1
|
Moço PD, Xu X, Silva CAT, Kamen AA. Production of adeno-associated viral vector serotype 6 by triple transfection of suspension HEK293 cells at higher cell densities. Biotechnol J 2023; 18:e2300051. [PMID: 37337925 DOI: 10.1002/biot.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
In recent years, the use of adeno-associated viruses (AAVs) as vectors for gene and cell therapy has increased, leading to a rise in the amount of AAV vectors required during pre-clinical and clinical trials. AAV serotype 6 (AAV6) has been found to be efficient in transducing different cell types and has been successfully used in gene and cell therapy protocols. However, the number of vectors required to effectively deliver the transgene to one single cell has been estimated at 106 viral genomes (VG), making large-scale production of AAV6 necessary. Suspension cell-based platforms are currently limited to low cell density productions due to the widely reported cell density effect (CDE), which results in diminished production at high cell densities and decreased cell-specific productivity. This limitation hinders the potential of the suspension cell-based production process to increase yields. In this study, we investigated the improvement of the production of AAV6 at higher cell densities by transiently transfecting HEK293SF cells. The results showed that when the plasmid DNA was provided on a cell basis, the production could be carried out at medium cell density (MCD, 4 × 106 cells mL-1 ) resulting in titers above 1010 VG mL-1 . No detrimental effects on cell-specific virus yield or cell-specific functional titer were observed at MCD production. Furthermore, while medium supplementation alleviated the CDE in terms of VG/cell at high cell density (HCD, 10 × 106 cells mL-1 ) productions, the cell-specific functional titer was not maintained, and further studies are necessary to understand the observed limitations for AAV production in HCD processes. The MCD production method reported here lays the foundation for large-scale process operations, potentially solving the current vector shortage in AAV manufacturing.
Collapse
Affiliation(s)
- Pablo D Moço
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Xingge Xu
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Cristina A T Silva
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, Canada
| |
Collapse
|
2
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
3
|
Karengera E, Robotham A, Kelly J, Durocher Y, De Crescenzo G, Henry O. Concomitant reduction of lactate and ammonia accumulation in fed-batch cultures: Impact on glycoprotein production and quality. Biotechnol Prog 2018; 34:494-504. [DOI: 10.1002/btpr.2607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/24/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Eric Karengera
- Department of Chemical Engineering; École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville; Montréal Quebec H3C 3A7 Canada
| | - Anna Robotham
- Human Health Therapeutics Portfolio, National Research Council Canada; Ottawa Ontario Canada
| | - John Kelly
- Human Health Therapeutics Portfolio, National Research Council Canada; Ottawa Ontario Canada
| | - Yves Durocher
- Human Health Therapeutics Portfolio, National Research Council Canada; Montréal Quebec Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering; École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville; Montréal Quebec H3C 3A7 Canada
| | - Olivier Henry
- Department of Chemical Engineering; École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville; Montréal Quebec H3C 3A7 Canada
| |
Collapse
|
4
|
Karengera E, Durocher Y, De Crescenzo G, Henry O. Combining metabolic and process engineering strategies to improve recombinant glycoprotein production and quality. Appl Microbiol Biotechnol 2017; 101:7837-7851. [PMID: 28924963 DOI: 10.1007/s00253-017-8513-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/15/2017] [Accepted: 09/02/2017] [Indexed: 11/28/2022]
Abstract
Increasing recombinant protein production while ensuring a high and consistent protein quality remains a challenge in mammalian cell culture process development. In this work, we combined a nutrient substitution approach with a metabolic engineering strategy that improves glucose utilization efficiency. This combination allowed us to tackle both lactate and ammonia accumulation and investigate on potential synergistic effects on protein production and quality. To this end, HEK293 cells overexpressing the pyruvate yeast carboxylase (PYC2) and their parental cells, both stably producing the therapeutic glycoprotein interferon α2b (IFNα2b), were cultured in media deprived of glutamine but containing chosen substitutes. Among the tested substitutes, pyruvate led to the best improvement in growth (integral of viable cell density) for both cell lines in batch cultures, whereas the culture of PYC2 cells without neither glutamine nor any substitute displayed surprisingly enhanced IFNα2b production. The drastic reduction in both lactate and ammonia in the cultures translated into extended high viability conditions and an increase in recombinant protein titer by up to 47% for the parental cells and the PYC2 cells. Product characterization performed by surface plasmon resonance biosensing using Sambucus nigra (SNA) lectin revealed that the increase in yield was however accompanied by a reduction in the degree of sialylation of the product. Supplementing cultures with glycosylation precursors and a cofactor were effective at counterbalancing the lack of glutamine and allowed improvement in IFNα2b quality as evaluated by lectin affinity. Our study provides a strategy to reconcile protein productivity and quality and highlights the advantages of PYC2-overexpressing cells in glutamine-free conditions.
