1
|
Gessler L, Huraskin D, Eiber N, Hashemolhosseini S. The impact of canonical Wnt transcriptional repressors TLE3 and TLE4 on postsynaptic transcription at the neuromuscular junction. Front Mol Neurosci 2024; 17:1360368. [PMID: 38600964 PMCID: PMC11004254 DOI: 10.3389/fnmol.2024.1360368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Here, we investigated the role of the canonical Wnt signaling pathway transcriptional regulators at the neuromuscular junction. Upon applying a denervation paradigm, the transcription levels of Ctnnb1, Tcf7l1, Tle1, Tle2, Tle3, and Tle4 were significantly downregulated. A significant decrease in canonical Wnt signaling activity was observed using the denervation paradigm in Axin2-lacZ reporter mice. Alterations in the transcriptional profile of the myogenic lineage in response to agrin (AGRN) suggested that TLE3 and TLE4, family members of groucho transducin-like enhancer of split 3 (TLE3), transcriptional repressors known to antagonize T cell factor/lymphoid enhancer factor (TCF)-mediated target gene activation, could be important regulators of canonical Wnt signaling activity at the postsynapse. Knockouts of these genes using CRISPR/Cas9 gene editing in primary skeletal muscle stem cells, called satellite cells, led to decreased AGRN-dependent acetylcholine receptor (CHRN) clustering and reduced synaptic gene transcription upon differentiation of these cells. Overall, our findings demonstrate that TLE3 and TLE4 participate in diminishing canonical Wnt signaling activity, supporting transcription of synaptic genes and CHRN clustering at the neuromuscular junction.
Collapse
Affiliation(s)
- Lea Gessler
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Danyil Huraskin
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nane Eiber
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Gessler L, Huraskin D, Jian Y, Eiber N, Hu Z, Prószyński T, Hashemolhosseini S. The YAP1/TAZ-TEAD transcriptional network regulates gene expression at neuromuscular junctions in skeletal muscle fibers. Nucleic Acids Res 2024; 52:600-624. [PMID: 38048326 PMCID: PMC10810223 DOI: 10.1093/nar/gkad1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
We examined YAP1/TAZ-TEAD signaling pathway activity at neuromuscular junctions (NMJs) of skeletal muscle fibers in adult mice. Our investigations revealed that muscle-specific knockouts of Yap1 or Taz, or both, demonstrate that these transcriptional coactivators regulate synaptic gene expression, the number and morphology of NMJs, and synaptic nuclei. Yap1 or Taz single knockout mice display reduced grip strength, fragmentation of NMJs, and accumulation of synaptic nuclei. Yap1/Taz muscle-specific double knockout mice do not survive beyond birth and possess almost no NMJs, the few detectable show severely impaired morphology and are organized in widened endplate bands; and with motor nerve endings being mostly absent. Myogenic gene expression is significantly impaired in the denervated muscles of knockout mice. We found that Tead1 and Tead4 transcription rates were increased upon incubation of control primary myotubes with AGRN-conditioned medium. Reduced AGRN-dependent acetylcholine receptor clustering and synaptic gene transcription were observed in differentiated primary Tead1 and Tead4 knockout myotubes. In silico analysis of previously reported genomic occupancy sites of TEAD1/4 revealed evolutionary conserved regions of potential TEAD binding motifs in key synaptic genes, the relevance of which was functionally confirmed by reporter assays. Collectively, our data suggest a role for YAP1/TAZ-TEAD1/TEAD4 signaling, particularly through TAZ-TEAD4, in regulating synaptic gene expression and acetylcholine receptor clustering at NMJs.
