1
|
Yamanaka M, Tamura Y, Kuribayashi-Okuma E, Uchida S, Shibata S. Nicorandil protects podocytes via modulation of antioxidative capacity in acute puromycin aminonucleoside-induced nephrosis in rats. Am J Physiol Renal Physiol 2023; 324:F168-F178. [PMID: 36454699 PMCID: PMC9844977 DOI: 10.1152/ajprenal.00144.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Nephrotic syndrome, characterized by proteinuria and hypoalbuminemia, results from the dysregulation of glomerular podocytes and is a significant cause of end-stage kidney disease. Patients with idiopathic nephrotic syndrome are generally treated with immunosuppressive agents; however, these agents produce various adverse effects. Previously, we reported the renoprotective effects of a stimulator of the mitochondrial ATP-dependent K+ channel (MitKATP), nicorandil, in a remnant kidney model. Nonetheless, the cellular targets of these effects remain unknown. Here, we examined the effect of nicorandil on puromycin aminonucleoside-induced nephrosis (PAN) rats, a well-established model of podocyte injury and human nephrotic syndrome. PAN was induced using a single intraperitoneal injection. Nicorandil was administered orally at 30 mg/kg/day. We found that proteinuria and hypoalbuminemia in PAN rats were significantly ameliorated following nicorandil treatment. Immunostaining and ultrastructural analysis under electron microscopy demonstrated that podocyte injury in PAN rats showed a significant partial attenuation following nicorandil treatment. Nicorandil ameliorated the increase in the oxidative stress markers nitrotyrosine and 8-hydroxy-2-deoxyguanosine in glomeruli. Conversely, nicorandil prevented the decrease in levels of the antioxidant enzyme manganese superoxide dismutase in PAN rats. We found that mitochondrial Ca2+ uniporter levels in glomeruli were higher in PAN rats than in control rats, and this increase was significantly attenuated by nicorandil. We conclude that stimulation of MitKATP by nicorandil reduces proteinuria by attenuating podocyte injury in PAN nephrosis, which restores mitochondrial antioxidative capacity, possibly through mitochondrial Ca2+ uniporter modulation. These data indicate that MitKATP may represent a novel target for podocyte injury and nephrotic syndrome.NEW & NOTEWORTHY Our findings suggest that the mitochondrial Ca2+ uniporter may be an upstream regulator of manganese superoxide dismutase and indicate a biochemical basis for the interaction between the ATP-sensitive K+ channel and Ca2+ signaling. We believe that our study makes a significant contribution to the literature because our results indicate that the ATP-sensitive K+ channel may be a potential therapeutic target for podocyte injury and nephrotic syndrome.
Collapse
Affiliation(s)
- Masaki Yamanaka
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshifuru Tamura
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Emiko Kuribayashi-Okuma
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shunya Uchida
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Kim CW, Choi KC. Effects of anticancer drugs on the cardiac mitochondrial toxicity and their underlying mechanisms for novel cardiac protective strategies. Life Sci 2021; 277:119607. [PMID: 33992675 DOI: 10.1016/j.lfs.2021.119607] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are organelles that play a pivotal role in the production of energy in cells, and vital to the maintenance of cellular homeostasis due to the regulation of many biochemical processes. The heart contains a lot of mitochondria because those muscles require a lot of energy to keep supplying blood through the circulatory system, implying that the energy generated from mitochondria is highly dependent. Thus, cardiomyocytes are sensitive to mitochondrial dysfunction and are likely to be targeted by mitochondrial toxic drugs. It has been reported that some anticancer drugs caused unwanted toxicity to mitochondria. Mitochondrial dysfunction is related to aging and the onset of many diseases, such as obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases. Mitochondrial toxic mechanisms can be mainly explained concerning reactive oxygen species (ROS)/redox status, calcium homeostasis, and endoplasmic reticulum stress (ER) stress signaling. The toxic mechanisms of many anticancer drugs have been revealed, but more studying and understanding of the mechanisms of drug-induced mitochondrial toxicity is required to develop mitochondrial toxicity screening system as well as novel cardioprotective strategies for the prevention of cardiac disorders of drugs. This review focuses on the cardiac mitochondrial toxicity of commonly used anticancer drugs, i.e., doxorubicin, mitoxantrone, cisplatin, arsenic trioxide, and cyclophosphamide, and their possible chemopreventive agents that can prevent or alleviate cardiac mitochondrial toxicity.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
3
|
Ahmed LA. Nicorandil: A drug with ongoing benefits and different mechanisms in various diseased conditions. Indian J Pharmacol 2019; 51:296-301. [PMID: 31831918 PMCID: PMC6892004 DOI: 10.4103/ijp.ijp_298_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/01/2022] Open
Abstract
Nicorandil is a well-known antianginal agent, which has been recommended as one of the second-line treatments for chronic stable angina as justified by the European guidelines. It shows an efficacy equivalent to that of classic antianginal agents. Nicorandil has also been applied clinically in various cardiovascular diseases such as variant or unstable angina and reperfusion-induced damage following coronary angioplasty or thrombolysis. Different mechanisms have been involved in the protective effects of nicorandil in various diseases through either opening of adenosine triphosphate-sensitive potassium (KATP) channel or donation of nitric oxide (NO). The predominance or participation of any of these proposed mechanisms depends on the dose of nicorandil used, the location of diseased conditions, and if this mechanism is still functioning or not. The protection afforded by nicorandil has been shown to be mainly attributed to KATP channel opening in experimental models of myocardial and pulmonary fibrosis as well as renal injury or glomerulonephritis, whereas NO donation predominates as a mechanism of protection in hepatic fibrosis and inflammatory bowel diseases. Therefore, in different diseased conditions, it is important to know which mechanism plays the major role in nicorandil-induced curative or protective effects. This can bring new insights into the proper use of selected medication and its recommended dose for targeting certain disease.