Collapse
Affiliation(s)
- Eric Karengera
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
| | - Yves Durocher
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
| | - Olivier Henry
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada.
| |
Collapse
|
5
|
Approaches for recombinant human factor IX production in serum-free suspension cultures. Biotechnol Lett 2015; 38:385-94. [DOI: 10.1007/s10529-015-1991-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
|
6
|
Petiot E, Cuperlovic-Culf M, Shen CF, Kamen A. Influence of HEK293 metabolism on the production of viral vectors and vaccine. Vaccine 2015; 33:5974-81. [DOI: 10.1016/j.vaccine.2015.05.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022]
|
7
|
Silva AC, Simão D, Küppers C, Lucas T, Sousa MFQ, Cruz P, Carrondo MJT, Kochanek S, Alves PM. Human amniocyte-derived cells are a promising cell host for adenoviral vector production under serum-free conditions. Biotechnol J 2015; 10:760-71. [DOI: 10.1002/biot.201400765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/02/2015] [Accepted: 04/13/2015] [Indexed: 11/09/2022]
|
8
|
Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun 2014; 5:4767. [PMID: 25182477 DOI: 10.1038/ncomms5767] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/21/2014] [Indexed: 12/15/2022] Open
Abstract
The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect.
Collapse
|
9
|
Lohr V, Hädicke O, Genzel Y, Jordan I, Büntemeyer H, Klamt S, Reichl U. The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis. BMC Biotechnol 2014; 14:72. [PMID: 25077436 PMCID: PMC4124504 DOI: 10.1186/1472-6750-14-72] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 07/16/2014] [Indexed: 01/10/2023] Open
Abstract
Background In human vaccine manufacturing some pathogens such as Modified Vaccinia Virus Ankara, measles, mumps virus as well as influenza viruses are still produced on primary material derived from embryonated chicken eggs. Processes depending on primary cell culture, however, are difficult to adapt to modern vaccine production. Therefore, we derived previously a continuous suspension cell line, AGE1.CR.pIX, from muscovy duck and established chemically-defined media for virus propagation. Results To better understand vaccine production processes, we developed a stoichiometric model of the central metabolism of AGE1.CR.pIX cells and applied flux variability and metabolic flux analysis. Results were compared to literature dealing with mammalian and insect cell culture metabolism focusing on the question whether cultured avian cells differ in metabolism. Qualitatively, the observed flux distribution of this avian cell line was similar to distributions found for mammalian cell lines (e.g. CHO, MDCK cells). In particular, glucose was catabolized inefficiently and glycolysis and TCA cycle seem to be only weakly connected. Conclusions A distinguishing feature of the avian cell line is that glutaminolysis plays only a minor role in energy generation and production of precursors, resulting in low extracellular ammonia concentrations. This metabolic flux study is the first for a continuous avian cell line. It provides a basis for further metabolic analyses to exploit the biotechnological potential of avian and vertebrate cell lines and to develop specific optimized cell culture processes, e.g. vaccine production processes.
Collapse
Affiliation(s)
- Verena Lohr
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr, 1, 39106 Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Reducing Recon 2 for steady-state flux analysis of HEK cell culture. J Biotechnol 2014; 184:172-8. [PMID: 24907410 DOI: 10.1016/j.jbiotec.2014.05.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/24/2014] [Accepted: 05/19/2014] [Indexed: 01/05/2023]
Abstract
A representative stoichiometric model is essential to perform metabolic flux analysis (MFA) using experimentally measured consumption (or production) rates as constraints. For Human Embryonic Kidney (HEK) cell culture, there is the opportunity to use an extremely well-curated and annotated human genome-scale model Recon 2 for MFA. Performing MFA using Recon 2 without any modification would have implied that cells have access to all functionality encoded by the genome, which is not realistic. The majority of intracellular fluxes are poorly determined as only extracellular exchange rates are measured. This is compounded by the fact that there is no suitable metabolic objective function to suppress non-specific fluxes. We devised a heuristic to systematically reduce Recon 2 to emphasize flux through core metabolic reactions. This implies that cells would engage these dominant metabolic pathways to grow, and any significant changes in gross metabolic phenotypes would have invoked changes in these pathways. The reduced metabolic model becomes a functionalized version of Recon 2 used for identifying significant metabolic changes in cells by flux analysis.