Collapse
Affiliation(s)
- Lea Gessler
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Danyil Huraskin
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yongzhi Jian
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nane Eiber
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tomasz J Prószyński
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Wrocław, Poland
| | - Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
- Muscle Research Center, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
3
|
Noël G, Tham DKL, MacVicar BA, Moukhles H. Agrin plays a major role in the coalescence of the aquaporin-4 clusters induced by gamma-1-containing laminin. J Comp Neurol 2019; 528:407-418. [PMID: 31454080 DOI: 10.1002/cne.24763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/13/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023]
Abstract
The basement membrane that seperates the endothelial cells and astrocytic endfeet that comprise the blood-brain barrier is rich in collagen, laminin, agrin, and perlecan. Previous studies have demonstrated that the proper recruitment of the water-permeable channel aquaporin-4 (AQP4) to astrocytic endfeet is dependent on interactions between laminin and the receptor dystroglycan. In this study, we conducted a deeper investigation into how the basement membrane might further regulate the expression, localization, and function of AQP4, using primary astrocytes as a model system. We found that treating these cells with laminin causes endogenous agrin to localize to the cell surface, where it co-clusters with β-dystroglycan (β-DG). Conversely, agrin sliencing profoundly disrupts β-DG clustering. As in the case of laminin111, Matrigel™, a complete basement membrane analog, also causes the clustering of AQP4 and β-DG. This clustering, whether induced by laminin111 or Matrigel™ is inhibited when the astrocytes are first incubated with an antibody against the γ1 subunit of laminin, suggesting that the latter is crucial to the process. Finally, we showed that laminin111 appears to negatively regulate AQP4-mediated water transport in astrocytes, suppressing the cell swelling that occurs following a hypoosmotic challenge. This suppression is abolished if DG expression is silenced, again demonstrating the central role of this receptor in relaying the effects of laminin.
Collapse
Affiliation(s)
- Geoffroy Noël
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Kai Long Tham
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian A MacVicar
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hakima Moukhles
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Eiber N, Rehman M, Kravic B, Rudolf R, Sandri M, Hashemolhosseini S. Loss of Protein Kinase Csnk2b/CK2β at Neuromuscular Junctions Affects Morphology and Dynamics of Aggregated Nicotinic Acetylcholine Receptors, Neuromuscular Transmission, and Synaptic Gene Expression. Cells 2019; 8:cells8080940. [PMID: 31434353 PMCID: PMC6721821 DOI: 10.3390/cells8080940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/21/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
The protein kinase Csnk2/CK2 is important for cell proliferation, differentiation, and survival. Previously, we showed that CK2 binds distinctive proteins at neuromuscular junctions (NMJs) of mice and phosphorylates some of them. CK2 likely stabilizes clustered nicotinic acetylcholine receptors (AChRs). In the absence of the β-subunit of CK2 in skeletal muscle fibers, mice develop an age-dependent decrease of grip strength accompanied by NMJ fragmentation and impairments of neuromuscular transmission. However, the precise role of CK2β regarding the clustering of AChRs and downstream signaling at NMJs is unknown. Here, we compared conditional CK2β-deficient mice with controls and found in the mutants (1) a lower decrement of endplate potentials after repetitive stimulation and decrements of nerve-evoked compound muscle action potentials decayed more rapidly after synaptic transmission was partially blocked, (2) that their muscle weakness was partially rescued by administration of an acetylcholine esterase inhibitor, (3) fragmented NMJs and impaired AChR clustering was detected in muscles and cultured muscle cells, (4) enlarged myonuclei, (5) impaired synaptic gene expression, and (6) a high turnover rate of their AChR clusters in vivo. Altogether, our data demonstrate a role for CK2 at the NMJ by maintaining a high density of AChRs and ensuring physiological synaptic gene expression.
