1
|
An unknown segment number in centipedes: a new species of Scolopocryptops (Chilopoda: Scolopendromorpha) from Trinidad with 25 leg-bearing segments. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Church SH, de Medeiros BAS, Donoughe S, Márquez Reyes NL, Extavour CG. Repeated loss of variation in insect ovary morphology highlights the role of development in life-history evolution. Proc Biol Sci 2021; 288:20210150. [PMID: 33947234 PMCID: PMC8097220 DOI: 10.1098/rspb.2021.0150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/06/2021] [Indexed: 01/18/2023] Open
Abstract
The number of offspring an organism can produce is a key component of its evolutionary fitness and life history. Here we perform a test of the hypothesized trade-off between the number and size of offspring using thousands of descriptions of the number of egg-producing compartments in the insect ovary (ovarioles), a common proxy for potential offspring number in insects. We find evidence of a negative relationship between egg size and ovariole number when accounting for adult body size. However, in contrast to prior claims, we note that this relationship is not generalizable across all insect clades, and we highlight several factors that may have contributed to this size-number trade-off being stated as a general rule in previous studies. We reconstruct the evolution of the arrangement of cells that contribute nutrients and patterning information during oogenesis (nurse cells), and show that the diversification of ovariole number and egg size have both been largely independent of their presence or position within the ovariole. Instead, we show that ovariole number evolution has been shaped by a series of transitions between variable and invariant states, with multiple independent lineages evolving to have almost no variation in ovariole number. We highlight the implications of these invariant lineages on our understanding of the specification of ovariole number during development, as well as the importance of considering developmental processes in theories of life-history evolution.
Collapse
Affiliation(s)
- Samuel H. Church
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bruno A. S. de Medeiros
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Seth Donoughe
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Galis F, Metz JA, van Alphen JJ. Development and Evolutionary Constraints in Animals. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062339] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the evolutionary importance of developmental mechanisms in constraining evolutionary changes in animals—in other words, developmental constraints. We focus on hard constraints that can act on macroevolutionary timescales. In particular, we discuss the causes and evolutionary consequences of the ancient metazoan constraint that differentiated cells cannot divide and constraints against changes of phylotypic stages in vertebrates and other higher taxa. We conclude that in all cases these constraints are caused by complex and highly controlled global interactivity of development, the disturbance of which has grave consequences. Mutations that affect such global interactivity almost unavoidably have many deleterious pleiotropic effects, which will be strongly selected against and will lead to long-term evolutionary stasis. The discussed developmental constraints have pervasive consequences for evolution and critically restrict regeneration capacity and body plan evolution.
Collapse
Affiliation(s)
- Frietson Galis
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Johan A.J. Metz
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
- Mathematical Institute, University of Leiden; 2333 CA Leiden, The Netherlands
| | - Jacques J.M. van Alphen
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
4
|
Cridge AG, Dearden PK, Brownfield LR. Convergent occurrence of the developmental hourglass in plant and animal embryogenesis? ANNALS OF BOTANY 2016; 117:833-843. [PMID: 27013176 PMCID: PMC4845807 DOI: 10.1093/aob/mcw024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The remarkable similarity of animal embryos at particular stages of development led to the proposal of a developmental hourglass. In this model, early events in development are less conserved across species but lead to a highly conserved 'phylotypic period'. Beyond this stage, the model suggests that development once again becomes less conserved, leading to the diversity of forms. Recent comparative studies of gene expression in animal groups have provided strong support for the hourglass model. How and why might such an hourglass pattern be generated? More importantly, how might early acting events in development evolve while still maintaining a later conserved stage? SCOPE The discovery that an hourglass pattern may also exist in the embryogenesis of plants provides comparative data that may help us explain this phenomenon. Whether the developmental hourglass occurs in plants, and what this means for our understanding of embryogenesis in plants and animals is discussed. Models by which conserved early-acting genes might change their functional role in the evolution of gene networks, how networks buffer these changes, and how that might constrain, or confer diversity, of the body plan are also discused. CONCLUSIONS Evidence of a morphological and molecular hourglass in plant and animal embryogenesis suggests convergent evolution. This convergence is likely due to developmental constraints imposed upon embryogenesis by the need to produce a viable embryo with an established body plan, controlled by the architecture of the underlying gene regulatory networks. As the body plan is largely laid down during the middle phases of embryo development in plants and animals, then it is perhaps not surprising this stage represents the narrow waist of the hourglass where the gene regulatory networks are the oldest and most robust and integrated, limiting species diversity and constraining morphological space.
Collapse
Affiliation(s)
- Andrew G Cridge
- Laboratory for Evolution and Development, Genetics Otago and Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand and
| | - Peter K Dearden
- Laboratory for Evolution and Development, Genetics Otago and Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand and
| | | |
Collapse
|
5
|
Lorenzi T, Chisholm RH, Desvillettes L, Hughes BD. Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments. J Theor Biol 2015; 386:166-76. [PMID: 26375370 DOI: 10.1016/j.jtbi.2015.08.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/21/2015] [Accepted: 08/29/2015] [Indexed: 01/06/2023]
Abstract
An enduring puzzle in evolutionary biology is to understand how individuals and populations adapt to fluctuating environments. Here we present an integro-differential model of adaptive dynamics in a phenotype-structured population whose fitness landscape evolves in time due to periodic environmental oscillations. The analytical tractability of our model allows for a systematic investigation of the relative contributions of heritable variations in gene expression, environmental changes and natural selection as drivers of phenotypic adaptation. We show that environmental fluctuations can induce the population to enter an unstable and fluctuation-driven epigenetic state. We demonstrate that this can trigger the emergence of oscillations in the size of the population, and we establish a full characterisation of such oscillations. Moreover, the results of our analyses provide a formal basis for the claim that higher rates of epimutations can bring about higher levels of intrapopulation heterogeneity, whilst intense selection pressures can deplete variation in the phenotypic pool of asexual populations. Finally, our work illustrates how the dynamics of the population size is led by a strong synergism between the rate of phenotypic variation and the frequency of environmental oscillations, and identifies possible ecological conditions that promote the maximisation of the population size in fluctuating environments.