Collapse
Affiliation(s)
- Lamiaa Ahmed Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Stancic A, Jankovic A, Korac A, Cirovic D, Otasevic V, Storey KB, Korac B. A lesson from the oxidative metabolism of hibernator heart: Possible strategy for cardioprotection. Comp Biochem Physiol B Biochem Mol Biol 2018; 219-220:1-9. [PMID: 29501789 DOI: 10.1016/j.cbpb.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 01/20/2023]
Abstract
In the present study we hypothesized that myocardial adaptive phenotype in mammalian hibernation involves rearrangement of mitochondria bioenergetic pathways providing protective pattern in states of reduced metabolism and low temperature. European ground squirrels (Spermophilus citellus) were exposed to low temperature (4 ± 1 °C) and then divided into two groups: (1) animals that fell into torpor (hibernating group) and (2) animals that stayed active and euthermic for 1, 3, 7, 12, or 21 days (cold-exposed group). Protein levels of selected components of the electron transport chain and ATP synthase in the heart increased after prolonged cold acclimation (mainly from day 7-21 of cold exposure) and during hibernation. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was also upregulated under both cold exposure and hibernating conditions. The phosphorylation state (Thr172) of 5'-AMP-activated protein kinase α increased early in cold exposure (at day 1 and 3) along with increased protein levels of phosphofructokinase and pyruvate dehydrogenase, whereas hypoxia inducible factor 1α protein levels showed no changes in response to cold exposure or hibernation. Hibernation also resulted in protein upregulation of three antioxidant defense enzymes (manganese and copper/zinc superoxide dismutases and glutathione peroxidase) and thioredoxin in the heart. Cold-exposed and hibernation-related phenotypes of the heart are characterized by improved molecular basis for mitochondrial energy-producing and antioxidant capacities that are achieved in a controlled manner. The recapitulation of such adaptive mechanisms found in hibernators could have broad application for myocardial protection from ishemia/reperfusion to improve hypothermic survival and cold preservation of hearts from non-hibernating species, including humans.
Collapse
Affiliation(s)
- Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia
| | - Aleksandra Jankovic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia
| | - Aleksandra Korac
- University of Belgrade, Faculty of Biology, Centre for Electron Microscopy, Belgrade, Serbia
| | - Dusko Cirovic
- University of Belgrade, Faculty of Biology, Belgrade, Serbia
| | - Vesna Otasevic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia
| | - Kenneth B Storey
- Carleton University, Department of Biology, Ottawa, Ontario, Canada
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia.