Collapse
|
11
|
Altintas MM, Moriwaki K, Wei C, Möller CC, Flesche J, Li J, Yaddanapudi S, Faridi MH, Gödel M, Huber TB, Preston RA, Jiang JX, Kerjaschki D, Sever S, Reiser J. Reduction of proteinuria through podocyte alkalinization. J Biol Chem 2014; 289:17454-67. [PMID: 24817115 DOI: 10.1074/jbc.m114.568998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Podocytes are highly differentiated cells and critical elements for the filtration barrier of the kidney. Loss of their foot process (FP) architecture (FP effacement) results in urinary protein loss. Here we show a novel role for the neutral amino acid glutamine in structural and functional regulation of the kidney filtration barrier. Metabolic flux analysis of cultured podocytes using genetic, toxic, and immunologic injury models identified increased glutamine utilization pathways. We show that glutamine uptake is increased in diseased podocytes to couple nutrient support to increased demand during the disease state of FP effacement. This feature can be utilized to transport increased amounts of glutamine into damaged podocytes. The availability of glutamine determines the regulation of podocyte intracellular pH (pHi). Podocyte alkalinization reduces cytosolic cathepsin L protease activity and protects the podocyte cytoskeleton. Podocyte glutamine supplementation reduces proteinuria in LPS-treated mice, whereas acidification increases glomerular injury. In summary, our data provide a metabolic opportunity to combat urinary protein loss through modulation of podocyte amino acid utilization and pHi.
Collapse
Affiliation(s)
- Mehmet M Altintas
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035
| | - Kumiko Moriwaki
- the Department of Medicine, Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Changli Wei
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035
| | - Clemens C Möller
- the Division of Nephrology and Program in Glomerular Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129
| | - Jan Flesche
- the Division of Nephrology and Program in Glomerular Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129
| | - Jing Li
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035
| | - Suma Yaddanapudi
- the Division of Nephrology and Program in Glomerular Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129
| | - Mohd Hafeez Faridi
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035
| | - Markus Gödel
- the Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Tobias B Huber
- the Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany, the BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs University, 79106 Freiburg, Germany
| | - Richard A Preston
- the Department of Medicine, Division of Clinical Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Jean X Jiang
- the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, and
| | - Dontscho Kerjaschki
- the Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sanja Sever
- the Division of Nephrology and Program in Glomerular Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129
| | - Jochen Reiser
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035,
| |
Collapse
|
12
|
Goudar CT, Biener RK, Piret JM, Konstantinov KB. Metabolic flux estimation in mammalian cell cultures. Methods Mol Biol 2014; 1104:193-209. [PMID: 24297417 DOI: 10.1007/978-1-62703-733-4_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Metabolic flux analysis with its ability to quantify cellular metabolism is an attractive tool for accelerating cell line selection, medium optimization, and other bioprocess development activities. In the stoichiometric flux estimation approach, unknown fluxes are determined using intracellular metabolite mass balance expressions and measured extracellular rates. The simplicity of the stoichiometric approach extends its application to most cell culture systems, and the steps involved in metabolic flux estimation by the stoichiometric method are presented in detail in this chapter. Specifically, overdetermined systems are analyzed since the extra measurements can be used to check for gross measurement errors and system consistency. Cell-specific rates comprise the input data for flux estimation, and the logistic modeling approach is described for robust-specific rate estimation in batch and fed-batch systems. A simplified network of mammalian cell metabolism is used to illustrate the flux estimation procedure, and the steps leading up the consistency index determination are presented. If gross measurement errors are detected, a technique for determining the source of gross measurement error is also described. A computer program that performs most of the calculation described in this chapter is presented, and references to flux estimation software are provided. The procedure presented in this chapter should enable rapid metabolic flux estimation in any mammalian cell bioreaction network by the stoichiometric approach.
Collapse
|
13
|
Wahrheit J, Nicolae A, Heinzle E. Dynamics of growth and metabolism controlled by glutamine availability in Chinese hamster ovary cells. Appl Microbiol Biotechnol 2013; 98:1771-83. [PMID: 24362913 DOI: 10.1007/s00253-013-5452-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
Abstract
The physiology of animal cells is characterized by constantly changing environmental conditions and adapting cellular responses. Applied dynamic metabolic flux analysis captures metabolic dynamics and can be applied to industrially relevant cultivation conditions. We investigated the impact of glutamine availability or limitation on the physiology of CHO K1 cells in eight different batch and fed-batch cultivations. Varying glutamine availability resulted in global metabolic changes. We observed dose-dependent effects of glutamine in batch cultivation. Identifying metabolic links from the glutamine metabolism to specific metabolic pathways, we show that glutamine feeding results in its coupling to tricarboxylic acid cycle fluxes and in its decoupling from metabolic waste production. We provide a mechanistic explanation of the cellular responses upon mild or severe glutamine limitation and ammonia stress. The growth rate of CHO K1 decreased with increasing ammonia levels in the supernatant. On the other hand, growth, especially culture longevity, was stimulated at mild glutamine-limiting conditions. Flux rearrangements in the pyruvate and amino acid metabolism compensate glutamine limitation by consumption of alternative carbon sources and facilitating glutamine synthesis and mitigate ammonia stress as result of glutamine abundance.
