of a protein from the organic matrix (OM) of the sclerites of the alcyonarian, Corallium rubrum. This protein named scleritin is one of the predominant proteins extracted from the EDTA-soluble fraction of the OM. The entire open reading frame (ORF) was obtained by comparing amino acid sequences from de novo mass spectrometry and Edman degradation with an expressed sequence tag library dataset of C. rubrum. Scleritin is a secreted basic phosphorylated protein which exhibits a short amino acid sequence of 135 amino acids and a signal peptide of 20 amino acids. From specific antibodies raised against peptide sequences of scleritin, we obtained immunolabeling of scleroblasts and OM of the sclerites which provides information on the biomineralization pathway in C. rubrum.
Collapse
Affiliation(s)
- Julien Debreuil
- From the Centre Scientifique de Monaco, Avenue Saint-Martin, MC-98000, Monaco
| | - Éric Tambutté
- From the Centre Scientifique de Monaco, Avenue Saint-Martin, MC-98000, Monaco
| | - Didier Zoccola
- From the Centre Scientifique de Monaco, Avenue Saint-Martin, MC-98000, Monaco
| | - Emeline Deleury
- the Institut Sophia Agrobiotech (ISA) INRA 1355, CNRS 7254, 400 route des Chappes, Sophia-Antipolis F-06903, France
- the Université de Nice-Sophia Antipolis, Nice F-06107, France
| | - Jean-Marie Guigonis
- the Laboratoire Transporteur en Imagerie et Radiothérapie Oncologique, Commissariat à l'Energie Atomique, Nice F-06107, France
- the Faculté de Médecine, Université de Nice-Sophia Antipolis, Nice F-06107, France
- the Centre Antoine Lacassagne, Nice F-06107, France, and
| | - Michel Samson
- the Équipe Région Institut National de la Santé et de la Recherche Medicale 21/ Équipe Associée 4319, Faculté de Médecine, Université de Nice-Sophia Antipolis, Nice F-06107, France
| | - Denis Allemand
- From the Centre Scientifique de Monaco, Avenue Saint-Martin, MC-98000, Monaco
| | - Sylvie Tambutté
- From the Centre Scientifique de Monaco, Avenue Saint-Martin, MC-98000, Monaco
| |
Collapse
|
21
|
Gorzelak P, Stolarski J, Dubois P, Kopp C, Meibom A. ²⁶Mg labeling of the sea urchin regenerating spine: Insights into echinoderm biomineralization process. J Struct Biol 2011; 176:119-26. [PMID: 21803159 DOI: 10.1016/j.jsb.2011.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/06/2011] [Accepted: 07/16/2011] [Indexed: 10/18/2022]
Abstract
This paper reports the results of the first dynamic labeling experiment with regenerating spines of sea urchins Paracentrotus lividus using the stable isotope ²⁶Mg and NanoSIMS high-resolution isotopic imaging, which provide a direct information about the growth process. Growing spines were labeled twice (for 72 and 24 h, respectively) by increasing the abundance of ²⁶Mg in seawater. The incorporation of ²⁶Mg into the growing spines was subsequently imaged with the NanoSIMS ion microprobe. Stereom trabeculae initially grow as conical micro-spines, which form within less than 1 day. These micro-spines fuse together by lateral outgrowths and form a thin, open meshwork (inner stereom), which is subsequently reinforced by addition of layered thickening deposits (outer stereom). The (longitudinal) growth rate of the inner stereom is ca. 125 μm/day. A single (ca. 1 μm) thickening layer in the stereom trabeculae is deposited during 24h. The thickening process is contemporaneous with the formation micro-spines and involves both longitudinal trabeculae and transverse bridges to a similar degree. Furthermore, the skeleton-forming cells remain active in the previously formed open stereom for at least 10 days, and do not migrate upwards until the end of the thickening process. The experimental capability presented here provides a new way to obtain detailed information about the skeleton formation of a multitude of marine, calcite producing organisms.