| |
Collapse
|
5
|
Mechanisms underpinning protection against eccentric exercise-induced muscle damage by ischemic preconditioning. Med Hypotheses 2016; 98:21-27. [PMID: 28012598 DOI: 10.1016/j.mehy.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/17/2016] [Indexed: 01/27/2023]
Abstract
Eccentric exercise training is effective for increasing muscle mass and strength, and improving insulin sensitivity and blood lipid profiles. However, potential muscle damage symptoms such as prolonged loss of muscle function and delayed onset of muscle soreness may restrict the use of eccentric exercise, especially in clinical populations. Therefore, strategies to reduce eccentric exercise-induced muscle damage (EIMD) are necessary, and an extensive number of scientific studies have tried to identify potential intervention modalities to perform eccentric exercises without adverse effects. The present paper is based on a narrative review of current literature, and provides a novel hypothesis by which an ischemic preconditioning (IPC) of the extremities may reduce EIMD. IPC consists of an intermittent application of short-time non-lethal ischemia to an extremity (e.g. using a tourniquet) followed by reperfusion and was discovered in clinical settings in an attempt to minimize inflammatory responses induced by ischemia and ischemia-reperfusion-injury (I/R-Injury) during surgery. The present hypothesis is based on morphological and biochemical similarities in the pathophysiology of skeletal muscle damage during clinical surgery and EIMD. Even though the primary origin of stress differs between I/R-Injury and EIMD, subsequent cellular alterations characterized by an intracellular accumulation of Ca2+, an increased production of reactive oxygen species or increased apoptotic signaling are essential elements for both. Moreover, the incipient immune response appears to be similar in I/R-Injury and EIMD, which is indicated by an infiltration of leukocytes into the damaged soft-tissue. Thus far, IPC is considered as a potential intervention strategy in the area of cardiovascular or orthopedic surgery and provides significant impact on soft-tissue protection and downregulation of undesired excessive inflammation induced by I/R-Injury. Based on the known major impact of IPC on skeletal muscle physiology and immunology, the present paper aims to illustrate the potential protective effects of IPC on EIMD by discussing possible underlying mechanisms.
Collapse
|
6
|
Quarrie R, Lee DS, Reyes L, Erdahl W, Pfeiffer DR, Zweier JL, Crestanello JA. Mitochondrial uncoupling does not decrease reactive oxygen species production after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2014; 307:H996-H1004. [PMID: 25085966 DOI: 10.1152/ajpheart.00189.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cardiac ischemia-reperfusion (IR) leads to myocardial dysfunction by increasing production of reactive oxygen species (ROS). Mitochondrial H(+) leak decreases ROS formation; it has been postulated that increasing H(+) leak may be a mechanism of decreasing ROS production after IR. Ischemic preconditioning (IPC) decreases ROS formation after IR, but the mechanism is unknown. We hypothesize that pharmacologically increasing mitochondrial H(+) leak would decrease ROS production after IR. We further hypothesize that IPC would be associated with an increase in the rate of H(+) leak. Isolated male Sprague-Dawley rat hearts were subjected to either control or IPC. Mitochondria were isolated at end equilibration, end ischemia, and end reperfusion. Mitochondrial membrane potential (mΔΨ) was measured using a tetraphenylphosphonium electrode. Mitochondrial uncoupling was achieved by adding increasing concentrations of FCCP. Mitochondrial ROS production was measured by fluorometry using Amplex-Red. Pyridine dinucleotide levels were measured using HPLC. Before IR, increasing H(+) leak decreased mitochondrial ROS production. After IR, ROS production was not affected by increasing H(+) leak. H(+) leak increased at end ischemia in control mitochondria. IPC mitochondria showed no change in the rate of H(+) leak throughout IR. NADPH levels decreased after IR in both IPC and control mitochondria while NADH increased. Pharmacologically, increasing H(+) leak is not a method of decreasing ROS production after IR. Replenishing the NADPH pool may be a means of scavenging the excess ROS thereby attenuating oxidative damage after IR.