Collapse
Affiliation(s)
- Judith Wahrheit
- Biochemical Engineering Institute, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | | | | |
Collapse
|
14
|
Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the α1-antitrypsin producing human AGE1.HN cell line. Metab Eng 2012; 14:128-37. [DOI: 10.1016/j.ymben.2012.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/27/2011] [Accepted: 01/02/2012] [Indexed: 11/18/2022]
|
15
|
Petiot E, Jacob D, Lanthier S, Lohr V, Ansorge S, Kamen AA. Metabolic and kinetic analyses of influenza production in perfusion HEK293 cell culture. BMC Biotechnol 2011; 11:84. [PMID: 21884612 PMCID: PMC3175177 DOI: 10.1186/1472-6750-11-84] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/01/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell culture-based production of influenza vaccine remains an attractive alternative to egg-based production. Short response time and high production yields are the key success factors for the broader adoption of cell culture technology for industrial manufacturing of pandemic and seasonal influenza vaccines. Recently, HEK293SF cells have been successfully used to produce influenza viruses, achieving hemagglutinin (HA) and infectious viral particle (IVP) titers in the highest ranges reported to date. In the same study, it was suggested that beyond 4 × 10(6) cells/mL, viral production was limited by a lack of nutrients or an accumulation of toxic products. RESULTS To further improve viral titers at high cell densities, perfusion culture mode was evaluated. Productivities of both perfusion and batch culture modes were compared at an infection cell density of 6 × 10(6) cells/mL. The metabolism, including glycolysis, glutaminolysis and amino acids utilization as well as physiological indicators such as viability and apoptosis were extensively documented for the two modes of culture before and after viral infection to identify potential metabolic limitations. A 3 L bioreactor with a perfusion rate of 0.5 vol/day allowed us to reach maximal titers of 3.3 × 10(11) IVP/mL and 4.0 logHA units/mL, corresponding to a total production of 1.0 × 10(15) IVP and 7.8 logHA units after 3 days post-infection. Overall, perfusion mode titers were higher by almost one order of magnitude over the batch culture mode of production. This improvement was associated with an activation of the cell metabolism as seen by a 1.5-fold and 4-fold higher consumption rates of glucose and glutamine respectively. A shift in the viral production kinetics was also observed leading to an accumulation of more viable cells with a higher specific production and causing an increase in the total volumetric production of infectious influenza particles. CONCLUSIONS These results confirm that the HEK293SF cell is an excellent substrate for high yield production of influenza virus. Furthermore, there is great potential in further improving the production yields through better control of the cell culture environment and viral production kinetics. Once accomplished, this cell line can be promoted as an industrial platform for cost-effective manufacturing of the influenza seasonal vaccine as well as for periods of peak demand during pandemics.
Collapse
Affiliation(s)
- Emma Petiot
- Biotechnology Research Institute, 6100 Royalmount Avenue, Montreal, H4P 2R2 Québec, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Zamorano F, Wouwer AV, Bastin G. A detailed metabolic flux analysis of an underdetermined network of CHO cells. J Biotechnol 2010; 150:497-508. [PMID: 20869402 DOI: 10.1016/j.jbiotec.2010.09.944] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
In this article the metabolic flux analysis of growing CHO-320 cells is performed for a detailed metabolic network which involves 100 reactions and embraces all the significant pathways describing the metabolism of CHO cells. The purpose is to investigate the efficiency of the flux analysis when it is based on a relatively small set of extracellular measurements that can be easily achieved in most laboratories. In this case the flux analysis problem leads to a generally underdetermined mass balance system, as data are not sufficient to uniquely define the metabolic fluxes. Our main contribution is to show that, provided the system of mass balance equations is well-posed, although it is underdetermined, very narrow intervals may be found for most fluxes. The importance of checking the well-posedness of the problem is emphasized and the influence of the number of available measurements on the accuracy of the metabolic flux intervals is systematically investigated. In all cases the computed flux intervals are bounded and a single well defined value is obtained for the formation rates of the cellular macromolecules (proteins, DNA, RNA, lipids) that are not measured. The potential gain of a simple theoretical assumption regarding the metabolism of Threonine is also discussed and compared with an optimal solution calculated by maximizing the biomass formation rate. Alternative network structures obtained by inverting the direction of reversible reactions are also considered. Finally, the results of the metabolic flux analysis are exploited to estimate the total energy production resulting from the metabolism of growing CHO-320 cells.
Collapse
Affiliation(s)
- F Zamorano
- Department of Automatic Control, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium.
| | | | | |
Collapse
|
17
|
Henry O, Jolicoeur M, Kamen A. Unraveling the metabolism of HEK-293 cells using lactate isotopomer analysis. Bioprocess Biosyst Eng 2010; 34:263-73. [PMID: 20848294 DOI: 10.1007/s00449-010-0468-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/01/2010] [Indexed: 01/22/2023]
Abstract
HEK-293 is the most extensively used human cell line for the production of viral vectors and is gaining increasing attention for the production of recombinant proteins by transient transfection. To further improve the metabolic characterization of this cell line, we have performed cultures using ¹³C-labeled substrates and measured the resulting mass isotopomer distributions in lactate by LC/MS. Simultaneous metabolite and isotopomer balancing allowed improvement and validation of the metabolic model and quantification of key intracellular pathways. We have determined the amounts of glucose carbon channeled through the PPP, incorporated into the TCA cycle for energy production and lipids biosynthesis, as well as the cytosolic and mitochondrial malic enzyme fluxes. Our analysis also revealed that glutamine did not significantly contribute to lactate formation. An improved and quantitative understanding of the central carbon metabolism is greatly needed to pursue the rational development of engineering approaches at both the cellular and process levels.