Collapse
Affiliation(s)
- Nane Eiber
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, |91054 Erlangen, Germany
| | - Michael Rehman
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, |91054 Erlangen, Germany
- Weill Cornell Medical College, Department of Medicine, New York, NY 10065, USA
| | - Bojana Kravic
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, |91054 Erlangen, Germany
- Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Rüdiger Rudolf
- Institute of molecular- and cellular biology, University of Applied Sciences Mannheim, |68163 Mannheim, Germany
| | - Marco Sandri
- Department of Biomedical Science, University of Padova, 35122 Padova, Italy
| | - Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, |91054 Erlangen, Germany.
| |
Collapse
|
5
|
Hunter DD, Manglapus MK, Bachay G, Claudepierre T, Dolan MW, Gesuelli KA, Brunken WJ. CNS synapses are stabilized trans-synaptically by laminins and laminin-interacting proteins. J Comp Neurol 2017; 527:67-86. [PMID: 29023785 DOI: 10.1002/cne.24338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023]
Abstract
The retina expresses several laminins in the outer plexiform layer (OPL), where they may provide an extracellular scaffold for synapse stabilization. Mice with a targeted deletion of the laminin β2 gene (Lamb2) exhibit retinal disruptions: photoreceptor synapses in the OPL are disorganized and the retinal physiological response is attenuated. We hypothesize that laminins are required for proper trans-synaptic alignment. To test this, we compared the distribution, expression, association and modification of several pre- and post-synaptic elements in wild-type and Lamb2-null retinae. A potential laminin receptor, integrin α3, is at the presynaptic side of the wild-type OPL. Another potential laminin receptor, dystroglycan, is at the post-synaptic side of the wild-type OPL. Integrin α3 and dystroglycan can be co-immunoprecipitated with the laminin β2 chain, demonstrating that they may bind laminins. In the absence of the laminin β2 chain, the expression of many pre-synaptic components (bassoon, kinesin, among others) is relatively undisturbed although their spatial organization and anchoring to the membrane is disrupted. In contrast, in the Lamb2-null, β-dystroglycan (β-DG) expression is altered, co-localization of β-DG with dystrophin and the glutamate receptor mGluR6 is disrupted, and the post-synaptic bipolar cell components mGluR6 and GPR179 become dissociated, suggesting that laminins mediate scaffolding of post-synaptic components. In addition, although pikachurin remains associated with β-DG, pikachurin is no longer closely associated with mGluR6 or α-DG in the Lamb2-null. These data suggest that laminins act as links among pre- and post-synaptic laminin receptors and α-DG and pikachurin in the synaptic space to maintain proper trans-synaptic alignment.
Collapse
Affiliation(s)
- Dale D Hunter
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts.,Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - Mary K Manglapus
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts
| | - Galina Bachay
- Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - Thomas Claudepierre
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts
| | - Michael W Dolan
- Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - Kelly-Ann Gesuelli
- Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - William J Brunken
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts.,Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| |
Collapse
|
6
|
Steiner E, Enzmann GU, Lyck R, Lin S, Rüegg MA, Kröger S, Engelhardt B. The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions. Cell Tissue Res 2014; 358:465-79. [PMID: 25107608 PMCID: PMC4210653 DOI: 10.1007/s00441-014-1969-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/17/2014] [Indexed: 01/13/2023]
Abstract
Barrier characteristics of brain endothelial cells forming the blood–brain barrier (BBB) are tightly regulated by cellular and acellular components of the neurovascular unit. During embryogenesis, the accumulation of the heparan sulfate proteoglycan agrin in the basement membranes ensheathing brain vessels correlates with BBB maturation. In contrast, loss of agrin deposition in the vasculature of brain tumors is accompanied by the loss of endothelial junctional proteins. We therefore wondered whether agrin had a direct effect on the barrier characteristics of brain endothelial cells. Agrin increased junctional localization of vascular endothelial (VE)-cadherin, β-catenin, and zonula occludens-1 (ZO-1) but not of claudin-5 and occludin in the brain endothelioma cell line bEnd5 without affecting the expression levels of these proteins. This was accompanied by an agrin-induced reduction of the paracellular permeability of bEnd5 monolayers. In vivo, the lack of agrin also led to reduced junctional localization of VE-cadherin in brain microvascular endothelial cells. Taken together, our data support the notion that agrin contributes to barrier characteristics of brain endothelium by stabilizing the adherens junction proteins VE-cadherin and β-catenin and the junctional protein ZO-1 to brain endothelial junctions.