Collapse
Affiliation(s)
- Ricardo Quarrie
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Daniel S Lee
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Levy Reyes
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; and
| | - Warren Erdahl
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio
| | - Douglas R Pfeiffer
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio
| | - Jay L Zweier
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio
| | - Juan A Crestanello
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; and
| |
Collapse
|
7
|
Quarrie R, Lee DS, Steinbaugh G, Cramer B, Erdahl W, Pfeiffer DR, Zweier JL, Crestanello JA. Ischemic preconditioning preserves mitochondrial membrane potential and limits reactive oxygen species production. J Surg Res 2012; 178:8-17. [PMID: 22763215 DOI: 10.1016/j.jss.2012.05.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/13/2012] [Accepted: 05/31/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND Mitochondrial superoxide radical (O(2)(•¯)) production increases after cardiac ischemia/reperfusion (IR). Ischemic preconditioning (IPC) preserves mitochondrial function and attenuates O(2)(•¯) production, but the mechanism is unknown. Mitochondrial membrane potential (mΔΨ) is known to affect O(2)(•¯) production; mitochondrial depolarization decreases O(2)(•¯) formation. We examined the relationship between O(2)(•¯) production and mΔΨ during IR and IPC. MATERIALS/METHODS Rat hearts were subjected to Control or IPC. Mitochondria were isolated at end equilibration (End EQ), end ischemia (End I), and end reperfusion (End RP). mΔΨ was measured using a tetraphenylphosphonium electrode. Mitochondrial O(2)(•¯) production was measured by electron paramagnetic resonance using DMPO spin trap. Cytochrome c levels were measured using high-pressure liquid chromatography. RESULTS IPC preserved mΔΨ at End I (-156 ± 5 versus -131 ± 6 mV, P < 0.001) and End RP (-168 ± 2 versus -155 ± 2 mV, P < 0.05). At End RP, IPC attenuated O(2)(•¯) production (2527 ± 221 versus 3523 ± 250 AU/mg protein, P < 0.05). IPC preserved cytochrome c levels (351 ± 14 versus 269 ± 16 picomoles/mg protein, P < 0.05) at End RP, and decreased mitochondrial cristae disruption (10% ± 4% versus 33% ± 7%, P < 0.05) and amorphous density formation (18% ± 4% versus 28% ± 1%, P < 0.05). CONCLUSION We conclude that IPC preserves mΔΨ, possibly by limiting disruption of mitochondrial inner membrane. IPC also decreases mitochondrial O(2)(•¯) production and preserves mitochondrial ultrastructure after IR. While it was previously held that slight decreases in mΔΨ decrease O(2)(•¯) production, our results indicate that preservation of mΔΨ is associated with decreased O(2)(•¯) and preservation of cardiac function in IPC. These findings indicate that the mechanism of IPC may not involve mΔΨ depolarization, but rather preservation of mitochondrial electrochemical potential.
Collapse
Affiliation(s)
- Ricardo Quarrie
- Division of Cardiothoracic Surgery, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jovic M, Stancic A, Nenadic D, Cekic O, Nezic D, Milojevic P, Micovic S, Buzadzic B, Korac A, Otasevic V, Jankovic A, Vucetic M, Velickovic K, Golic I, Korac B. Mitochondrial Molecular Basis of Sevoflurane and Propofol Cardioprotection in Patients Undergoing Aortic Valve Replacement with Cardiopulmonary Bypass. Cell Physiol Biochem 2012; 29:131-42. [DOI: 10.1159/000337594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 12/21/2022] Open
|
9
|
Quarrie R, Cramer BM, Lee DS, Steinbaugh GE, Erdahl W, Pfeiffer DR, Zweier JL, Crestanello JA. Ischemic preconditioning decreases mitochondrial proton leak and reactive oxygen species production in the postischemic heart. J Surg Res 2010; 165:5-14. [PMID: 21035133 DOI: 10.1016/j.jss.2010.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 08/10/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Proton leak (H(+) leak) dissipates mitochondrial membrane potential (mΔΨ) through the re-entry of protons into the mitochondrial matrix independent of ATP synthase. Changes in H(+) leak may affect reactive oxygen species (ROS) production. We measured H(+) leak and ROS production during ischemia-reperfusion and ischemic preconditioning (IPC) and examined how changing mitochondrial respiration affected mΔΨ and ROS production. MATERIALS AND METHODS Isolated rat hearts (n = 6/group) were subjected to either control-IR or IPC. Rate pressure product (RPP) was measured. Mitochondria were isolated at end reperfusion. Respiration was measured by polarography and titrated with increasing concentrations of malonate (0.5-2 mM). mΔΨ was measured using a tetraphenylphosphonium electrode. H(+) leak is the respiratory rate required to maintain membrane potential at -150 mV in the presence of oligomycin-A. Mitochondrial complex III ROS production was measured by fluorometry using Amplex-red. RESULTS IPC improved recovery of RPP at end reperfusion (63% ± 4% versus 21% ± 2% in control-IR, P < 0.05). Ischemia-reperfusion caused increased H(+) leak (94 ± 12 versus 31 ± 1 nmol O/mg protein/min in non-ischemic control, P < 0.05). IPC attenuates these increases (55 ± 9 nmol O/mg protein/min, P < 0.05 versus control-IR). IPC reduced mitochondrial ROS production compared with control-IR (31 ± 2 versus 40 ± 3 nmol/mg protein/min, P < 0.05). As mitochondrial respiration decreased, mΔΨ and mitochondrial ROS production also decreased. ROS production remained lower in IPC than in control-IR for all mΔΨ and respiration rates. CONCLUSIONS Increasing H(+) leak is not associated with decreased ROS production. IPC decreases both the magnitude of H(+) leak and ROS production after ischemia-reperfusion.