Collapse
Affiliation(s)
- Olivier Henry
- Chemical Engineering Department, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC H3C3A7, Canada.
| | | | | |
Collapse
|
18
|
Goudar CT, Biener R, Konstantinov KB, Piret JM. Error propagation from prime variables into specific rates and metabolic fluxes for mammalian cells in perfusion culture. Biotechnol Prog 2009; 25:986-98. [PMID: 19551875 DOI: 10.1002/btpr.155] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Error propagation from prime variables into specific rates and metabolic fluxes was quantified for high-concentration CHO cell perfusion cultivation. Prime variable errors were first determined from repeated measurements and ranged from 4.8 to 12.2%. Errors in nutrient uptake and metabolite/product formation rates for 5-15% error in prime variables ranged from 8-22%. The specific growth rate, however, was characterized by higher uncertainty as 15% errors in the bioreactor and harvest cell concentration resulted in 37.8% error. Metabolic fluxes were estimated for 12 experimental conditions, each of 10 day duration, during 120-day perfusion cultivation and were used to determine error propagation from specific rates into metabolic fluxes. Errors of the greater metabolic fluxes (those related to glycolysis, lactate production, TCA cycle and oxidative phosphorylation) were similar in magnitude to those of the related greater specific rates (glucose, lactate, oxygen and CO(2) rates) and were insensitive to errors of the lesser specific rates (amino acid catabolism and biosynthesis rates). Errors of the lesser metabolic fluxes (those related to amino acid metabolism), however, were extremely sensitive to errors of the greater specific rates to the extent that they were no longer representative of cellular metabolism and were much less affected by errors in the lesser specific rates. We show that the relationship between specific rate and metabolic flux error could be accurately described by normalized sensitivity coefficients, which were readily calculated once metabolic fluxes were estimated. Their ease of calculation, along with their ability to accurately describe the specific rate-metabolic flux error relationship, makes them a necessary component of metabolic flux analysis.
Collapse
Affiliation(s)
- Chetan T Goudar
- Cell Culture Development, Global Biologics Development, Bayer HealthCare, 800 Dwight Way, Berkeley, CA 94710, USA.
| | | | | | | |
Collapse
|
19
|
Genzel Y, Ritter JB, König S, Alt R, Reichl U. Substitution of Glutamine by Pyruvate To Reduce Ammonia Formation and Growth Inhibition of Mammalian Cells. Biotechnol Prog 2008; 21:58-69. [PMID: 15903241 DOI: 10.1021/bp049827d] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mammalian cell culture technology glutamine is required for biomass synthesis and as a major energy source together with glucose. Different pathways for glutamine metabolism are possible, resulting in different energy output and ammonia release. The accumulation of ammonia in the medium can limit cell growth and product formation. Therefore, numerous ideas to reduce ammonia concentration in cultivation broths have been developed. Here we present new aspects on the energy metabolism of mammalian cells. The replacement of glutamine (2 mM) by pyruvate (10 mM) supported cell growth without adaptation for at least 19 passages without reduction in growth rate of different adherent commercial cell lines (MDCK, BHK21, CHO-K1) in serum-containing and serum-free media. The changes in metabolism of MDCK cells due to pyruvate uptake instead of glutamine were investigated in detail (on the amino acid level) for an influenza vaccine production process in large-scale microcarrier culture. In addition, metabolite profiles from variations of this new medium formulation (1-10 mM pyruvate) were compared for MDCK cell growth in roller bottles. Even at very low levels of pyruvate (1 mM) MDCK cells grew to confluency without glutamine and accumulation of ammonia. Also glucose uptake was reduced, which resulted in lower lactate production. However, pyruvate and glutamine were both metabolized when present together. Amino acid profiles from the cell growth phase for pyruvate medium showed a reduced uptake of serine, cysteine, and methionine, an increased uptake of leucine and isoleucine and a higher release of glycine compared to glutamine medium. After virus infection completely different profiles were found for essential and nonessential amino acids.