Collapse
Affiliation(s)
- Tommaso Lorenzi
- Centre de Mathématiques et de Leurs Applications, ENS Cachan, CNRS, Cachan 94230 Cedex, France.
| | - Rebecca H Chisholm
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Laurent Desvillettes
- Centre de Mathématiques et de Leurs Applications, ENS Cachan, CNRS, Cachan 94230 Cedex, France
| | - Barry D Hughes
- School of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
6
|
Haywood S. Mechanisms of heterochronic change and stasis for clutch size in swifts (Apodiformes). Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sacha Haywood
- Department of Zoology; Edward Grey Institute of Field Ornithology; South Parks Road Oxford OX1 3PS UK
| |
Collapse
|
7
|
Kitazawa MS, Fujimoto K. A developmental basis for stochasticity in floral organ numbers. FRONTIERS IN PLANT SCIENCE 2014; 5:545. [PMID: 25404932 PMCID: PMC4217355 DOI: 10.3389/fpls.2014.00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/24/2014] [Indexed: 05/04/2023]
Abstract
Stochasticity ubiquitously inevitably appears at all levels from molecular traits to multicellular, morphological traits. Intrinsic stochasticity in biochemical reactions underlies the typical intercellular distributions of chemical concentrations, e.g., morphogen gradients, which can give rise to stochastic morphogenesis. While the universal statistics and mechanisms underlying the stochasticity at the biochemical level have been widely analyzed, those at the morphological level have not. Such morphological stochasticity is found in foral organ numbers. Although the floral organ number is a hallmark of floral species, it can distribute stochastically even within an individual plant. The probability distribution of the floral organ number within a population is usually asymmetric, i.e., it is more likely to increase rather than decrease from the modal value, or vice versa. We combined field observations, statistical analysis, and mathematical modeling to study the developmental basis of the variation in floral organ numbers among 50 species mainly from Ranunculaceae and several other families from core eudicots. We compared six hypothetical mechanisms and found that a modified error function reproduced much of the asymmetric variation found in eudicot floral organ numbers. The error function is derived from mathematical modeling of floral organ positioning, and its parameters represent measurable distances in the floral bud morphologies. The model predicts two developmental sources of the organ-number distributions: stochastic shifts in the expression boundaries of homeotic genes and a semi-concentric (whorled-type) organ arrangement. Other models species- or organ-specifically reproduced different types of distributions that reflect different developmental processes. The organ-number variation could be an indicator of stochasticity in organ fate determination and organ positioning.
Collapse
Affiliation(s)
- Miho S. Kitazawa
- Laboratory of Theoretical Biology, Department of Biological Sciences, Osaka UniversityToyonaka, Osaka, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Osaka UniversityToyonaka, Osaka, Japan
| | - Koichi Fujimoto
- Laboratory of Theoretical Biology, Department of Biological Sciences, Osaka UniversityToyonaka, Osaka, Japan
- *Correspondence: Koichi Fujimoto, Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan e-mail:
| |
Collapse
|
8
|
Simaiakis SM, Djursvoll P, Bergersen R. Influence of Climate on Segment Number inGeophilus flavus, a Centipede Species Inhabiting Sognefjord in Western Norway. ANN ZOOL FENN 2013. [DOI: 10.5735/085.050.0507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Hughes M, Gerber S, Wills MA. Clades reach highest morphological disparity early in their evolution. Proc Natl Acad Sci U S A 2013; 110:13875-9. [PMID: 23884651 PMCID: PMC3752257 DOI: 10.1073/pnas.1302642110] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are few putative macroevolutionary trends or rules that withstand scrutiny. Here, we test and verify the purported tendency for animal clades to reach their maximum morphological variety relatively early in their evolutionary histories (early high disparity). We present a meta-analysis of 98 metazoan clades radiating throughout the Phanerozoic. The disparity profiles of groups through time are summarized in terms of their center of gravity (CG), with values above and below 0.50 indicating top- and bottom-heaviness, respectively. Clades that terminate at one of the "big five" mass extinction events tend to have truncated trajectories, with a significantly top-heavy CG distribution overall. The remaining 63 clades show the opposite tendency, with a significantly bottom-heavy mean CG (relatively early high disparity). Resampling tests are used to identify groups with a CG significantly above or below 0.50; clades not terminating at a mass extinction are three times more likely to be significantly bottom-heavy than top-heavy. Overall, there is no clear temporal trend in disparity profile shapes from the Cambrian to the Recent, and early high disparity is the predominant pattern throughout the Phanerozoic. Our results do not allow us to distinguish between ecological and developmental explanations for this phenomenon. To the extent that ecology has a role, however, the paucity of bottom-heavy clades radiating in the immediate wake of mass extinctions suggests that early high disparity more probably results from the evolution of key apomorphies at the base of clades rather than from physical drivers or catastrophic ecospace clearing.