Collapse
Affiliation(s)
- Esther Steiner
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Agrin, an extracellular matrix protein belonging to the heterogeneous family of heparan sulfate proteoglycans (HSPGs), is expressed by cells of the hematopoietic system but its role in leukocyte biology is not yet clear. Here we demonstrate that agrin has a crucial, nonredundant role in myeloid cell development and functions. We have identified lineage-specific alterations that affect maturation, survival and properties of agrin-deficient monocytic cells, and occur at stages later than stem cell precursors. Our data indicate that the cell-autonomous signals delivered by agrin are sensed by macrophages through the α-DC (DG) receptor and lead to the activation of signaling pathways resulting in rearrangements of the actin cytoskeleton during the phagocytic synapse formation and phosphorylation of extracellular signal-regulated kinases (Erk 1/2). Altogether, these data identify agrin as a novel player of innate immunity.
Collapse
|
8
|
Porten E, Seliger B, Schneider VA, Wöll S, Stangel D, Ramseger R, Kröger S. The process-inducing activity of transmembrane agrin requires follistatin-like domains. J Biol Chem 2009; 285:3114-25. [PMID: 19940118 DOI: 10.1074/jbc.m109.039420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clustering or overexpression of the transmembrane form of the extracellular matrix proteoglycan agrin in neurons results in the formation of numerous highly motile filopodia-like processes extending from axons and dendrites. Here we show that similar processes can be induced by overexpression of transmembrane-agrin in several non-neuronal cell lines. Mapping of the process-inducing activity in neurons and non-neuronal cells demonstrates that the cytoplasmic part of transmembrane agrin is dispensable and that the extracellular region is necessary for process formation. Site-directed mutagenesis reveals an essential role for the loop between beta-sheets 3 and 4 within the Kazal subdomain of the seventh follistatin-like domain of TM-agrin. An aspartic acid residue within this loop is critical for process formation. The seventh follistatin-like domain could be functionally replaced by the first and sixth but not by the eighth follistatin-like domain, demonstrating a functional redundancy among some follistatin-like domains of agrin. Moreover, a critical distance of the seventh follistatin-like domain to the plasma membrane appears to be required for process formation. These results demonstrate that different regions within the agrin protein are responsible for synapse formation at the neuromuscular junction and for process formation in central nervous system neurons and suggest a role for agrin's follistatin-like domains in the developing central nervous system.
Collapse
Affiliation(s)
- Elmar Porten
- Department of Physiological Chemistry, University of Mainz, D-55128 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Ramseger R, White R, Kröger S. Transmembrane form agrin-induced process formation requires lipid rafts and the activation of Fyn and MAPK. J Biol Chem 2009; 284:7697-705. [PMID: 19139104 DOI: 10.1074/jbc.m806719200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Overexpression or clustering of the transmembrane form of the extracellular matrix heparan sulfate proteoglycan agrin (TM-agrin) induces the formation of highly dynamic filopodia-like processes on axons and dendrites from central and peripheral nervous system-derived neurons. Here we show that the formation of these processes is paralleled by a partitioning of TM-agrin into lipid rafts, that lipid rafts and transmembrane-agrin colocalize on the processes, that extraction of lipid rafts with methyl-beta-cyclodextrin leads to a dose-dependent reduction of process formation, that inhibition of lipid raft synthesis prevents process formation, and that the continuous presence of lipid rafts is required for the maintenance of the processes. Association of TM-agrin with lipid rafts results in the phosphorylation and activation of the Src family kinase Fyn and subsequently in the phosphorylation and activation of MAPK. Inhibition of Fyn or MAPK activation inhibits process formation. These results demonstrate that the formation of filopodia-like processes by TM-agrin is the result of the activation of a complex intracellular signaling cascade, supporting the hypothesis that TM-agrin is a receptor or coreceptor on neurons.