Collapse
Affiliation(s)
- Yvonne Genzel
- Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
20
|
Dalm MCF, Lamers PP, Cuijten SMR, Tjeerdsma AM, van Grunsven WMJ, Tramper J, Martens DE. Effect of Feed and Bleed Rate on Hybridoma Cells in an Acoustic Perfusion Bioreactor: Metabolic Analysis. Biotechnol Prog 2008; 23:560-9. [PMID: 17439155 DOI: 10.1021/bp060323k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For the development of optimal perfusion processes, insight into the effect of feed and bleed rate on cell growth, productivity, and metabolism is essential. In the here presented study the effect of the feed and bleed rate on cell metabolism was investigated using metabolic flux analysis. Under all tested feed and bleed rates the biomass concentration as calculated from the nitrogen balance (biomass-nitrogen) increased linearly with an increase in feed rate, as would be expected. However, depending on the size of the feed and bleed rate, this increase was attained in two different ways. At low feed and bleed rates (Region I) the increase was obtained through an increase in viable-cell concentration, while the cellular-nitrogen content remained constant. At high feed and bleed rates (Region II) the increase was attained through an increase in cellular-nitrogen content, while the cell concentration remained constant. Per gram biomass-nitrogen, the specific consumption and production rates of the majority of the nutrients and products were identical in both regions, as were most of the fluxes. The major difference between the two regions was an increased flux from pyruvate to lactate and a decreased flux of pyruvate toward citrate in region II. The decreased in-flux at the level of citrate can either be balanced by a decreased out-flux toward lipid biosynthesis leading to a lower fraction of lipids in the cell, by a decreased out-flux toward the citric acid cycle resulting in a decreased energy generation, or by a combination of these. Finally, the specific productivity increases less than the nitrogen content per cell in region II, which implies that for obtaining maximum production rates it is important to increase the cell density and not only the biomass density.
Collapse
Affiliation(s)
- Marcella C F Dalm
- Department of Agrotechnology and Food Sciences, Food and Bioprocess Engineering Group, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
21
|
Cakir T, Alsan S, Saybaşili H, Akin A, Ulgen KO. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia. Theor Biol Med Model 2007; 4:48. [PMID: 18070347 PMCID: PMC2246127 DOI: 10.1186/1742-4682-4-48] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Accepted: 12/10/2007] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND It is a daunting task to identify all the metabolic pathways of brain energy metabolism and develop a dynamic simulation environment that will cover a time scale ranging from seconds to hours. To simplify this task and make it more practicable, we undertook stoichiometric modeling of brain energy metabolism with the major aim of including the main interacting pathways in and between astrocytes and neurons. MODEL The constructed model includes central metabolism (glycolysis, pentose phosphate pathway, TCA cycle), lipid metabolism, reactive oxygen species (ROS) detoxification, amino acid metabolism (synthesis and catabolism), the well-known glutamate-glutamine cycle, other coupling reactions between astrocytes and neurons, and neurotransmitter metabolism. This is, to our knowledge, the most comprehensive attempt at stoichiometric modeling of brain metabolism to date in terms of its coverage of a wide range of metabolic pathways. We then attempted to model the basal physiological behaviour and hypoxic behaviour of the brain cells where astrocytes and neurons are tightly coupled. RESULTS The reconstructed stoichiometric reaction model included 217 reactions (184 internal, 33 exchange) and 216 metabolites (183 internal, 33 external) distributed in and between astrocytes and neurons. Flux balance analysis (FBA) techniques were applied to the reconstructed model to elucidate the underlying cellular principles of neuron-astrocyte coupling. Simulation of resting conditions under the constraints of maximization of glutamate/glutamine/GABA cycle fluxes between the two cell types with subsequent minimization of Euclidean norm of fluxes resulted in a flux distribution in accordance with literature-based findings. As a further validation of our model, the effect of oxygen deprivation (hypoxia) on fluxes was simulated using an FBA-derivative approach, known as minimization of metabolic adjustment (MOMA). The results show the power of the constructed model to simulate disease behaviour on the flux level, and its potential to analyze cellular metabolic behaviour in silico. CONCLUSION The predictive power of the constructed model for the key flux distributions, especially central carbon metabolism and glutamate-glutamine cycle fluxes, and its application to hypoxia is promising. The resultant acceptable predictions strengthen the power of such stoichiometric models in the analysis of mammalian cell metabolism.