Collapse
Affiliation(s)
- Martin Hughes
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Sylvain Gerber
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Matthew Albion Wills
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
10
|
Perez KE, Hiatt A, Davis GK, Trujillo C, French DP, Terry M, Price RM. The EvoDevoCI: a concept inventory for gauging students' understanding of evolutionary developmental biology. CBE LIFE SCIENCES EDUCATION 2013; 12:665-75. [PMID: 24297293 PMCID: PMC3846517 DOI: 10.1187/cbe.13-04-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The American Association for the Advancement of Science 2011 report Vision and Change in Undergraduate Biology Education encourages the teaching of developmental biology as an important part of teaching evolution. Recently, however, we found that biology majors often lack the developmental knowledge needed to understand evolutionary developmental biology, or "evo-devo." To assist in efforts to improve evo-devo instruction among undergraduate biology majors, we designed a concept inventory (CI) for evolutionary developmental biology, the EvoDevoCI. The CI measures student understanding of six core evo-devo concepts using four scenarios and 11 multiple-choice items, all inspired by authentic scientific examples. Distracters were designed to represent the common conceptual difficulties students have with each evo-devo concept. The tool was validated by experts and administered at four institutions to 1191 students during preliminary (n = 652) and final (n = 539) field trials. We used student responses to evaluate the readability, difficulty, discriminability, validity, and reliability of the EvoDevoCI, which included items ranging in difficulty from 0.22-0.55 and in discriminability from 0.19-0.38. Such measures suggest the EvoDevoCI is an effective tool for assessing student understanding of evo-devo concepts and the prevalence of associated common conceptual difficulties among both novice and advanced undergraduate biology majors.
Collapse
Affiliation(s)
- Kathryn E. Perez
- *Department of Biology, University of Wisconsin La Crosse, La Crosse, WI 54601
- Address correspondence to: Kathryn E. Perez ()
| | - Anna Hiatt
- Department of Zoology, Oklahoma State University, Stillwater, OK 74074
| | | | - Caleb Trujillo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Donald P. French
- Department of Zoology, Oklahoma State University, Stillwater, OK 74074
| | | | - Rebecca M. Price
- School of Interdisciplinary Arts and Sciences, University of Washington, Bothell, Bothell, WA 98011
| |
Collapse
|
11
|
HAYDEN LUKE, PARKES GEORGE, ARTHUR WALLACE. Segment number, body length, and latitude in geophilomorph centipedes: a ‘converse-Bergmann’ pattern. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01914.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Expression of pair rule gene orthologs in the blastoderm of a myriapod: evidence for pair rule-like mechanisms? BMC DEVELOPMENTAL BIOLOGY 2012; 12:15. [PMID: 22595029 PMCID: PMC3477074 DOI: 10.1186/1471-213x-12-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 04/11/2012] [Indexed: 01/14/2023]
Abstract
Background A hallmark of Drosophila segmentation is the stepwise subdivision of the body into smaller and smaller units, and finally into the segments. This is achieved by the function of the well-understood segmentation gene cascade. The first molecular sign of a segmented body appears with the action of the pair rule genes, which are expressed as transversal stripes in alternating segments. Drosophila development, however, is derived, and in most other arthropods only the anterior body is patterned (almost) simultaneously from a pre-existing field of cells; posterior segments are added sequentially from a posterior segment addition zone. A long-standing question is to what extent segmentation mechanisms known from Drosophila may be conserved in short-germ arthropods. Despite the derived developmental modes, it appears more likely that conserved mechanisms can be found in anterior patterning. Results Expression analysis of pair rule gene orthologs in the blastoderm of the pill millipede Glomeris marginata (Myriapoda: Diplopoda) suggests that these genes are generally involved in segmenting the anterior embryo. We find that the Glomeris pairberry-1 ( pby-1) gene is expressed in a pair rule pattern that is also found in insects and a chelicerate, the mite Tetraynchus urticae. Other Glomeris pair rule gene orthologs are expressed in double segment wide domains in the blastoderm, which at subsequent stages split into two stripes in adjacent segments. Conclusions The expression patterns of the millipede pair rule gene orthologs resemble pair rule patterning in Drosophila and other insects, and thus represent evidence for the presence of an ancestral pair rule-like mechanism in myriapods. We discuss the possibilities that blastoderm patterning may be conserved in long-germ and short-germ arthropods, and that a posterior double segmental mechanism may be present in short-germ arthropods.
Collapse
|
13
|
Abstract
Convergent evolution of similar phenotypic features in similar environmental contexts has long been taken as evidence of adaptation. Nonetheless, recent conceptual and empirical developments in many fields have led to a proliferation of ideas about the relationship between convergence and adaptation. Despite criticism from some systematically minded biologists, I reaffirm that convergence in taxa occupying similar selective environments often is the result of natural selection. However, convergent evolution of a trait in a particular environment can occur for reasons other than selection on that trait in that environment, and species can respond to similar selective pressures by evolving nonconvergent adaptations. For these reasons, studies of convergence should be coupled with other methods-such as direct measurements of selection or investigations of the functional correlates of trait evolution-to test hypotheses of adaptation. The independent acquisition of similar phenotypes by the same genetic or developmental pathway has been suggested as evidence of constraints on adaptation, a view widely repeated as genomic studies have documented phenotypic convergence resulting from change in the same genes, sometimes even by the same mutation. Contrary to some claims, convergence by changes in the same genes is not necessarily evidence of constraint, but rather suggests hypotheses that can test the relative roles of constraint and selection in directing phenotypic evolution.