Collapse
Affiliation(s)
- Przemysław Gorzelak
- Institute of Paleobiology, Polish Academy of Sciences, Laboratory of Biostructures and Biomineralization, Twarda 51/55, PL-00-818 Warsaw, Poland
| | | | | | | | | |
Collapse
|
22
|
Hennebert E, Wattiez R, Flammang P. Characterisation of the carbohydrate fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:484-495. [PMID: 20886254 DOI: 10.1007/s10126-010-9319-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 09/08/2010] [Indexed: 05/29/2023]
Abstract
In sea stars, adhesion takes place at the level of a multitude of small appendages, the tube feet. It involves the secretion of an adhesive material which, after tube foot detachment, remains on the substratum as a footprint. It was previously reported that the two main organic components of this material are proteins and carbohydrates. The carbohydrate moiety of the adhesive secretion of Asterias rubens was investigated using a set of 16 lectins which were used on sections through tube feet, on footprints, and on the proteins extracted from these footprints. After gel electrophoresis, these proteins separate into eight protein bands which were named sea star footprint proteins (Sfps). Eleven lectins label the tube foot epidermis at the level of the adhesive cells, four react with footprints, and eight with two of the extracted footprint proteins, which are therefore classified as glycoproteins. Sfp-290 appears to bear mostly N-linked oligosaccharides and Sfp-210 principally O-linked oligosaccharides. The outer chains of both glycoproteins enclose galactose, N-acetylgalactosamine, fucose, and sialic acid residues. Another part of the carbohydrate fraction of the footprints would be in the form of larger molecules, such as sialylated proteoglycans. These two types of glycoconjugates are presumably key components of the sea star temporary adhesive providing both cohesive and adhesive contributions through electrostatic interactions by the polar and hydrogen-bonding functional groups of their glycan chains.
Collapse
Affiliation(s)
- Elise Hennebert
- Laboratoire de Biologie Marine, Université de Mons-UMONS, Pentagone 2B 6, Avenue du Champ de Mars, 7000, Mons, Belgium
| | | | | |
Collapse
|
23
|
Ren D, Feng Q, Bourrat X. Effects of additives and templates on calcium carbonate mineralization in vitro. Micron 2011; 42:228-45. [DOI: 10.1016/j.micron.2010.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 09/06/2010] [Accepted: 09/07/2010] [Indexed: 11/24/2022]
|
24
|
Gilbert PUPA, Wilt FH. Molecular aspects of biomineralization of the echinoderm endoskeleton. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 52:199-223. [PMID: 21877267 DOI: 10.1007/978-3-642-21230-7_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Echinoderms possess a rigid endoskeleton composed of calcite and small amounts of occluded organic matrix proteins. The test (i.e., the shell-like structure of adults), spines, pedicellariae, tube feet, and teeth of adults, as well as delicate endoskeletal spicules found in larvae of some classes, are the main skeletal structures. They have been intensively studied for insight into the mechanisms of biomineralization. Recent work on characterization of the mineral phase and occluded proteins in embryonic skeletal spicules shows that these simple-looking structures contain scores of different proteins, and that the mineral phase is composed of amorphous calcium carbonate (ACC), which then transforms to an anhydrous ACC and eventually to calcite. Likewise, the adult tooth shows a similar transition from hydrated ACC to anhydrous ACC to calcite during its formation, and a similar transition is likely occurring during adult spine regeneration. We speculate that: (1) the ACC precursor is a general strategy employed in biomineralization in echinoderms, (2) the numerous occluded proteins play a role in post-secretion formation of the mature biomineralized structure, and (3) proteins with "multi-valent" intrinsically disordered domains are important for formation of occluded matrix structures, and regulation of crucial matrix-mineral interactions, such as ACC to calcite transitions and polymorph selection.
Collapse
Affiliation(s)
- P U P A Gilbert
- Department of Physics, University of Wisconsin-Madison, 1150 University Ave, Madison, WI, 53706, USA,
| | | |
Collapse
|
25
|
Ren D, Li Z, Gao Y, Feng Q. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization. Biomed Mater 2010; 5:055009. [DOI: 10.1088/1748-6041/5/5/055009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Hernández OD, Gutiérrez AJ, González-Weller D, Lozano G, Melón EG, Rubio C, Hardisson A. Accumulation of toxic metals (Pb and Cd) in the sea urchin Diadema aff. antillarum Philippi, 1845, in an oceanic island (Tenerife, Canary Islands). ENVIRONMENTAL TOXICOLOGY 2010; 25:227-233. [PMID: 19399849 DOI: 10.1002/tox.20487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This document shows the results obtained from a study on the concentration of toxic heavy metals in the internal tissue and exoskeleton of sea urchins, collected from their natural habitat. The levels of lead and cadmium were measured by Graphite Furnace Atomic Absorption Spectrometry. The mean concentrations of lead and cadmium in the internal tissue were 304.04 and 260.54 microg/kg respectively, whereas in the shell they were 185.02 and 142.48 microg/kg. We also performed a statistical analysis of the differences in the distribution of metals between their exoskeleton and their internal content, a correlation study of the metal content in internal tissue and shell and sampling areas, and a correlation study between the metal content and sample size. Since the sea urchin Diadema antillarum presents a wide range of variation in metal content, this study suggests that this species is an excellent bioindicator of heavy metal contamination.