Collapse
Affiliation(s)
- Rene Ramseger
- Department of Physiological Chemistry, University of Mainz, 55128 Mainz, Germany
| | | | | |
Collapse
|
10
|
Abstract
The heparan sulfate proteoglycan agrin is best known for its essential role during formation, maintenance and regeneration of the neuromuscular junction. Mutations in agrin-interacting proteins are the genetic basis for a number of neuromuscular disorders. However, agrin is widely expressed in many tissues including neurons and glial cells of the brain, where its precise function is much less understood. Fewer synapses develop in brains that lack agrin, consistent with a function of agrin during CNS synaptogenesis. Recently, a specific transmembrane form of agrin (TM-agrin) was identified that is concentrated at that interneuronal synapses in the brain. Clustering or overexpression of TM-agrin leads to the formation of filopodia-like processes, which might be precursors for CNS synapses. Agrin is subject to defined and activity-dependent proteolytic cleavage by neurotrypsin at synapses and dysregulation of agrin processing might contribute to the development of mental retardation. This review summarizes what is known about the role of agrin during synapse formation at the neuromuscular junction and in the developing CNS and will discuss additional functions of agrin in the adult CNS, in particular during BBB formation, during recovery after traumatic brain injury and in the etiology of diseases, including Alzheimer’s disease and mental retardation.
Collapse
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Ludwig-Maximilians University, Schillerstrasse 46, D-80336 Munich, Germany
| | - Heike Pfister
- Department of Physiological Genomics, Ludwig-Maximilians University, Schillerstrasse 46, D-80336 Munich, Germany
| |
Collapse
|
11
|
Williams S, Ryan C, Jacobson C. Agrin and neuregulin, expanding roles and implications for therapeutics. Biotechnol Adv 2008; 26:187-201. [DOI: 10.1016/j.biotechadv.2007.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 01/15/2023]
|
12
|
Noell S, Fallier-Becker P, Beyer C, Kröger S, Mack AF, Wolburg H. Effects of agrin on the expression and distribution of the water channel protein aquaporin-4 and volume regulation in cultured astrocytes. Eur J Neurosci 2007; 26:2109-18. [PMID: 17927773 DOI: 10.1111/j.1460-9568.2007.05850.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Agrin is a heparan sulfate proteoglycan of the extracellular matrix and is known for organizing the postsynaptic differentiation of the neuromuscular junction. Increasing evidence also suggests roles for agrin in the developing CNS, including the formation and maintenance of the blood-brain barrier. Here we describe effects of agrin on the expression and distribution of the water channel protein aquaporin-4 (AQP4) and on the swelling capacity of cultured astrocytes of newborn mice. If astrocytes were cultured on a substrate containing poly DL-ornithine, anti-AQP4 immunoreactivity was evenly and diffusely distributed. If, however, astrocytes were cultured in the presence of agrin-conditioned medium, we observed an increase in the intensity of AQP4-specific membrane-associated staining. Freeze-fracture studies revealed a clustering of orthogonal arrays of particles, representing a structural equivalent of AQP4, when exogenous agrin was present in the astrocyte cultures. Neuronal and non-neuronal agrin isoforms (agrin A0B0 and agrin A4B8, respectively) were able to induce membrane-associated AQP4 staining. Water transport capacity as well as the density of orthogonal arrays of intramembranous particles was increased in astrocytes cultured with the neuronal agrin isoform A4B8, but not with the endothelial and meningeal isoform A0B0. RT-PCR demonstrated that agrin A4B8 increased the level of the M23 splice variant of AQP4 and decreased the level of the M1 splice variant of AQP4. Implications for the regulation and maintenance of the blood-brain barrier including oedema formation under pathological conditions are discussed.