Collapse
Affiliation(s)
- Jonathan B Losos
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
14
|
Hunt G, Yasuhara M. A fossil record of developmental events: variation and evolution in epidermal cell divisions in ostracodes. Evol Dev 2010; 12:635-46. [DOI: 10.1111/j.1525-142x.2010.00448.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
SIMAIAKIS STYLIANOSM, IORIO ETIENNE, DJURSVOLL PER, MEIDELL BJARNEA, ANDERSSON GÖRAN, KIRKENDALL LAWRENCER. A study of the diversity and geographical variation in numbers of leg-bearing segments in centipedes (Chilopoda: Geophilomorpha) in north-western Europe. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01467.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Vedel V, Apostolou Z, Arthur W, Akam M, Brena C. An early temperature-sensitive period for the plasticity of segment number in the centipede Strigamia maritima. Evol Dev 2010; 12:347-52. [DOI: 10.1111/j.1525-142x.2010.00421.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Leśniewska M, Bonato L, Minelli A, Fusco G. Trunk anomalies in the centipede Stigmatogaster subterranea provide insight into late-embryonic segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2009; 38:417-426. [PMID: 19477297 DOI: 10.1016/j.asd.2009.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 05/11/2009] [Accepted: 05/11/2009] [Indexed: 05/27/2023]
Abstract
We describe and analyze naturally occurring anomalies in the segmental structures of the trunk in an isolated population of the geophilomorph centipede Stigmatogaster subterranea. Recorded anomalies include mispaired tergites, shrunk segments, variously deformed sclerites, bifurcated trunk, and defects of spiracles and sternal pore areas. One specimen has a perfect segmentally patterned trunk, but with an even number of leg-bearing segments, representing the first record of such a phenotype in adult centipedes. We interpret these anomalies as the effects of perturbation of specific morphogenetic processes in trunk segmentation, occurring at different embryonic stages. The variety of segmental anomalies found in this population provides insights into the developmental process of segmentation and its evolution in geophilomorph centipedes. Variation in dorsal mispairing anomalies demonstrates that segments, as traditionally defined in arthropod morphology, are not the effective developmental units throughout embryogenesis.
Collapse
|
18
|
Psujek S, Beer RD. Developmental bias in evolution: evolutionary accessibility of phenotypes in a model evo-devo system. Evol Dev 2008; 10:375-90. [DOI: 10.1111/j.1525-142x.2008.00245.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Penet L, Laurin M, Gouyon PH, Nadot S. Constraints and selection: insights from microsporogenesis in Asparagales. Evol Dev 2007; 9:460-71. [PMID: 17845517 DOI: 10.1111/j.1525-142x.2007.00183.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Developmental constraints have been proposed to interfere with natural selection in limiting the available set of potential adaptations. Whereas this concept has long been debated on theoretical grounds, it has been investigated empirically only in a few studies. In this article, we evaluate the importance of developmental constraints during microsporogenesis (male meiosis in plants), with an emphasis on phylogenetic patterns in Asparagales. Different developmental constraints were tested by character reshuffling or by simulated distributions. Among the different characteristics of microsporogenesis, only cell wall formation appeared as constrained. We show that constraints may also result from biases in the correlated occurrence of developmental steps (e.g., lack of successive cytokinesis when wall formation is centripetal). We document such biases and their potential outcomes, notably the establishment of intermediate stages, which allow development to bypass such constraints. These insights are discussed with regard to potential selection on pollen morphology.
Collapse
Affiliation(s)
- Laurent Penet
- Laboratoire Ecologie, Systématique et Evolution, Batiment 360, Université Paris-Sud, 91405 Orsay Cédex, France.
| | | | | | | |
Collapse
|
20
|
SIMAIAKIS STYLIANOS, MYLONAS MOYSIS. Intraspecific variation in segment number in Pachymerium ferrugineum (C. L. Koch, 1835) (Chilopoda: Geophilomorpha) in the south Aegean Archipelago (north-east Mediterranean, Greece). Biol J Linn Soc Lond 2006. [DOI: 10.1111/j.1095-8312.2006.00635.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Abstract
When approaching the study of terminal growth and segmentation, comparative morphology provides an important guide to formulate questions. There are often problems in unambiguously identifying the axis along which we wish to study terminal (often, actually, subterminal) growth, especially when the trunk axis is posteriorly prolonged in an appendage (as with the tail of vertebrates), or when the polarity of the "external animal" is other than the polarity of the "internal animal," as in polypoid bilaterians. We cannot ignore that the rear end of the main body axis is possibly defined very early in development in some groups, for example, arthropods, whereas in others, vertebrates, for example, it is defined much later. We cannot think of segmentation as always corresponding to the sequential posterior addition of new units, thus ignoring the widespread occurrence of double segmentation. A more subtle problem is represented by the overlapping of different processes, all of them contributing to elongating the body, such as segmentation, cell proliferation, cell rearrangement, and cell growth. Within a segmented trunk, cell proliferation and differentiation may go on in parallel from as many growth points as there are groups of regularly spaced cells. The main consequence, however, is not so much to expedite elongation as to reduce the disparity of metabolic conditions, gene expression patterns and "relative age" of different body districts, otherwise possibly troublesome within the limited space of the embryo.