Collapse
Affiliation(s)
- Ricardo Quarrie
- Division of Cardiothoracic Surgery, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wright D, Sutherland L. Antioxidant supplemention in the treatment of skeletal muscle insulin resistance: potential mechanisms and clinical relevance. Appl Physiol Nutr Metab 2008; 33:21-31. [DOI: 10.1139/h07-155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The incidence of type 2 diabetes has increased dramatically over the past several decades and this trend is projected to continue into the foreseeable future. Skeletal muscle insulin resistance is thought to be a key development in the pathogenesis of type 2 diabetes. Given this fact, interventions that prevent or reverse impairments in skeletal muscle action can have profound effects on whole-body glucose homeostasis. Traditional approaches used in this regard include exercise, weight loss, and insulin-sensitizing drugs such as thiazolidinediones (TZDs). Although these interventions have proven effective in improving glucose homeostasis, there are adherence issues seen with lifestyle interventions and undesirable side effects have been reported with TZDs. With these points in mind, the development of alternative strategies to maintain or improve skeletal muscle insulin sensitivity is warranted. In this context, the purpose of the present review is to highlight the role of antioxidant compounds in the prevention and treatment of skeletal muscle insulin resistance. Specifically, we will briefly describe the mechanisms of insulin-stimulated skeletal muscle glucose uptake and the potential mediators of oxidative stress induced insulin resistance, highlight data suggesting that antioxidant compounds can have beneficial effects on skeletal muscle insulin action, and discuss potential mechanisms mediating this effect.
Collapse
Affiliation(s)
- David Wright
- Alberta Institute of Human Nutrition, 3-18b Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5
| | - Lindsey Sutherland
- Alberta Institute of Human Nutrition, 3-18b Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5
| |
Collapse
|
11
|
Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther 2007; 116:173-91. [PMID: 17681609 DOI: 10.1016/j.pharmthera.2007.06.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 01/17/2023]
Abstract
Despite current optimal treatment, the morbidity and mortality of coronary heart disease (CHD), the leading cause of death worldwide, remains significant, paving the way for the development of novel cardioprotective therapies. Two potential strategies for protecting the heart are ischemic preconditioning (IPC) and ischemic postconditioning (IPost), which describe the cardioprotection obtained from applying transient episodes of myocardial ischemia and reperfusion either before or after the index ischemic event, respectively. Much progress has been made in elucidating the signal transduction pathway, which underlies their protection. Intriguingly, it is the first few minutes of myocardial reperfusion following the index ischemic period, which appear crucial to both IPC- and IPost-induced protection. Emerging evidence suggests that they appear to recruit a similar signaling pathway at time of myocardial reperfusion, comprising cell-surface receptors, a diverse array of protein kinase cascades including the reperfusion injury salvage kinase (RISK) pathway, redox signaling, and the mitochondrial permeability transition pore (mPTP). The common signaling pathway that appears to unite these 2 cardioprotective strategies at the time of reperfusion is the subject of this review. Importantly, this common cardioprotective pathway can be activated at the time of myocardial reperfusion in the clinical setting using pharmacological agents to target the essential signaling components, which should lead to the development of novel treatment strategies for improving the clinical outcomes of patients with CHD.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London, WC1E 6HX, United Kingdom
| | | |
Collapse
|
12
|
Dhalla NS, Saini HK, Tappia PS, Sethi R, Mengi SA, Gupta SK. Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J Cardiovasc Med (Hagerstown) 2007; 8:238-50. [PMID: 17413299 DOI: 10.2459/01.jcm.0000263489.13479.