1
|
Skidmore S, Hill MA, Bishara K, Konsek H, Kwon JH, Brockbank KGM, Rajab TK. Morbidity and Mortality of Heterotopic Partial Heart Transplantation in Rodent Models. J Cardiovasc Dev Dis 2023; 10:234. [PMID: 37367399 PMCID: PMC10299259 DOI: 10.3390/jcdd10060234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Unrepairable congenital heart valve disease is an unsolved problem in pediatric cardiac surgery because there are no growing heart valve implants. Partial heart transplantation is a new type of transplant that aims to solve this problem. In order to study the unique transplant biology of partial heart transplantation, animal models are necessary. This study aimed to assess the morbidity and mortality of heterotopic partial heart transplantation in rodent models. This study assessed two models. The first model involved transplanting heart valves from donor animals into the abdominal aortic position in the recipient animals. The second model involved transplanting heart valve leaflets into the renal subcapsular position of the recipient animals. A total of 33 animals underwent heterotopic partial heart transplantation in the abdominal aortic position. The results of this model found a 60.61% (n = 20/33) intraoperative mortality rate and a 39.39% (n = 13/33) perioperative mortality rate. Intraoperative mortality was due to vascular complications from the procedure, and perioperative mortality was due to graft thrombosis. A total of 33 animals underwent heterotopic partial heart transplantation in the renal subcapsular position. The results of this model found a 3.03% (n = 1/33) intraoperative mortality rate, and the remaining 96.97% survived (n = 32/33). We conclude that the renal subcapsular model has a lower mortality rate and is technically more accessible than the abdominal aortic model. While the heterotopic transplantation of valves into the abdominal aortic position had significant morbidity and mortality in the rodent model, the renal subcapsular model provided evidence for successful heterotopic transplantation.
Collapse
Affiliation(s)
- Savannah Skidmore
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Morgan A. Hill
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Katherine Bishara
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Haley Konsek
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jennie H. Kwon
- Department of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kelvin G. M. Brockbank
- Tissue Testing Technologies LLC, North Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA
| | - Taufiek Konrad Rajab
- Department of Pediatric Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Granath C, Noren H, Björck H, Simon N, Olesen K, Rodin S, Grinnemo KH, Österholm C. Characterization of Laminins in Healthy Human Aortic Valves and a Modified Decellularized Rat Scaffold. Biores Open Access 2020; 9:269-278. [PMID: 33376633 PMCID: PMC7757704 DOI: 10.1089/biores.2020.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 01/13/2023] Open
Abstract
Aortic valve stenosis is one of the most common cardiovascular diseases in western countries and can only be treated by replacement with a prosthetic valve. Tissue engineering is an emerging and promising treatment option, but in-depth knowledge about the microstructure of native heart valves is lacking, making the development of tissue-engineered heart valves challenging. Specifically, the basement membrane (BM) of heart valves remains incompletely characterized, and decellularization protocols that preserve BM components are necessary to advance the field. This study aims to characterize laminin isoforms expressed in healthy human aortic valves and establish a small animal decellularized aortic valve scaffold for future studies of the BM in tissue engineering. Laminin isoforms were assessed by immunohistochemistry with antibodies specific for individual α, β, and γ chains. The results indicated that LN-411, LN-421, LN-511, and LN-521 are expressed in human aortic valves (n = 3), forming a continuous monolayer in the endothelial BM, whereas sparsely found in the interstitium. Similar results were seen in rat aortic valves (n = 3). Retention of laminin and other BM components, concomitantly with effective removal of cells and residual DNA, was achieved through 3 h exposure to 1% sodium dodecyl sulfate and 30 min exposure to 1% Triton X-100, followed by nuclease processing in rat aortic valves (n = 3). Our results provide crucial data on the microenvironment of valvular cells relevant for research in both tissue engineering and heart valve biology. We also describe a decellularized rat aortic valve scaffold useful for mechanistic studies on the role of the BM in heart valve regeneration.