Collapse
Affiliation(s)
- Alessandro Minelli
- Department of Biology, University of Padova, via U. Bassi 58/B, I-35131 Padova, Italy.
| |
Collapse
|
22
|
Davis GK, D'Alessio JA, Patel NH. Pax3/7 genes reveal conservation and divergence in the arthropod segmentation hierarchy. Dev Biol 2005; 285:169-84. [PMID: 16083872 DOI: 10.1016/j.ydbio.2005.06.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 06/06/2005] [Accepted: 06/13/2005] [Indexed: 11/15/2022]
Abstract
Several features of Pax3/7 gene expression are shared among distantly related insects, including pair-rule, segment polarity, and neural patterns. Recent data from arachnids imply that roles in segmentation and neurogenesis are likely to be played by Pax3/7 genes in all arthropods. To further investigate Pax3/7 genes in non-insect arthropods, we isolated two monoclonal antibodies that recognize the products of Pax3/7 genes in a wide range of taxa, allowing us to quickly survey Pax3/7 expression in all four major arthropod groups. Epitope analysis reveals that these antibodies react to a small subset of Paired-class homeodomains, which includes the products of all known Pax3/7 genes. Using these antibodies, we find that Pax3/7 genes in crustaceans are expressed in an early broad and, in one case, dynamic domain followed by segmental stripes, while myriapods and chelicerates exhibit segmental stripes that form early in the posterior-most part of the germ band. This suggests that Pax3/7 genes acquired their role in segmentation deep within, or perhaps prior to, the arthropod lineage. However, we do not detect evidence of pair-rule patterning in either myriapods or chelicerates, suggesting that the early pair-rule expression pattern of Pax3/7 genes in insects may have been acquired within the crustacean-hexapod lineage.
Collapse
Affiliation(s)
- Gregory K Davis
- Committee on Developmental Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
23
|
Abstract
Most of our knowledge about the mechanisms of segmentation in arthropods comes from work on Drosophila melanogaster. In recent years it has become clear that this mechanism is far from universal, and different arthropod groups have distinct modes of segmentation that operate through divergent genetic mechanisms. We review recent data from a range of arthropods, identifying which features of the D. melanogaster segmentation cascade are present in the different groups, and discuss the evolutionary implications of their conserved and divergent aspects. A model is emerging, although slowly, for the way that arthropod segmentation mechanisms have evolved.
Collapse
Affiliation(s)
- Andrew D Peel
- University Museum of Zoology, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
| | | | | |
Collapse
|
24
|
Sanetra M, Begemann G, Becker MB, Meyer A. Conservation and co-option in developmental programmes: the importance of homology relationships. Front Zool 2005; 2:15. [PMID: 16216118 PMCID: PMC1282587 DOI: 10.1186/1742-9994-2-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 10/10/2005] [Indexed: 12/01/2022] Open
Abstract
One of the surprising insights gained from research in evolutionary developmental biology (evo-devo) is that increasing diversity in body plans and morphology in organisms across animal phyla are not reflected in similarly dramatic changes at the level of gene composition of their genomes. For instance, simplicity at the tissue level of organization often contrasts with a high degree of genetic complexity. Also intriguing is the observation that the coding regions of several genes of invertebrates show high sequence similarity to those in humans. This lack of change (conservation) indicates that evolutionary novelties may arise more frequently through combinatorial processes, such as changes in gene regulation and the recruitment of novel genes into existing regulatory gene networks (co-option), and less often through adaptive evolutionary processes in the coding portions of a gene. As a consequence, it is of great interest to examine whether the widespread conservation of the genetic machinery implies the same developmental function in a last common ancestor, or whether homologous genes acquired new developmental roles in structures of independent phylogenetic origin. To distinguish between these two possibilities one must refer to current concepts of phylogeny reconstruction and carefully investigate homology relationships. Particularly problematic in terms of homology decisions is the use of gene expression patterns of a given structure. In the future, research on more organisms other than the typical model systems will be required since these can provide insights that are not easily obtained from comparisons among only a few distantly related model species.
Collapse
Affiliation(s)
- Matthias Sanetra
- Lehrstuhl für Zoologie und Evolutionsbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Gerrit Begemann
- Lehrstuhl für Zoologie und Evolutionsbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - May-Britt Becker
- Lehrstuhl für Zoologie und Evolutionsbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
25
|
Arthur W, Chipman AD. The centipedeStrigamia maritima: what it can tell us about the development and evolution of segmentation. Bioessays 2005; 27:653-60. [PMID: 15892117 DOI: 10.1002/bies.20234] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the most fundamental features of the body plan of arthropods is its segmental design. There is considerable variation in segment number among arthropod groups (about 20-fold); yet, paradoxically, the vast majority of arthropod species have a fixed number of segments, thus providing no variation in this character for natural selection to act upon. However, the 1000-species-strong centipede order Geophilomorpha provides an exception to the general rule of intraspecific invariance in segment number. Members of this group, and especially our favourite animal Strigamia maritima, may thus help us to understand the evolution of segment number in arthropods. Evolution must act by modifying the formation of segments during embryogenesis. So, how this developmental process operates, in a variable-segment-number species, is of considerable interest. Strigamia maritima turns out to be a tractable system both at the ecological level of investigating differences in mean segment number between populations and at the molecular level of studying the expression patterns of developmental genes. Here we report the current state of play in our work on this fascinating animal, including our recent finding of a double-segment periodicity in the expression of two Strigamia segmentation genes, and its possible implications for our understanding of arthropod segmentation mechanisms in general.