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several studies have revealed varying degrees of changes in sarcoplasmic reticular and myofibrillar activities, protein content, gene expression and intracellular Ca-handling during cardiac dysfunction due to ischemia-reperfusion (I/R); however, relatively little is known about the sarcolemmal and mitochondrial alterations, as well as their mechanisms in the I/R hearts. Because I/R is associated with oxidative stress and intracellular Ca-overload, it has been indicated that changes in subcellular activities, protein content and gene expression due to I/R are related to both oxidative stress and Ca-overload. Intracellular Ca-overload appears to induce changes in subcellular activities, protein contents and gene expression (subcellular remodeling) by activation of proteases and phospholipases, as well as by affecting the genetic apparatus, whereas oxidative stress is considered to cause oxidation of functional groups of different subcellular proteins in addition to modifying the genetic machinery. Ischemic preconditioning, which is known to depress the development of both intracellular Ca-overload and oxidative stress due to I/R, was observed to attenuate the I/R-induced subcellular remodeling and improve cardiac performance. It is suggested that a combination therapy with antioxidants and interventions, which reduce the development of intracellular Ca-overload, may improve cardiac function by preventing or attenuating the occurrence of subcellular remodeling due to ischemic heart disease. It is proposed that defects in the activities of subcellular organelles may serve as underlying mechanisms for I/R-induced cardiac dysfunction under acute conditions, whereas subcellular remodeling due to alterations in gene expression may explain the impaired cardiac performance under chronic conditions of I/R.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, and Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
Sahlin K, Nielsen JS, Mogensen M, Tonkonogi M. Repeated static contractions increase mitochondrial vulnerability toward oxidative stress in human skeletal muscle. J Appl Physiol (1985) 2006; 101:833-9. [PMID: 16728514 DOI: 10.1152/japplphysiol.01007.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repeated static contractions (RSC) induce large fluctuations in tissue oxygen tension and increase the generation of reactive oxygen species (ROS). This study investigated the effect of RSC on muscle contractility, mitochondrial respiratory function, and in vitro sarcoplasmic reticulum (SR) Ca(2+) kinetics in human muscle. Ten male subjects performed five bouts of static knee extension with 10-min rest in between. Each bout of RSC (target torque 66% of maximal voluntary contraction torque) was maintained to fatigue. Muscle biopsies were taken preexercise and 0.3 and 24 h postexercise from vastus lateralis. Mitochondria were isolated and respiratory function measured after incubation with H(2)O(2) (HPX) or control medium (Con). Mitochondrial function was not affected by RSC during Con. However, RSC exacerbated mitochondrial dysfunction during HPX, resulting in decreased respiratory control index, decreased mitochondrial efficiency (phosphorylated ADP-to-oxygen consumed ratio), and increased noncoupled respiration (HPX/Con post- vs. preexercise). SR Ca(2+) uptake rate was lower 0.3 vs. 24 h postexercise, whereas SR Ca(2+) release rate was unchanged. RSC resulted in long-lasting changes in muscle contractility, including reduced maximal torque, low-frequency fatigue, and faster torque relaxation. It is concluded that RSC increases mitochondrial vulnerability toward ROS, reduces SR Ca(2+) uptake rate, and causes low-frequency fatigue. Although conclusive evidence is lacking, we suggest that these changes are related to increased formation of ROS during RSC.
Collapse
Affiliation(s)
- Kent Sahlin
- Institute of Sport Sciences and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
14
|
Lundberg KC, Szweda LI. Preconditioning prevents loss in mitochondrial function and release of cytochrome c during prolonged cardiac ischemia/reperfusion. Arch Biochem Biophys 2006; 453:130-4. [PMID: 16546113 DOI: 10.1016/j.abb.2006.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 02/12/2006] [Indexed: 11/18/2022]
Abstract
Loss in mitochondrial function and induction of mitochondrial-mediated apoptosis occur as a result of cardiac ischemia/reperfusion. Brief and repeated cycles of ischemia/reperfusion, termed ischemic preconditioning, prevent or minimize contractile dysfunction and apoptosis associated with prolonged episodes of cardiac ischemia and reperfusion. The effects of preconditioning on various indices of ischemia/reperfusion-induced alterations in mitochondrial function and structure were therefore explored. Utilizing an in vivo rat model data is provided indicating that preconditioning completely prevents cardiac ischemia/reperfusion-induced: (1) loss in the activity of the redox sensitive Krebs cycle enzyme alpha-ketoglutarate dehydrogenase; (2) declines in NADH-linked ADP-dependent mitochondrial respiration; (3) insertion of the pro-apoptotic Bcl-2 protein Bax into the mitochondrial membrane; and (4) release of cytochrome c into the cytosol. The results of the current study indicate that preconditioning prevents specific alterations in mitochondrial structure and function that are known to impact cellular viability and provide insight into the collective benefits of preconditioning.
