1
|
Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C, Sandoval K, Rowitch DH, Xu D, McQuillen PS, Garcia-Verdugo JM, Huang EJ, Alvarez-Buylla A. Extensive migration of young neurons into the infant human frontal lobe. Science 2017; 354:354/6308/aaf7073. [PMID: 27846470 PMCID: PMC5436574 DOI: 10.1126/science.aaf7073] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022]
Abstract
The first few months after birth, when a child begins to interact with the environment, are critical to human brain development. The human frontal lobe is important for social behavior and executive function; it has increased in size and complexity relative to other species, but the processes that have contributed to this expansion are unknown. Our studies of postmortem infant human brains revealed a collection of neurons that migrate and integrate widely into the frontal lobe during infancy. Chains of young neurons move tangentially close to the walls of the lateral ventricles and along blood vessels. These cells then individually disperse long distances to reach cortical tissue, where they differentiate and contribute to inhibitory circuits. Late-arriving interneurons could contribute to developmental plasticity, and the disruption of their postnatal migration or differentiation may underlie neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mercedes F Paredes
- Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - David James
- Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Sara Gil-Perotin
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia, Spain.,Multiple Sclerosis and Neural Regeneration Unit, Department of Neurology, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Hosung Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Jennifer A Cotter
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Carissa Ng
- Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Kadellyn Sandoval
- Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - David H Rowitch
- Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Pediatrics, University of California, San Francisco, CA 94143, USA.,Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Patrick S McQuillen
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Jose-Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia, Spain
| | - Eric J Huang
- Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA. .,Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA. .,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, Fillman SG, Rothmond DA, Sinclair D, Tiwari Y, Tsai SY, Weickert TW, Shannon Weickert C. Rethinking schizophrenia in the context of normal neurodevelopment. Front Cell Neurosci 2013; 7:60. [PMID: 23720610 PMCID: PMC3654207 DOI: 10.3389/fncel.2013.00060] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/16/2013] [Indexed: 01/11/2023] Open
Abstract
The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to consider how pathological changes identified in adult brain tissue can be accounted for by aberrant developmental processes occurring during fetal, childhood, or adolescent periods. To place schizophrenia neuropathology in a neurodevelopmental context requires solid, scrutinized evidence of changes occurring during normal development of the human brain, particularly in the cortex; however, too often data on normative developmental change are selectively referenced. This paper focuses on the development of the prefrontal cortex and charts major molecular, cellular, and behavioral events on a similar time line. We first consider the time at which human cognitive abilities such as selective attention, working memory, and inhibitory control mature, emphasizing that attainment of full adult potential is a process requiring decades. We review the timing of neurogenesis, neuronal migration, white matter changes (myelination), and synapse development. We consider how molecular changes in neurotransmitter signaling pathways are altered throughout life and how they may be concomitant with cellular and cognitive changes. We end with a consideration of how the response to drugs of abuse changes with age. We conclude that the concepts around the timing of cortical neuronal migration, interneuron maturation, and synaptic regression in humans may need revision and include greater emphasis on the protracted and dynamic changes occurring in adolescence. Updating our current understanding of post-natal neurodevelopment should aid researchers in interpreting gray matter changes and derailed neurodevelopmental processes that could underlie emergence of psychosis.