Collapse
Affiliation(s)
- Wallace Arthur
- Department of Zoology, National University of Ireland, Galway, Ireland.
| | | |
Collapse
|
26
|
Narita Y, Kuratani S. Evolution of the vertebral formulae in mammals: A perspective on developmental constraints. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:91-106. [PMID: 15660398 DOI: 10.1002/jez.b.21029] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Developmental constraints refer to biases that limit phenotypic changes during evolution. To examine the contribution of developmental constraints in the evolution of vertebrate morphology, we analyzed the distribution pattern of mammalian vertebral formulae. Data on mammalian vertebral formulae were collected from the Descriptive Catalogue of the Osteological Series Contained in the Museum of the Royal College of Surgeons of England by Richard Owen (1853) and were plotted onto the most reliable mammalian phylogenetic tree based on recent molecular studies. In addition to the number of cervical vertebrae that is almost fixed to 7, we found that the number of thoracolumbar vertebrae tends to be 19 in many groups of mammals. Since fidelity of the number of thoracolumbar vertebrae was also completely maintained in Monotremata and Marsupialia, we presumed that thoracolumbar vertebral number as well as cervical vertebral number might have been fixed in the primitive mammalian lineage. On the basis of primitive vertebral formulae, we could clarify the polarity of evolution and identify several deviations from the primitive states during the mammalian evolution. The changes in the vertebral formulae in eutherian mammals seem to be lineage-specific, such that most species in Carnivora have 20 instead of 19 thoracolumbar vertebrae. Because such lineage-specific vertebral formulae contrast with the estimated distribution pattern on the assumption of evolution only through the selective pressure, we concluded that developmental constraints played an important role in the evolution of mammalian vertebral formulae.
Collapse
Affiliation(s)
- Yuichi Narita
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | | |
Collapse
|
27
|
Chipman AD, Arthur W, Akam M. A double segment periodicity underlies segment generation in centipede development. Curr Biol 2004; 14:1250-5. [PMID: 15268854 DOI: 10.1016/j.cub.2004.07.026] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 05/25/2004] [Accepted: 05/25/2004] [Indexed: 11/24/2022]
Abstract
The number of leg-bearing segments in centipedes varies extensively, between 15 and 191, and yet it is always odd. This suggests that segment generation in centipedes involves a stage with double segment periodicity and that evolutionary variation in segment number reflects the generation of these double segmental units. However, previous studies have revealed no trace of this. Here we report the expression of two genes, an odd-skipped related gene (odr1) and a caudal homolog, that serve as markers for early steps of segment formation in the geophilomorph centipede, Strigamia maritima. Dynamic expression of odr1 around the proctodaeum resolves into a series of concentric rings, revealing a pattern of double segment periodicity in overtly unsegmented tissue. Initially, the expression of the caudal homolog mirrors this double segment periodicity, but shortly before engrailed expression and overt segmentation, the intercalation of additional stripes generates a repeat with single segment periodicity. Our results provide the first clues about the causality of the unique and fascinating "all-odd" pattern of variation in centipede segment numbers and have implications for the evolution of the mechanisms of arthropod segmentation.
Collapse
Affiliation(s)
- Ariel D Chipman
- University Museum of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| | | | | |
Collapse
|
28
|
Abstract
Recent work has revealed a double segmental periodicity of gene expression in the centipede, a potential molecular explanation for the observation that this arthropod always has an odd number of trunk segments. Is this an oddity of centipedes, or might it mean that double segmental pair-rule patterning dates back to the Ur-arthropod?
Collapse
Affiliation(s)
- Wim G M Damen
- Institute for Genetics, Department for Evolutionary Genetics, University of Cologne, Weyertal 121, D-50931 Köln, Germany.
| |
Collapse
|
29
|
Badyaev AV, Foresman KR. Evolution of morphological integration. I. Functional units channel stress-induced variation in shrew mandibles. Am Nat 2004; 163:868-79. [PMID: 15266384 DOI: 10.1086/386551] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 12/24/2003] [Indexed: 11/03/2022]
Abstract
Stress-induced deviations from normal development are often assumed to be random, yet their accumulation and expression can be influenced by patterns of morphological integration within an organism. We studied within-individual developmental variation (fluctuating asymmetry) in the mandible of four shrew species raised under normal and extreme environments. Patterns of among-individual variation and fluctuating asymmetry were strongly concordant in traits that were involved in the attachment of the same muscles (i.e., functionally integrated traits), and fluctuating asymmetry was closely integrated among these traits, implying direct developmental interactions among traits involved in the same function. Stress-induced variation was largely confined to the directions delimited by functionally integrated groups of traits in the pattern that was concordant with species divergence--species differed most in the same traits that were most sensitive to stress within each species. These results reveal a strong effect of functional complexes on directing and incorporating stress-induced variation during development and might explain the historical persistence of sets of traits involved in the same function in shrew jaws despite their high sensitivity to environmental variation.