Collapse
Affiliation(s)
- Carl Granath
- Division of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hunter Noren
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida, USA
| | - Hanna Björck
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nancy Simon
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kim Olesen
- Division of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Bioscience, University of Skövde, Skövde, Sweden
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Sergey Rodin
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Karl-Henrik Grinnemo
- Division of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Cecilia Österholm
- Division of Clinical Genetics, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Address correspondence to: Cecilia Österholm Corbascio, PhD, Division of Clinical Genetics, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, 171 64, Sweden
| |
Collapse
|
3
|
Sugimura Y, Schmidt AK, Lichtenberg A, Assmann A, Akhyari P. * A Rat Model for the In Vivo Assessment of Biological and Tissue-Engineered Valvular and Vascular Grafts. Tissue Eng Part C Methods 2017; 23:982-994. [PMID: 28805140 DOI: 10.1089/ten.tec.2017.0215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The demand for an improvement of the biocompatibility and durability of vascular and valvular implants requires translational animal models to study the in vivo fate of cardiovascular grafts. In the present article, a review on the development and application of a microsurgical rat model of infrarenal implantation of aortic grafts and aortic valved conduits is provided. By refinement of surgical techniques and inclusion of hemodynamic considerations, a functional model has been created, which provides a modular platform for the in vivo assessment of biological and tissue-engineered grafts. Through optional addition of procalcific diets, disease-inducing agents, and genetic modifications, complex multimorbidity scenarios mimicking the clinical reality in cardiovascular patients can be simulated. Applying this model, crucial aspects of the biocompatibility, biofunctionality and degeneration of vascular and valvular implants in dependency on graft preparation, and modification as well as systemic antidegenerative treatment of the recipient have been and will be addressed.
Collapse
Affiliation(s)
- Yukiharu Sugimura
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany
| | - Anna Kathrin Schmidt
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany
| | - Artur Lichtenberg
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany
| | - Alexander Assmann
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany .,2 Biomaterials Innovation Research Center , Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Massachusetts
| | - Payam Akhyari
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany
| |
Collapse
|
4
|
Assmann A, Akhyari P, Lichtenberg A. Dezellularisierte Aorten-Conduits und ihre Biokompatibilität. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2014. [DOI: 10.1007/s00398-014-1108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Assmann A, Akhyari P, Delfs C, Flögel U, Jacoby C, Kamiya H, Lichtenberg A. Development of a growing rat model for the in vivo assessment of engineered aortic conduits. J Surg Res 2011; 176:367-75. [PMID: 22172135 DOI: 10.1016/j.jss.2011.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/22/2011] [Accepted: 10/12/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND Numerous limitations of aortic valve grafts currently used in pediatric patients cause the need for alternative prostheses. For the purpose of in vivo evaluation of novel engineered aortic conduit grafts, we aimed at downsizing a previously described model to create a growing rodent model. MATERIALS AND METHODS U-shaped aortic conduits were sutured to the infrarenal aorta of young Wistar rats (70-80 g, n = 10) in an end-to-side manner. Functional assessment was performed by Doppler sonography and high resolution rodent MRI. Histology and immunohistochemistry followed after 8 wk. RESULTS Postoperative recovery rate was 80%. Conforming to clinical observations, postoperative MRI (d 5) and Doppler sonography (wk 8) revealed unimpaired conduit perfusion. Explanted implants were luminally completely covered by an endothelial cell layer with local hyperplasia and accumulation of α-smooth muscle actin (+) cells. Moreover microcalcification of the decellularized scaffolds was observed. CONCLUSIONS Our downsized model of aortic conduit transplantation enables overall characterization with detailed analysis of maturation of engineered aortic grafts in a growing organism.