Collapse
Affiliation(s)
- Ofelia Dolores Hernández
- Department of Public Health and Toxicology, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Moureaux C, Pérez-Huerta A, Compère P, Zhu W, Leloup T, Cusack M, Dubois P. Structure, composition and mechanical relations to function in sea urchin spine. J Struct Biol 2010; 170:41-9. [DOI: 10.1016/j.jsb.2010.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/28/2009] [Accepted: 01/02/2010] [Indexed: 11/29/2022]
|
28
|
Killian CE, Wilt FH. Molecular Aspects of Biomineralization of the Echinoderm Endoskeleton. Chem Rev 2008; 108:4463-74. [DOI: 10.1021/cr0782630] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christopher E. Killian
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Sciences Addition, Berkeley, California 94720-3200
| | - Fred H. Wilt
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Sciences Addition, Berkeley, California 94720-3200
| |
Collapse
|
29
|
Puverel S, Houlbrèque F, Tambutté E, Zoccola D, Payan P, Caminiti N, Tambutté S, Allemand D. Evidence of low molecular weight components in the organic matrix of the reef building coral, Stylophora pistillata. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:850-6. [PMID: 17499533 DOI: 10.1016/j.cbpa.2006.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/31/2006] [Accepted: 10/31/2006] [Indexed: 11/29/2022]
Abstract
Biominerals contain both inorganic and organic components. Organic components are collectively termed the organic matrix, and this matrix has been reported to play a crucial role in mineralization. Several matrix proteins have been characterized in vertebrates, but only a few in invertebrates, primarily in Molluscs and Echinoderms. Methods classically used to extract organic matrix proteins eliminate potential low molecular weight matrix components, since cut-offs ranging from 3.5 to 10 kDa are used to desalt matrix extracts. Consequently, the presence of such components remains unknown and these are never subjected to further analyses. In the present study, we have used microcolonies from the Scleractinian coral Stylophora pistillata to study newly synthesized matrix components by labelling them with 14C-labelled amino acids. Radioactive matrix components were investigated by a method in which both total organic matrix and fractions of matrix below and above 5 kDa were analyzed. Using this method and SDS-PAGE analyses, we were able to detect the presence of low molecular mass matrix components (<3.5 kDa), but no free amino acids in the skeletal organic matrix. Since more than 98% of the 14C-labelled amino acids were incorporated into low molecular weight molecules, these probably form the bulk of newly synthesized organic matrix components. Our results suggest that these low molecular weight components may be peptides, which can be involved in the regulation of coral skeleton mineralization.
Collapse
Affiliation(s)
- S Puverel
- Centre Scientifique de Monaco, av. St Martin, MC 98000 Monaco, Monaco
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jada A, Jradi K. Role of Polyelectrolytes in Crystallogenesis of Calcium Carbonate. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/masy.200690011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Lakshminarayanan R, Joseph JS, Kini RM, Valiyaveettil S. Structure−Function Relationship of Avian Eggshell Matrix Proteins: A Comparative Study of Two Major Eggshell Matrix Proteins, Ansocalcin and OC-17. Biomacromolecules 2005; 6:741-51. [PMID: 15762638 DOI: 10.1021/bm049423+] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of individual matrix proteins in avian eggshell calcification is poorly understood despite numerous attempts to characterize and localize their presence in the eggshell matrix. Ansocalcin, the major matrix protein from goose eggshell, was found to induce the formation of calcite crystal aggregates under in vitro. Owing to its high similarity with the chicken eggshell matrix protein ovocleidin 17 (OC-17), a comparative investigation has been carried out to understand the structure-function relationship. RP-HPLC shows that ansocalcin is the major component in extracts of goose eggshells before and after bleach treatment. However, OC-17 was observed in minute quantities in the extract of bleach-treated chicken eggshells. In vitro crystal growth experiments showed that OC-17 and ansocalcin interact differently with the calcite crystals formed. Circular dichroism, intrinsic tryptophan fluorescence, and dynamic light scattering studies showed that, under the conditions used in our experiments, OC-17 does not aggregate in solution or induce the nucleation of calcite aggregates in the concentration range used. These observations indicate that OC-17 and ansocalcin play different roles in the eggshell calcification. To our knowledge, this is the first report on the comparison of properties of homologous eggshell proteins that belong to the same phylogeny.