Collapse
Affiliation(s)
- Alexander V Badyaev
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
30
|
Richardson MK, Chipman AD. Developmental constraints in a comparative framework: a test case using variations in phalanx number during amniote evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 296:8-22. [PMID: 12658708 DOI: 10.1002/jez.b.13] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Constraints are factors that limit evolutionary change. A subset of constraints is developmental, and acts during embryonic development. There is some uncertainty about how to define developmental constraints, and how to formulate them as testable hypotheses. Furthermore, concepts such as constraint-breaking, universal constraints, and forbidden morphologies present some conceptual difficulties. One of our aims is to clarify these issues. After briefly reviewing current classifications of constraint, we define developmental constraints as those affecting morphogenetic processes in ontogeny. They may be generative or selective, although a clear distinction cannot always be drawn. We support the idea that statements about constraints are in fact statements about the relative frequency of particular transformations (where 'transformation' indicates a change from the ancestral condition). An important consequence of this is that the same transformation may be constrained in one developmental or phylogenetic context, but evolutionarily plastic in another. In this paper, we analyse developmental constraints within a phylogenetic framework, building on similar work by previous authors. Our approach is based on the following assumptions from the literature: (1) constraints are identified when there is a discrepancy between the observed frequency of a transformation, and its expected frequency; (2) the 'expected' distribution is derived by examining the phylogenetic distribution of the transformation and its associated selection pressures. Thus, by looking for congruence between these various phylogenetic distribution patterns, we can test hypotheses about constraint. We critically examine this approach using a test case: variation in phalanx-number in the amniote limb.
Collapse
|
31
|
Arthur W. The interaction between developmental bias and natural selection: from centipede segments to a general hypothesis. Heredity (Edinb) 2003; 89:239-46. [PMID: 12242638 DOI: 10.1038/sj.hdy.6800139] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Accepted: 05/01/2002] [Indexed: 11/09/2022] Open
Abstract
Do limitations to the ways in which mutations can alter developmental processes help to determine the direction of phenotypic evolution? In the early days of neo-Darwinism, the answer given to this question was an emphatic 'no'. However, recent work, both theoretical and empirical, argues that the answer should at least be 'sometimes', and possibly even a straightforward 'yes'. Here, I examine the key concept of developmental bias, which encompasses both developmental constraint and developmental drive. I review the case of centipede segment number, which is a particularly clear example of developmental bias, but also a rather unusual one. I then consider how, in general terms, developmental bias and natural selection might interact, with the result that it is their interaction, rather than either process on its own, that determines evolutionary direction. Essentially, the whole argument is about the extent to which phenotypic variation is developmentally structured as opposed to amorphous or random. This issue can be traced back to the very beginning of evolutionary biology, and in particular to a difference of opinion between Darwin and Wallace, who emphasized, respectively, character correlation and character independence.
Collapse
Affiliation(s)
- W Arthur
- Ecology Centre, University of Sunderland, UK.
| |
Collapse
|
32
|
Kettle C, Johnstone J, Jowett T, Arthur H, Arthur W. The pattern of segment formation, as revealed by engrailed expression, in a centipede with a variable number of segments. Evol Dev 2003; 5:198-207. [PMID: 12622737 DOI: 10.1046/j.1525-142x.2003.03027.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arthropods vary enormously in segment number, from less than 20 to more than 200. This between-species variation must have originated, in evolution, through divergent selection operating in ancestral arthropod species with variable segment numbers. Although most present-day arthropod species are invariant in this respect, some are variable and so can serve as model systems. Here, we describe a study based on one such species, the coastal geophilomorph centipede Strigamia maritima. We investigate the way in which segments are formed using in situ hybridization to demonstrate the expression pattern of the engrailed gene during embryogenesis. We also analyze segment number data in mother-offspring broods and thereby demonstrate a significant heritable component of the variation. We consider how natural selection might act on this intraspecific developmental variation, and we discuss the similarities and differences in segment formation between the geophilomorphs and their phylogenetic sister-group.
Collapse
Affiliation(s)
- Chris Kettle
- Ecology Centre, University of Sunderland, Sunderland SR1 3SD, UK
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Wallace Arthur
- Integrative Biology Group, The Darwin Building, University of Sunderland, Chester Road Campus, Sunderland SR1 3SD, United Kingdom
| |
Collapse
|
34
|
Abstract
Over the last twenty years, there has been rapid growth of a new approach to understanding the evolution of organismic form. This evolutionary developmental biology, or 'evo-devo', is focused on the developmental genetic machinery that lies behind embryological phenotypes, which were all that could be studied in the past. Are there any general concepts emerging from this new approach, and if so, how do they impact on the conceptual structure of traditional evolutionary biology? In providing answers to these questions, this review assesses whether evo-devo is merely filling in some missing details, or whether it will cause a large-scale change in our thinking about the evolutionary process.
Collapse
Affiliation(s)
- Wallace Arthur
- Ecology Centre, School of Sciences, University of Sunderland, UK.
| |
Collapse
|
35
|
Abstract
In addressing phenotypic evolution, this article reconsiders natural selection, random drift, developmental constraints, and internal selection in the new extended context of evolutionary developmental biology. The change of perspective from the "evolution of phenotypes" toward an "evolution of ontogenies" (evo-devo perspective) affects the reciprocal relationships among these different processes. Random drift and natural selection are sibling processes: two forms of post-productional sorting among alternative developmental trajectories, the former random, the latter nonrandom. Developmental constraint is a compound concept; it contains even some forms of natural ("external" and "internal") selection. A narrower definition ("reproductive constraints") is proposed. Internal selection is not a selection caused by an internal agent. It is a form of environment-independent selection depending on the level of the organism's internal developmental or functional coordination. Selection and constraints are the main deterministic processes in phenotypic evolution but they are not opposing forces. Indeed, they are continuously interacting processes of evolutionary change, but with different roles that should not be confused.