Collapse
Affiliation(s)
- Alexander Assmann
- Clinic for Cardiovascular Surgery, Heinrich Heine University Medical School, Duesseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Kallenbach K, Sorrentino S, Mertsching H, Kostin S, Pethig K, Haverich A, Cebotari S. A Novel Small-Animal Model for Accelerated Investigation of Tissue-Engineered Aortic Valve Conduits. Tissue Eng Part C Methods 2010; 16:41-50. [DOI: 10.1089/ten.tec.2008.0595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Klaus Kallenbach
- Leibniz Research Laboratory for Biotechnology and Artificial Organs, Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Sajoscha Sorrentino
- Leibniz Research Laboratory for Biotechnology and Artificial Organs, Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
| | - Heike Mertsching
- Leibniz Research Laboratory for Biotechnology and Artificial Organs, Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Sawa Kostin
- Department of Experimental Cardiology, Max-Plank-Institute, Bad Nauheim, Germany
| | - Klaus Pethig
- Leibniz Research Laboratory for Biotechnology and Artificial Organs, Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
- Department of Cardiology, Evangelische Krankenhaus, Hamm, Germany
| | - Axel Haverich
- Leibniz Research Laboratory for Biotechnology and Artificial Organs, Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
| | - Serghei Cebotari
- Leibniz Research Laboratory for Biotechnology and Artificial Organs, Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Grauss RW, Deruiter MC, Hazekamp MG. Reply to the Editor:. J Thorac Cardiovasc Surg 2004. [DOI: 10.1016/j.jtcvs.2004.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Grauss RW, Hazekamp MG, van Vliet S, Gittenberger-de Groot AC, DeRuiter MC. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 2004; 126:2003-10. [PMID: 14688719 DOI: 10.1016/s0022-5223(03)00956-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Decellularization of aortic valve allografts in advance of transplantation is a promising approach to overcome immune-induced early graft failure. In this study the effects of in vitro cell extraction on extracellular matrix molecules and in vivo remodeling of decellularized aortic valves were investigated in a heterotopic aortic valve rat implantation model. METHODS Rat aortic valve conduits were decellularized by a 2-step detergent-enzymatic extraction method involving sodium dodecyl sulfate in combination with RNase and DNase. Cellular and acellular allogeneic (2x, n = 4) and syngeneic valve grafts (2x, n = 3) were grafted infrarenally into the descending aorta for 21 days. Immunohistochemical techniques were used to study extracellular matrix constitution (elastin, collagen, fibronectin, and chondroitin sulfate) and cellular infiltration. RESULTS The decellularization procedure resulted in a complete loss of all cellular structures from the entire valve conduit with minimal damage to the extracellular matrix. All transplanted cellular allografts became deformed, swollen, and acellular with major changes in extracellular matrix structure. The transplanted decellularized allografts, however, retained normal preserved valve leaflets comparable to transplanted cellular and acellular syngeneic grafts. With the exception of cellular syngeneic grafts, all other grafts showed retrovalvular thrombi. CONCLUSIONS Damage to the valves caused by decellularization technique is much less than the damage caused by the recipient's immune response. In vitro removal of viable cells in (cryopreserved) homografts may decrease graft failure. Seeding with autologous or major histocompatibility complex-matched donor endothelial cells will be necessary to diminish damage induced by an absent blood-tissue barrier.
Collapse
Affiliation(s)
- R W Grauss
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Chereshnev I, Trogan E, Omerhodzic S, Itskovich V, Aguinaldo JG, Fayad ZA, Fisher EA, Reis ED. Mouse model of heterotopic aortic arch transplantation. J Surg Res 2003; 111:171-6. [PMID: 12850459 DOI: 10.1016/s0022-4804(03)00039-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Syngeneic heterotopic transplantation of segments of descending thoracic aortas containing atherosclerotic lesions from hypercholesterolemic mice into normocholesterolemic recipients has been useful for studies on plaque regression and stabilization. Because lesion development is more rapid and exuberant in the aortic arch, a technique of transplantation of the mouse aortic arch was developed. MATERIALS AND METHODS C57BL/6, apoE-deficient (apoE-/-) (hypercholesterolemic) mice were fed a Western diet for 22 weeks and used as donors of aortic-arch segments containing atherosclerotic lesions. Twenty syngeneic transplants were performed on age-matched wild-type (normocholesterolemic) mice. Aortic arches containing atherosclerotic lesions were implanted on the abdominal aorta of recipient mice by end-to-side microsurgical anastomosis. Two weeks after transplantation, grafts were noninvasively imaged in vivo by magnetic resonance (MR) microscopy. Grafts harvested four weeks after transplantation were submitted for histological examination. RESULTS All recipients survived the entire follow-up period (1 month) without complications. Duration of recipient procedure ranged from 90 to 120 (mean, 105) min; aortic clamping time varied from 45 to 60 min. In vivo MR microscopy demonstrated patency of the grafts and wall thickening that corresponded to the preexisting atherosclerotic lesions. Histology confirmed patency and atherosclerotic thickening of the grafts, and showed no evidence of acute tissue damage. CONCLUSIONS Syngeneic transplantation of the aortic arch in mice represents a useful alternative model for studies on morphology, imaging, and mechanisms of atherosclerosis. The curvature of the aortic arch is preserved after implantation onto the abdominal aorta, providing clear landmarks for noninvasive assessment using MR.
Collapse
Affiliation(s)
- Igor Chereshnev
- Department of Medicine and the Zena and Michael Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | |
Collapse
|