Collapse
Affiliation(s)
- Susan Noell
- Institute of Pathology, University of Tübingen, Liebermeisterstrasse 8, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Katyal S, Gao Z, Liu RZ, Godbout R. Evolutionary conservation of alternative splicing in chicken. Cytogenet Genome Res 2007; 117:146-57. [PMID: 17675855 PMCID: PMC3726401 DOI: 10.1159/000103175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/13/2006] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing represents a source of great diversity for regulating protein expression and function. It has been estimated that one-third to two-thirds of mammalian genes are alternatively spliced. With the sequencing of the chicken genome and analysis of transcripts expressed in chicken tissues, we are now in a position to address evolutionary conservation of alternative splicing events in chicken and mammals. Here, we compare chicken and mammalian transcript sequences of 41 alternatively-spliced genes and 50 frequently accessed genes. Our results support a high frequency of splicing events in chicken, similar to that observed in mammals.
Collapse
Affiliation(s)
- S Katyal
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
14
|
Schröder JE, Tegeler MR, Grosshans U, Porten E, Blank M, Lee J, Esapa C, Blake DJ, Kröger S. Dystroglycan regulates structure, proliferation and differentiation of neuroepithelial cells in the developing vertebrate CNS. Dev Biol 2007; 307:62-78. [PMID: 17512925 DOI: 10.1016/j.ydbio.2007.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/08/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
In the developing CNS alpha- and beta-dystroglycan are highly concentrated in the endfeet of radial neuroepithelial cells at the contact site to the basal lamina. We show that injection of anti-dystroglycan Fab fragments, knockdown of dystroglycan using RNAi, and overexpression of a dominant-negative dystroglycan protein by microelectroporation in neuroepithelial cells of the chick retina and optic tectum in vivo leads to the loss of their radial morphology, to hyperproliferation, to an increased number of postmitotic neurons, and to an altered distribution of several basally concentrated proteins. Moreover, these treatments also altered the oriented growth of axons from retinal ganglion cells and from tectal projection neurons. In contrast, expression of non-cleavable dystroglycan protein in neuroepithelial cells reduced their proliferation and their differentiation to postmitotic neurons. These results demonstrate that dystroglycan plays a key role in maintaining neuroepithelial cell morphology, and that interfering with dystroglycan function influences proliferation and differentiation of neuroepithelial cells. These data also suggest that an impaired dystroglycan function in neuroepithelial cells might be responsible for some of the severe brain abnormalities observed in certain forms of congenital muscular dystrophy.
Collapse
Affiliation(s)
- Jörn E Schröder
- Department of Physiological Chemistry, University of Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cheusova T, Khan MA, Schubert SW, Gavin AC, Buchou T, Jacob G, Sticht H, Allende J, Boldyreff B, Brenner HR, Hashemolhosseini S. Casein kinase 2-dependent serine phosphorylation of MuSK regulates acetylcholine receptor aggregation at the neuromuscular junction. Genes Dev 2006; 20:1800-16. [PMID: 16818610 PMCID: PMC1522076 DOI: 10.1101/gad.375206] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The release of Agrin by motoneurons activates the muscle-specific receptor tyrosine kinase (MuSK) as the main organizer of subsynaptic specializations at the neuromuscular junction. MuSK downstream signaling is largely undefined. Here we show that protein kinase CK2 interacts and colocalizes with MuSK at post-synaptic specializations. We observed CK2-mediated phosphorylation of serine residues within the kinase insert (KI) of MuSK. Inhibition or knockdown of CK2, or exchange of phosphorylatable serines by alanines within the KI of MuSK, impaired acetylcholine receptor (AChR) clustering, whereas their substitution by residues that imitate constitutive phosphorylation led to aggregation of AChRs even in the presence of CK2 inhibitors. Impairment of AChR cluster formation after replacement of MuSK KI with KIs of other receptor tyrosine kinases correlates with potential CK2-dependent serine phosphorylation within KIs. MuSK activity was unchanged but AChR stability decreased in the presence of CK2 inhibitors. Muscle-specific CK2beta knockout mice develop a myasthenic phenotype due to impaired muscle endplate structure and function. This is the first description of a regulatory cross-talk between MuSK and CK2 and of a role for the KI of the receptor tyrosine kinase MuSK for the development of subsynaptic specializations.