Collapse
Affiliation(s)
- Tunahan Cakir
- Department of Chemical Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Zhang C, Ferreira TB, Cruz PE, Alves PM, Haury M, Carrondo MJ. The importance of 293 cell cycle phase on adenovirus vector production. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Maranga L, Goochee CF. Metabolism of PER.C6 cells cultivated under fed-batch conditions at low glucose and glutamine levels. Biotechnol Bioeng 2006; 94:139-50. [PMID: 16523524 DOI: 10.1002/bit.20890] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This is the first study to examine PER.C6 cell glucose/energy and glutamine metabolism with fed-batch cultures at controlled low glutamine, low glucose, and simultaneous low glucose and low glutamine levels. PER.C6(TM) cell metabolism was investigated in serum-free suspension bioreactors at two-liter scale. Control of glucose and/or glutamine concentrations had a significant effect on cellular metabolism leading to an increased efficiency of nutrient utilization, altered byproduct synthesis, while having no effect on cell growth rate. Cultivating cells at a controlled glutamine concentration of 0.25 mM reduced q(Gln) and q(NH(4)(+)) by approximately 30%, q(Ala) 85%, and q(NEAA) 50%. The fed-batch control of glutamine also reduced the overall accumulation of ammonium ion by approximately 50% by minimizing the spontaneous chemical degradation of glutamine. No major impact upon glucose/energy metabolism was observed. Cultivating cells at a glucose concentration of 0.5 mM reduced q(Glc) about 50% and eliminated lactate accumulation. Cells exhibited a fully oxidative metabolism with Y(O(2)/Glc) of approximately 6 mol/mol. However, despite no increase in q(Gln), an increased ammonium ion accumulation and Y(NH(4)(+)/Gln) were also observed. Effective control of lactate and ammonium ion accumulation by PER.C6 cells was achieved using fed-batch with simultaneously controlled glucose and glutamine. A fully oxidative glucose metabolism and a complete elimination of lactate production were obtained. The q(Gln) value was again reduced and, despite an increased q(NH(4)(+)) compared with batch culture, ammonium ion levels were typically lower than corresponding ones in batch cultures, and the accumulation of non-essential amino acids (NEAA) was reduced about 50%. In conclusion, this study shows that PER.C6 cell metabolism can be confined to a state with improved efficiencies of nutrient utilization by cultivating cells in fed-batch at millimolar controlled levels of glucose and glutamine. In addition, PER.C6 cells fall into a minority category of mammalian cell lines for which glutamine plays a minor role in energy metabolism.
Collapse
Affiliation(s)
- Luis Maranga
- Fermentation and Cell Culture, Bioprocess R&D, Merck Research Laboratories, Merck & Co., Inc., 770 Sumneytown Pike, WP17-201 P.O. Box 4, West Point, Pennsylvania 19486, USA.
| | | |
Collapse
|
25
|
Ferreira TB, Ferreira AL, Carrondo MJT, Alves PM. Effect of refeed strategies and non-ammoniagenic medium on adenovirus production at high cell densities. J Biotechnol 2005; 119:272-80. [PMID: 15885836 DOI: 10.1016/j.jbiotec.2005.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 03/21/2005] [Accepted: 03/29/2005] [Indexed: 11/26/2022]
Abstract
Recombinant adenoviruses became one of the vectors of choice for delivery and expression of foreign proteins for gene therapy and vaccination purposes. Nevertheless, the production of adenovirus is currently limited by the so-called "cell density effect", i.e., a drop in cell specific productivity concomitant with increased cell concentration at infection (CCI). This work describes the characterisation and optimisation of the infection process in order to improve recombinant adenovirus type 5 yields at high cell densities. For that purpose, 293 cells adapted to suspension were grown in 2l bioreactors and infected at different cell concentrations, using different re-feed strategies, while evaluating cell metabolism. The consumption of amino acids is enhanced during infection, although no amino acid limitation was detected for cells infected at concentrations in the range of 2 x 10(6)cell/ml, for which the highest volumetric productivity was obtained in batch mode. Conversely, infecting at cell concentrations in the range of 3 x10(6)cell/ml led to complete depletion of glucose, glutamine and threonine before the optimal harvesting time, a significant decrease in volumetric productivity being observed; the effect of amino acids and glucose addition at infection time on cell specific and volumetric productivity of adenovirus was assessed, no improvement on adenovirus production being achieved. The effect of ammonia, present in high concentrations at 3 x10(6)cell/ml, was evaluated and seem to be detrimental; an 1.8-fold increase on adenovirus volumetric productivity was obtained for infections performed at 3 x10(6)cell/ml when non-ammoniagenic medium was used.
Collapse
Affiliation(s)
- T B Ferreira
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica (IBET/ITQB), Apartado 12, P-2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
26
|
Henry O, Perrier M, Kamen A. Metabolic flux analysis of HEK-293 cells in perfusion cultures for the production of adenoviral vectors. Metab Eng 2005; 7:467-76. [PMID: 16198135 DOI: 10.1016/j.ymben.2005.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 08/05/2005] [Accepted: 08/09/2005] [Indexed: 11/29/2022]
Abstract
To meet increasing needs of adenovirus vectors for gene therapy programs, development of efficient and reproducible production processes is required. Perfusion cultures were employed to allow infection at greater cell concentrations. In an effort to define culture conditions resulting in enhanced productivities, experiments performed at different feed rates and infected at various cell densities were compared using metabolic flux analysis. The highest specific product yields were achieved in experiments performed at high perfusion rates and/or low cell concentrations. The intracellular flux analysis revealed that these experiments exhibited greater glycolytic fluxes, slightly higher TCA fluxes, and greater ATP production rates at the time of infection. In contrast, cultures infected at high cell density and/or low medium renewal rates were characterized by a more efficient utilization of glucose at the time of infection, but the specific product yields achieved were lower. The intracellular flux analysis provided a rational basis for the implementation of a feeding strategy that allowed successful infection at a density of 5x10(6)cells/ml.