Collapse
Affiliation(s)
- Kathleen C Lundberg
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
15
|
Valtchanova-Matchouganska A, Gondwe M, Nadar A. The role of C-reactive protein in ischemia/reperfusion injury and preconditioning in a rat model of myocardial infarction. Life Sci 2004; 75:901-10. [PMID: 15193950 DOI: 10.1016/j.lfs.2003.12.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 12/18/2003] [Indexed: 10/26/2022]
Abstract
For the first time the involvement of C-Reactive protein (CRP) in early (acute) and delayed ischemic (IPC) and pharmacological (chemical) preconditioning (CPC) in an in vivo model of rat myocardial infarction was presented. Acute IPC was produced by three 5 minute occlusion (ischemia) periods interspersed with 5 minute reperfusion, followed by 30 minute occlusion of the left coronary artery and 2 hour reperfusion injury. Acute CPC was produced by a k-opioid receptor agonist U50488H (5 mg/kg) applied i.v. 15 minutes before 30 minute ischemia/ 2 hour reperfusion. Delayed preconditioning was produced by 30 minute ischemia/ 2 hour reperfusion, induced 24 hour after either ischemic or pharmacological preconditioning. The myocardial ischemia/reperfusion injury was evaluated on the basis of total and cardiac creatine kinase isoenzyme activity, functional recovery of the heart (ECG), infarct size (% IS/RA) and mortality at the end of the experiments. The results obtained showed that: k-opioid receptor agonist U50488H mimics both the acute and delayed IPC in the above experimental protocol; Both acute IPC and most probably CPC act by opening of K(ATP) channels (the effects were blocked by nonspecific ATP-sensitive K channel blocker glybenclamide), and via activation of protein kinase C (a selective protein kinase C inhibitor chelerythrine blocked the efects); C-reactive protein (CRP) was significantly elevated by 54% in non-preconditioned acute ischemia/reperfusion injury. The elevation was more pronounced (82% increase) 24 hour after non-preconditioned ischemia/reperfusion injury. It reflected very well the increase in cardiac isoenzymes, infarct size and mortality of the rats, and can be used as a marker of the severity of myocardial injury in this model; The increase of CRP was prevented by both IPC and CPC in early, and especially in late preconditioning. This confirms the involvement of CRP as a marker in cardiac ischemic/reperfusion injury. It was concluded that in addition to the established involvement of adenosine, bradykinin, opioid and other receptors, a suppression of myocardial CRP/complement production might be involved in the biological mechanism of preconditioning. This could be a promising perspective in clinical interventions against ischemia/reperfusion injuries of the heart.
Collapse
|
16
|
Khaliulin I, Schwalb H, Wang P, Houminer E, Grinberg L, Katzeff H, Borman JB, Powell SR. Preconditioning improves postischemic mitochondrial function and diminishes oxidation of mitochondrial proteins. Free Radic Biol Med 2004; 37:1-9. [PMID: 15183190 DOI: 10.1016/j.freeradbiomed.2004.04.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 03/17/2004] [Accepted: 04/16/2004] [Indexed: 11/20/2022]
Abstract
This study examines the hypothesis that ischemic or pharmacologic preconditioning improves postischemic mitochondrial function by attenuating oxidation of mitochondrial proteins. Isolated rat hearts were perfused for 38 min preischemia, followed by 25 min global ischemia and then 60 min reperfusion. Hearts were preconditioned by two episodes of 3 min global ischemia, followed by 2 min of reflow (IP), or by perfusion with 50 micromol/l nicorandil (Nic) for 10 min, followed by 10 min washout. IP and Nic significantly (p <.05) improved postischemic function, which was abolished by bracketing the protocols with 200 micromol/l 5-hydroxydecoanate (5HD) or 300 micromol/l alpha-mercaptopropionylglycine (MPG). After isolation of cardiac mitochondria, the respiratory control index (RCI) was calculated from State 3 and State 4 respiration. Both IP and Nic significantly (p <.05) improved postischemic RCI, which was depressed 71% from preischemic values in control hearts. The protective effects of IP and Nic were partially abolished by bracketing with 5HD or MPG. Furthermore, mitochondria from ischemic hearts had significantly (p <.05) less ability to resist swelling on Ca2+ loading, which was improved by both IP and Nic. By use of an immunoblot technique, carbonyl content of multiple bands of mitochondrial proteins was observed to be elevated after 25 min ischemia, and still elevated by the end of 60 min reperfusion. Both IP and Nic attenuated the increased protein oxidation observed at the end of ischemia. The protective effect of IP was almost completely abolished by MPG and partially by 5HD, which also partially abolished the protective effect of Nic. These studies support the conclusion that one mechanism for enhanced postischemic function in the preconditioned heart is improved mitochondrial function as a result of decreased oxidation of mitochondrial proteins.