Collapse
Affiliation(s)
- Tatiana Cheusova
- Institut für Biochemie, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cheusova T, Khan MA, Enz R, Hashemolhosseini S. Identification of developmentally regulated expression of MuSK in astrocytes of the rodent retina. J Neurochem 2006; 99:450-7. [PMID: 16899069 DOI: 10.1111/j.1471-4159.2006.04086.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the master regulators of postsynaptic neuromuscular synaptogenesis is the muscle-specific receptor tyrosine kinase (MuSK). In mammals prominent MuSK expression is believed to be restricted to skeletal muscle. Upon activation by nerve-derived agrin MuSK-dependent signalling participates in both the induction of genes encoding postsynaptic components and aggregation of nicotinic acetylcholine receptors (AChR) in the subsynaptic muscle membrane. Strikingly, expression of certain isoforms of nerve-derived agrin can also be detected in the CNS. In this study, we examined the expression of MuSK in the brain and eye of rodents. In the retina MuSK was expressed in astrocytes between postnatal days 7 and 14, i.e. at the time when the eyes open. We found that agrin was localized adjacent to MuSK-expressing astrocytes which in turn were detected close to the inner limiting membrane of the rodent retina. In summary, the presence of MuSK on retinal astrocytes suggests a novel role of MuSK signalling pathways in the CNS.
Collapse
Affiliation(s)
- Tatiana Cheusova
- Institut für Biochemie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
17
|
Annies M, Bittcher G, Ramseger R, Löschinger J, Wöll S, Porten E, Abraham C, Rüegg MA, Kröger S. Clustering transmembrane-agrin induces filopodia-like processes on axons and dendrites. Mol Cell Neurosci 2005; 31:515-24. [PMID: 16364653 DOI: 10.1016/j.mcn.2005.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/04/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022] Open
Abstract
The transmembrane form of agrin (TM-agrin) is primarily expressed in the CNS, particularly on neurites. To analyze its function, we clustered TM-agrin on neurons using anti-agrin antibodies. On axons from the chick CNS and PNS as well as on axons and dendrites from mouse hippocampal neurons anti-agrin antibodies induced the dose- and time-dependent formation of numerous filopodia-like processes. The processes appeared within minutes after antibody addition and contained a complex cytoskeleton. Formation of processes required calcium, could be inhibited by cytochalasine D, but was not influenced by staurosporine, heparin or pervanadate. Time-lapse video microscopy revealed that the processes were dynamic and extended laterally along the entire length of the neuron. The lateral processes had growth cones at their tips that initially adhered to the substrate, but subsequently collapsed and were retracted. These data provide the first evidence for a specific role of TM-agrin in shaping the cytoskeleton of neurites in the developing nervous system.
Collapse
Affiliation(s)
- Maik Annies
- Department of Physiological Chemistry, University of Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Noël G, Belda M, Guadagno E, Micoud J, Klöcker N, Moukhles H. Dystroglycan and Kir4.1 coclustering in retinal Müller glia is regulated by laminin-1 and requires the PDZ-ligand domain of Kir4.1. J Neurochem 2005; 94:691-702. [PMID: 16033419 DOI: 10.1111/j.1471-4159.2005.03191.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Inwardly rectifying potassium (Kir) channels in Müller glia play a critical role in the spatial buffering of potassium ions that accumulate during retinal activity. To this end, Kir channels show a polarized subcellular distribution with the predominant channel subunit in Müller glia, Kir4.1, clustered in the endfeet of these cells at the inner limiting membrane. However, the molecular mechanisms underlying their distribution have yet to be identified. Here, we show that laminin, agrin and alpha-dystroglycan (DG) codistribute with Kir4.1 at the inner limiting membrane in the retina and that laminin-1 induces the clustering of alpha-DG, syntrophin and Kir4.1 in Müller cell cultures. In addition, we found that alpha-DG clusters were enriched for agrin and sought to investigate the role of agrin in their formation using recombinant C-agrins. Both C-agrin 4,8 and C-agrin 0,0 failed to induce alpha-DG clustering and neither of them potentiated the alpha-DG clustering induced by laminin-1. Finally, our data reveal that deletion of the PDZ-ligand domain of Kir4.1 prevents their laminin-induced clustering. These findings indicate that both laminin-1 and alpha-DG are involved in the distribution of Kir4.1 to specific Müller cell membrane domains and that this process occurs via a PDZ-domain-mediated interaction. Thus, in the basal lamina laminin is an essential regulator involved in clearing excess potassium released during neuronal activity, thereby contributing to the maintenance of normal synaptic transmission in the retina.