Collapse
Affiliation(s)
- G Fusco
- Department of Biology, University of Padova, Italy.
| |
Collapse
|
36
|
Abstract
Over any period of evolutionary time, the prevailing ontogenetic trajectory within a lineage may either recur unchanged from generation to generation (stasis) or alter (developmental reprogramming). A key question about reprogramming is whether it exhibits intrinsic biases in favor of some sorts of change and against others, which may be referred to respectively as "drive" and "constraint." A simple logical argument suggests that both drive and constraint should be common, and conversely that cases of equiprobable modification in various phenotypic directions should be relatively rare. These proposals, that drive and constraint exist and that they are common, appear to be widely accepted, even among neo-Darwinians, who are sometimes portrayed as rejecting them. What is more controversial is that developmental drive (and constraint) can have a powerful influence on the direction of evolutionary change. It is argued that such an influence will occur, and indeed may be pervasive.
Collapse
Affiliation(s)
- W Arthur
- Ecology Centre, University of Sunderland, UK.
| |
Collapse
|
37
|
Arthur W, Kettle C. Geographic patterning of variation in segment number in geophilomorph centipedes: clines and speciation. Evol Dev 2001; 3:34-40. [PMID: 11256433 DOI: 10.1046/j.1525-142x.2001.00083.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Since their origin as a metameric group, arthropods have diversified considerably in their number of segments. Present-day geophilomorph centipedes provide a model system for investigating the evolutionary origins of this diversification, because they exhibit intraspecific variation in segment number. (This variation is, however, derived; it is not a plesiomorphic condition within the Chilopoda.) Previous studies have shown that there are significant differences in segment number between populations within several geophilomorph species. In one (arguably two) species, it has been demonstrated that there is a particular form of geographic patterning of the variation, namely a latitudinal cline, with the segment number decreasing with increasing distance north. Here, we provide additional data on four more species, all of which show evidence of a latitudinal cline in either one or both sexes. It is therefore becoming clear that this is a general phenomenon, applying widely (perhaps universally) across the Geophilomorpha, a group consisting of some 1,000 known species. It may be that latitudinal clines are a frequent part of the speciation cycle in this group.
Collapse
Affiliation(s)
- W Arthur
- Ecology Centre, University of Sunderland, UK.
| | | |
Collapse
|
38
|
|
39
|
Affiliation(s)
- B Clarke
- Department of Genetics, Queen's Medical Centre, University of Nottingham, UK
| | | |
Collapse
|
40
|
Kettle C, Arthur W. Latitudinal cline in segment number in an arthropod species, Strigamia maritima. Proc Biol Sci 2000; 267:1393-7. [PMID: 10983822 PMCID: PMC1690687 DOI: 10.1098/rspb.2000.1155] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Arthropods vary more than 30-fold in segment number. The evolutionary origins of differences in segment number among species must ultimately lie in intraspecific variation. Yet paradoxically, in most groups of arthropods, the number of segments is fixed for each species and shows no intra- or interpopulation variation at all. Geophilomorph centipedes are an exception to this general rule, and exhibit intraspecific variation in segment number, with differences between individuals being determined during embryonic development and hence independent of population age structure. Significant differences in segment number between different geographical populations of the same species have been previously reported, but insufficient sampling has been conducted to reveal any particular geographical pattern. Here, we reveal a latitudinal cline in segment number in the geophilomorph species Strigamia maritima: segment number in British populations decreases with distance north. This is the first such cline to be reported for any centipede species; indeed as far as we are aware it is the first such cline reported for any arthropod species. In vertebrates, fish are known to exhibit a latitudinal cline in segment number, but interestingly, this is in the opposite direction; fish add segments with increasing latitude, centipedes subtract them.
Collapse
Affiliation(s)
- C Kettle
- Ecology Centre, School of Sciences, University of Sunderland, UK
| | | |
Collapse
|
41
|
Arthur W. The concept of developmental reprogramming and the quest for an inclusive theory of evolutionary mechanisms. Evol Dev 2000; 2:49-57. [PMID: 11256417 DOI: 10.1046/j.1525-142x.2000.00028.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evolutionary developmental biology has already made a major contribution to our understanding of evolutionary patterns, notably homology. However, while it has the potential to make an equally important contribution to our understanding of evolutionary mechanisms, and indeed to the integration of mechanism and pattern, it has not yet done so. This paper explores how this potential may be realized. In particular, I focus on the limitations of present-day neo-Darwinian theory, and indicate how a combination of the neo-Darwinian and "evo-devo" approaches provides a more inclusive view of evolutionary mechanisms with greater explanatory power. There is a particular focus on developmental reprogramming, which lies logically between mutation and selection, yet has been neglected in mainstream evolutionary theory. The inclusion of developmental reprogramming in the list of evolutionary mechanisms leads to a view that the direction of evolutionary change is determined by a combination of internal and external factors, rather than being controlled entirely by the environment.
Collapse
Affiliation(s)
- W Arthur
- Ecology Centre, University of Sunderland, UK.
| |
Collapse
|