Collapse
Affiliation(s)
- Igor Khaliulin
- The Joseph Lunenfeld Cardiac Surgery Research Center, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Monteiro P, Duarte AI, Moreno A, Gonçalves LM, Providência LA. Carvedilol improves energy production during acute global myocardial ischaemia. Eur J Pharmacol 2003; 482:245-53. [PMID: 14660029 DOI: 10.1016/j.ejphar.2003.09.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac mitochondria may become dysfunctional during ischaemia, thus compromising cardiomyocyte function. Carvedilol is an alpha(1)/beta-adrenoceptor antagonist with antioxidant, neuroprotective, cardioprotective and vascularprotective properties, and is used to treat hypertension, myocardial ischaemia and congestive heart failure. However, its impact on mitochondrial function during acute prolonged ischaemia is unknown. We aimed to study the effect of carvedilol on cardiac mitochondrial function during acute ischaemia, using Wistar rat hearts perfused with a Langendorff system, and then submitted to ischaemia in the presence and absence of carvedilol. We determined the electrical potential of the mitochondrial membrane, O(2) consumption by the respiratory chain, energy charge and the activity of the mitochondrial respiratory chain complexes. In our model, carvedilol had a preferential action on phosphorylation, increasing the mitochondrial energy charge (0.76+/-0.03 vs. 0.65+/-0.01 arbitrary units; P<0.05) and decreasing the phosphorylation lag phase (28.64+/-4.23 vs. 62.4+/-11.63 s; P<0.05) during ischaemia. The larger amount of energy available allowed the preservation of the electrical potential (201.2+/-2.45 vs. 186.66+/-3.36 mV;P<0.05), thus improving mitochondrial function during acute prolonged ischaemia.
Collapse
Affiliation(s)
- Pedro Monteiro
- Basic Research Unit in Cardiology, Cardiology Department, Coimbra University Hospital, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
18
|
Burda J, Hrehorovská M, Bonilla LG, Danielisová V, Cízková D, Burda R, Némethová M, Fando JL, Salinas M. Role of protein synthesis in the ischemic tolerance acquisition induced by transient forebrain ischemia in the rat. Neurochem Res 2003; 28:1213-9. [PMID: 12834261 DOI: 10.1023/a:1024232513106] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although ischemic preconditioning of the heart and brain is a well-documented neuroprotective phenomenon, the mechanism underlying the increased resistance to severe ischemia induced by a preceding mild ischemic exposure remains unclear. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated translation inhibition in the neocortex and hippocampus of the rat. We studied the effect of the duration on the sublethal ischemic episode (3, 4, 5 or 8 min), as well as the amount of time elapsed between sublethal and lethal ischemia on the cell death 7 days after the last ischemic episode. In addition, the rate of protein synthesis in vitro and expression of the 72-kD heat shock protein (hsp) were determined under the different experimental conditions. Our results suggest that two different mechanisms are essential for the acquisition of ischemic tolerance, at least in the CA1 sector of hippocampus. The first mechanism implies a highly significant reduction in translation inhibition after lethal ischemia, especially at an early time of reperfusion, in both vulnerable and nonvulnerable neurons. For the acquisition of full tolerance, a second mechanism, highly dependent on the time interval between preconditioning (sublethal ischemia) and lethal ischemia, is absolutely necessary; this second mechanism involves synthesis of protective proteins, which prevent the delayed death of vulnerable neurons.
Collapse
Affiliation(s)
- Jozef Burda
- Department of Neurochemistry, Institute of Neurobiology, Slovak Academy of Sciences, Soltésovej 4, 040 01 Kosice, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
da Silva MM, Sartori A, Belisle E, Kowaltowski AJ. Ischemic preconditioning inhibits mitochondrial respiration, increases H2O2 release, and enhances K+ transport. Am J Physiol Heart Circ Physiol 2003; 285:H154-62. [PMID: 12623788 DOI: 10.1152/ajpheart.00955.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic preconditioning, or the protective effect of short ischemic episodes on a longer, potentially injurious, ischemic period, is prevented by antagonists of mitochondrial ATP-sensitive K+ channels (mitoKATP) and involves changes in mitochondrial energy metabolism and reactive oxygen release after ischemia. However, the effects of ischemic preconditioning itself on mitochondria are still poorly understood. We determined the effects of ischemic preconditioning on isolated heart mitochondria and found that two brief (5 min) ischemic episodes are sufficient to induce a small but significant decrease ( approximately 25%) in mitochondrial NADH-supported respiration. Preconditioning also increased mitochondrial H2O2 release, an effect related to respiratory inhibition, because it is not observed in the presence of succinate plus rotenone and can be mimicked by chemically inhibiting complex I in the presence of NADH-linked substrates. In addition, preconditioned mitochondria presented more substantial ATP-sensitive K+ transport, indicative of higher mitoKATP activity. Thus we directly demonstrate that preconditioning leads to mitochondrial respiratory inhibition in the presence of NADH-linked substrates, increased reactive oxygen release, and activation of mitoKATP.
Collapse
Affiliation(s)
- Mirian M da Silva
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo SP 05508-900, Brazil
| | | | | | | |
Collapse
|