Collapse
Affiliation(s)
- O Henry
- Institut de Recherche en Biotechnologie, CNRC, 6100 avenue Royalmount, and Ecole Polytechnique de Montréal, Campus de l'Université de Montréal, Montréal, Qué., Canada
| | | | | |
Collapse
|
27
|
Maranga L, Auniņs JG, Zhou W. Characterization of changes in PER.C6™ cellular metabolism during growth and propagation of a replication-deficient adenovirus vector. Biotechnol Bioeng 2005; 90:645-55. [PMID: 15834950 DOI: 10.1002/bit.20455] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PER.C6 cells were cultivated for propagation of a replication-defective adenovirus vector in serum-free suspension bioreactors. Cellular metabolism during cell growth and adenovirus propagation was fully characterized using on-line and off-line methods. The energy metabolism was found to accelerate transiently after adenovirus infection with increases in glucose and oxygen consumption rates. Similar to other mammalian cells, glucose utilization was highly inefficient and a high lactate:glucose yield was observed, both before and after virus infection. A higher consumption of most of the essential amino acids was observed transiently after the infection, likely due to increased protein synthesis requirements for virus propagation. To improve virus propagation, a medium exchange strategy was implemented to increase PER.C6 cell concentration for infection. During cell growth, a 50% increase in glucose consumption and lactate production rates was observed after initiation of the medium exchange in comparison to the batch phase. This decrease in medium capacity only affected the central carbon metabolism and no increase in amino acid consumption was observed. In addition, even though cell concentrations of up to 10 x 10(6) cells/mL were reproducibly obtained by medium exchange, infections at cell concentrations higher than 1 x 10(6) cells/mL did not proportionally improve volumetric adenovirus productivities. No measured nutrient limitation was observed at those high cell concentrations, indicating that adenovirus cell-specific productivity at higher cell concentrations is highly dependent on cell physiology. These results provide a better understanding of PER.C6 cellular metabolism and a basis for intensifying PER.C6 growth and adenovirus propagation.
Collapse
Affiliation(s)
- Luis Maranga
- Fermentation and Cell Culture, Bioprocess R&D, Merck Research Laboratories, Merck & Co., Inc., 770 Sumneytown Pike, WP17-201 P.O. Box 4, West Point, Pennsylvania 19486, USA
| | | | | |
Collapse
|
28
|
|
29
|
Abstract
The field of gene therapy is rapidly expanding with a major focus on the treatment of cancer. Replication-defective adenoviruses are vectors of choice for delivering corrective genes into human cells. Major efforts are directed to design new generations of adenoviral vectors that feature reduced immunogenicity and improved targeting ability. However, the production of adenoviral vectors for gene therapy applications faces a number of challenges that limit the availability of high quality material at the early stages of research and development in the gene therapy field. Moreover, very few papers have been published on the subject and information on large-scale production methods are only available through specialized conference proceedings. This review outlines the problems associated with mass production of adenovirus vectors and describes research efforts by a number of groups who have contributed to optimize production methods. Better understanding of the adenovirus infection and replication kinetics as well as better understanding of complementing cell line physiology and metabolism greatly contributed to improving vector titers and volumetric productivity at higher cell densities. Also, the critical aspect of viral vector quantitation is discussed.
Collapse
Affiliation(s)
- Isabelle Nadeau
- Animal Cell Technology Group, Biotechnology Research Institute, National Research Council, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2
| | | |
Collapse
|
30
|
Nadeau I, Gilbert PA, Jacob D, Perrier M, Kamen A. Low-protein medium affects the 293SF central metabolism during growth and infection with adenovirus. Biotechnol Bioeng 2002; 77:91-104. [PMID: 11745177 DOI: 10.1002/bit.10128] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study the metabolism of 293SF cells grown in serum-free and low-protein medium was analyzed. This cell line is known for its ability to replicate recombinant adenovirus, mainly used in gene therapy applications. A complete model composed of the main glycolytic, glutaminolytic, and amino acids pathways, as well as the internalization fluxes of certain compounds into the mitochondria, is used for metabolic flux calculations. The pentose-phosphate cycle is also added to the biochemical reactions set and was independently measured with labeled 14C-glucose. Different feeding strategies in two different media were analyzed with the model, and the theoretical ATP production was also calculated. The two media were similar in their glucose and amino acid composition, but one contained BSA at 1g/L whereas the other had a very low protein content. Use of low-protein medium resulted in up to fourfold higher adenoviral vector production. In this medium, glucose utilization was more efficient, as it entered the TCA cycle more efficiently. Also, lower glutamine and amino acids consumption were observed as well as lower lactate and ammonia production. This increased TCA activity led to a twofold higher ATP production in the low-protein medium.
Collapse
Affiliation(s)
- I Nadeau
- Institut de recherche en biotechnologie, CNRC, 6100 avenue Royalmount, Montréal, Québec H4P 2R2, Canada
| | | | | | | | | |
Collapse
|