Collapse
Affiliation(s)
- Vibeke S. Catts
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Samantha J. Fung
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Leonora E. Long
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Dipesh Joshi
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Ans Vercammen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
- School of Psychology, Australian Catholic UniversitySydney, NSW, Australia
| | - Katherine M. Allen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Stu G. Fillman
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Debora A. Rothmond
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
| | - Duncan Sinclair
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Yash Tiwari
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Shan-Yuan Tsai
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Thomas W. Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
3
|
Tilly JL, Niikura Y, Rueda BR. The current status of evidence for and against postnatal oogenesis in mammals: a case of ovarian optimism versus pessimism? Biol Reprod 2008; 80:2-12. [PMID: 18753611 DOI: 10.1095/biolreprod.108.069088] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Whether or not oogenesis continues in the ovaries of mammalian females during postnatal life was heavily debated from the late 1800s through the mid-1900s. However, in 1951 Lord Solomon Zuckerman published what many consider to be a landmark paper summarizing his personal views of data existing at the time for and against the possibility of postnatal oogenesis. In Zuckerman's opinion, none of the evidence he considered was inconsistent with Waldeyer's initial proposal in 1870 that female mammals cease production of oocytes at or shortly after birth. This conclusion rapidly became dogma, and remained essentially unchallenged until just recently, despite the fact that Zuckerman did not offer a single experiment proving that adult female mammals are incapable of oogenesis. Instead, 20 years later he reemphasized that his conclusion was based solely on an absence of data he felt would be inconsistent with the idea of a nonrenewable oocyte pool provided at birth. However, in the immortal words of Carl Sagan, an "absence of evidence is not evidence of absence." Indeed, building on the efforts of a few scientists who continued to question this dogma after Zuckerman's treatise in 1951, we reported several data sets in 2004 that were very much inconsistent with the widely held belief that germ cell production in female mammals ceases at birth. Perhaps not surprisingly, given the magnitude of the paradigm shift being proposed, this work reignited a vigorous debate that first began more than a century ago. Our purpose here is to review the experimental evidence offered in recent studies arguing support for and against the possibility that adult mammalian females replenish their oocyte reserve. "Never discourage anyone who continually makes progress, no matter how slow."-Plato (427-347 BC).
Collapse
Affiliation(s)
- Jonathan L Tilly
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
4
|
Uylings HBM, Malofeeva LI, Bogolepova IN, Jacobsen AM, Amunts K, Zilles K. No postnatal doubling of number of neurons in human Broca’s areas (Brodmann areas 44 and 45)? A stereological study. Neuroscience 2005; 136:715-28. [PMID: 16344146 DOI: 10.1016/j.neuroscience.2005.07.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 07/14/2005] [Accepted: 07/25/2005] [Indexed: 11/21/2022]
Abstract
In this study we explored whether a postnatal doubling of the total number of neurons occurs in the human Brodmann areas 44 and 45 (Broca's area). We describe the most recent error prediction formulae and their application for the modern stereological estimators for volume and number of neurons. We estimated the number of neurons in 3D optical disector probes systematically random sampled throughout the entire Brodmann areas (BA) 44 and 45 in developing and young adult cases. In the relatively small number of male and female cases studied no substantial postnatal increase in total number of neurons occurred in areas 44 and 45; the volume of these areas reached adult values around 7 years. In addition, we did find indications that a shift from a right-over-left to a left-over-right asymmetry may occur in the volume of BA 45 during postnatal development. No major asymmetry in total number of neurons in BA 44 and 45 was detected.
Collapse
Affiliation(s)
- H B M Uylings
- Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
5
|
Turlejski K, Djavadian R. Life-long stability of neurons: a century of research on neurogenesis, neuronal death and neuron quantification in adult CNS. PROGRESS IN BRAIN RESEARCH 2002; 136:39-65. [PMID: 12143397 DOI: 10.1016/s0079-6123(02)36006-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we provide an extensive review of 100 years of research on the stability of neurons in the mammalian brain, with special emphasis on humans. Although Cajal formulated the Neuronal Doctrine, he was wrong in his beliefs that adult neurogenesis did not occur and adult neurons are dying throughout life. These two beliefs became accepted "common knowledge" and have shaped much of neuroscience research and provided much of the basis for clinical treatment of age-related brain diseases. In this review, we consider adult neurogenesis from a historical and evolutionary perspective. It is concluded, that while adult neurogenesis is a factor in the dynamics of the dentate gyrus and olfactory bulb, it is probably not a major factor during the life-span in most brain areas. Likewise, the acceptance of neuronal death as an explanation for normal age-related senility is challenged with evidence collected over the last fifty years. Much of the problem in changing this common belief of dying neurons was the inadequacies of neuronal counting methods. In this review we discuss in detail implications of recent improvements in neuronal quantification. We conclude: First, age-related neuronal atrophy is the major factor in functional deterioration of existing neurons and could be slowed down, or even reversed by various pharmacological interventions. Second, in most cases neuronal degeneration during aging is a pathology that in principle may be avoided. Third, loss of myelin and of the white matter is more frequent and important than the limited neuronal death in normal aging.