Collapse
|
32
|
Khurrum M, Hernandez A, Eskalaei M, Badali O, Coyle-Thompson C, Oppenheimer SB. Carbohydrate involvement in cellular interactions in sea urchin gastrulation. Acta Histochem 2005; 106:97-106. [PMID: 15147630 DOI: 10.1016/j.acthis.2004.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Accepted: 01/02/2004] [Indexed: 10/26/2022]
Abstract
The sea urchin embryo is a model for studying cellular interactions that occur in higher organisms because of its availability, transparency, and accessibility to molecular probes. In previous studies, we found that the mannose/glucose-binding lectin Lens culinaris agglutinin entered living sea urchin embryos, bound to specific cell types and caused exogastrulation, when the developing gut (archenteron) falls out of the embryo proper. We have proposed that the lectin bound to sugar-containing ligands, thus preventing attachment of the archenteron to the blastocoel roof, resulting in exogastrulation. Here, we have continued our study of cellular interactions in this model using Lytechinus pictus sea urchin embryos, and have found that inhibitors of glycoprotein/proteoglycan synthesis, tunicamycin and sodium selenate, and the specific glycosidases, beta-amylase, alpha-glucosidase, and alpha-mannosidase, all inhibit archenteron organization, elongation, and attachment to the blastocoel roof in viable swimming embryos. We also show that single cells obtained by disaggregation of 32-h-old sea urchin embryos bind to L. culinaris agglutinin- and concanavalin A-derivatized beads; the binding is blocked by alpha-methyl mannose, but not l-fucose. These cells also bind to beads derivatized with mannan. These results provide evidence for a role of carbohydrate-containing molecules in cellular interactions in sea urchin gastrulation. In a second set of experiments, we found that the supernatant obtained by disaggregation of 24-32-h-old L. pictus embryos in calcium- and magnesium-free sea water contains molecules that cause exogastrulation, archenteron disorganization, inhibition of archenteron elongation and inhibition of archenteron attachment to the blastocoel roof in viable swimming embryos. We propose that the supernatant contains ligands and/or receptors that mediate archenteron development and attachment to the blastocoel roof and are released when embryos are disaggregated into single cells. These studies may lead to a better understanding of the molecular basis of mechanisms that control cellular interactions during development.
Collapse
Affiliation(s)
- Maria Khurrum
- Department of Biology and Center for Cancer and Developmental Biology, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | | | | | | | | | | |
Collapse
|
33
|
Li X, Zhang D, Lynch-Holm VJ, Okita TW, Franceschi VR. Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells. PLANT PHYSIOLOGY 2003; 133:549-59. [PMID: 14555781 PMCID: PMC219031 DOI: 10.1104/pp.103.023556] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 05/12/2003] [Accepted: 06/02/2003] [Indexed: 05/17/2023]
Abstract
The formation of calcium (Ca) oxalate crystals is considered to be a high-capacity mechanism for regulating Ca in many plants. Ca oxalate precipitation is not a stochastic process, suggesting the involvement of specific biochemical and cellular mechanisms. Microautoradiography of water lettuce (Pistia stratiotes) tissue exposed to 3H-glutamate showed incorporation into developing crystals, indicating potential acidic proteins associated with the crystals. Dissolution of crystals leaves behind a crystal-shaped matrix "ghost" that is capable of precipitation of Ca oxalate in the original crystal morphology. To assess whether this matrix has a protein component, purified crystals were isolated and analyzed for internal protein. Polyacrylamide gel electrophoresis revealed the presence of one major polypeptide of about 55 kD and two minor species of 60 and 63 kD. Amino acid analysis indicates the matrix protein is relatively high in acidic amino acids, a feature consistent with its solubility in formic acid but not at neutral pH. 45Ca-binding assays demonstrated the matrix protein has a strong affinity for Ca. Immunocytochemical localization using antibody raised to the isolated protein showed that the matrix protein is specific to crystal-forming cells. Within the vacuole, the surface and internal structures of two morphologically distinct Ca oxalate crystals, raphide and druse, were labeled by the antimatrix protein serum, as were the surfaces of isolated crystals. These results demonstrate that a specific Ca-binding protein exists as an integral component of Ca oxalate crystals, which holds important implications with respect to regulation of crystal formation.
Collapse
Affiliation(s)
- Xingxiang Li
- Department of Genetics and Cell Biology, Washington State University, Pullman, WA 99164-4236, USA
| | | | | | | | | |
Collapse
|