Collapse
Affiliation(s)
- Kris Turlejski
- Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | |
Collapse
|
6
|
Chan WY, Lorke DE, Tiu SC, Yew DT. Proliferation and apoptosis in the developing human neocortex. THE ANATOMICAL RECORD 2002; 267:261-76. [PMID: 12124904 DOI: 10.1002/ar.10100] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cell kinetics of the developing central nervous system (CNS) is determined by both proliferation and apoptosis. In the human neocortex at week 6 of gestation, proliferation is confined to the ventricular zone, where mitotic figures and nuclear immunoreactivity for proliferating cell nuclear antigen (PCNA) are detectable. Cell division is symmetric, with both daughter cells reentering mitosis. At week 7, the subventricular zone, a secondary proliferative zone, appears. It mainly gives rise to local circuit neurons and glial cells. Around week 12, the ventricular and subventricular zones are thickest, and the nuclear PCNA label is strongest, indicating that proliferation peaks at this stage. Thereafter, asymmetric division becomes the predominant mode of proliferation, with one daughter cell reentering mitosis and the other one migrating out. Towards late gestation, the ventricular and subventricular zones almost completely disappear and proliferation shifts towards the intermediate and subplate zones, where mainly glial cells are generated. A remnant of the subventricular zone with proliferative activity persists into adulthood. In general, proliferation follows a latero-medial gradient in the neocortex lasting longer in its lateral parts. Apoptotic nuclei have been detected around week 5, occurring in low numbers in the ventricular zone at this stage. Apoptotic cell death increases around midgestation and then spreads throughout all cortical layers, with most dying cells located in the ventricular and subventricular zones. This spatial distribution of apoptosis extends into late gestation. During the early postnatal period, most apoptotic cells are still located in the subcortical layers. During early embryonic development, proliferation and apoptosis are closely related, and are probably regulated by common regulators. In the late fetal and early postnatal periods, when proliferation has considerably declined in all cortical layers, apoptosis may occur in neurons whose sprouting axons do not find their targets.
Collapse
Affiliation(s)
- Wood Yee Chan
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|
7
|
|
8
|
Abstract
Reports of continuous genesis and turnover of neurons in the adult primate association neocortex--the site of the highest cognitive functions--have generated great excitement. Here, I review the available evidence, and question the scientific basis of this claim.
Collapse
Affiliation(s)
- Pasko Rakic
- Pasko Rakic is at the Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
9
|
Geuna S, Borrione P, Fornaro M, Giacobini-Robecchi MG. Adult stem cells and neurogenesis: historical roots and state of the art. THE ANATOMICAL RECORD 2001; 265:132-41. [PMID: 11458328 DOI: 10.1002/ar.1135] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Over the last few years, an impressive number of papers have addressed the stem cell issue. However, as often occurs when a scientific subject undergoes a period of fast growth, some confusion is generated. To help reduce the existing uncertainty, this paper focuses on the concept of adult stem cells in relation to the classification of cell populations on the basis their proliferative behavior. Particular attention is dedicated to adult neural stem cells, an issue that has recently seen the most amazing advances. Finally, the concept of adult stem cells is differentiated from that of developmental stem cells in relation to the employment of stem cells for transplantation therapies.
Collapse
Affiliation(s)
- S Geuna
- Department of Clinical and Biological Sciences, University of Torino, Italy.
| | | | | | | |
Collapse
|