Collapse
Affiliation(s)
- Geoffrey Noël
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Ihanamäki T, Pelliniemi LJ, Vuorio E. Collagens and collagen-related matrix components in the human and mouse eye. Prog Retin Eye Res 2004; 23:403-34. [PMID: 15219875 DOI: 10.1016/j.preteyeres.2004.04.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The three-dimensional structure of the eye plays an important role in providing a correct optical environment for vision. Much of this function is dependent on the unique structural features of ocular connective tissue, especially of the collagen types and their supramolecular structures. For example, the organization of collagen fibrils is largely responsible for transparency and refraction of cornea, lens and vitreous body, and collagens present in the sclera are largely responsible for the structural strength of the eye. Phylogenetically, most of the collagens are highly conserved between different species, which suggests that collagens also share similar functions in mice and men. Despite considerable differences between the mouse and the human eye, particularly in the proportion of the different tissue components, the difficulty of performing systematic histologic and molecular studies on the human eye has made mouse an appealing alternative to studies addressing the role of individual genes and their mutations in ocular diseases. From a genetic standpoint, the mouse has major advantages over other experimental animals as its genome is better known than that of other species and it can be manipulated by the modern techniques of genetic engineering. Furthermore, it is easy, quick and relatively cheap to produce large quantities of mice for systematic studies. Thus, transgenic techniques have made it possible to study consequences of specific mutations in genes coding for structural components of ocular connective tissues in mice. As these changes in mice have been shown to resemble those in human diseases, mouse models are likely to provide efficient tools for pathogenetic studies on human disorders affecting the extracellular matrix. This review is aimed to clarify the role of collagenous components in the mouse and human eye with a closer look at the new findings of the collagens in the cartilage and the eye, the so-called "cartilage collagens".
Collapse
Affiliation(s)
- Tapio Ihanamäki
- Department of Ophthalmology, Helsinki University Central Hospital, PO Box 220, FIN-00029 HUS Helsinki, Finland.
| | | | | |
Collapse
|
20
|
Abstract
Targeting of proteins to specific subcellular locations within pre- and postsynaptic neurons is essential for synapse formation. The heparan sulfate proteoglycan agrin orchestrates postsynaptic differentiation of the neuromuscular junction and may be involved in synaptic development and signaling in the central nervous system (CNS). Agrin is expressed as transmembrane and secretory isoforms with distinct N-termini. We examined the distribution of recombinant agrin in cultured motor and hippocampal neurons by transfection with agrin-GFP constructs. Immunostaining revealed a vesicular transport compartment within all neurites. Plasma membrane insertion and secretion of recombinant agrin were targeted to axonal growth cones of motor neurons; transmembrane agrin-GFP was targeted predominantly to axons and axonal growth cones in hippocampal neurons. We used agrin deletion mutants to show that axonal targeting of agrin depends on multiple domains that function in an additive fashion, including the very N-terminal portions and the C-terminal half of the molecule.
Collapse
Affiliation(s)
- Birgit Neuhuber
- Laboratory of Cell Biology, NHLBI-NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
Kim MJ, Cotman SL, Halfter W, Cole GJ. The heparan sulfate proteoglycan agrin modulates neurite outgrowth mediated by FGF-2. JOURNAL OF NEUROBIOLOGY 2003; 55:261-77. [PMID: 12717697 DOI: 10.1002/neu.10213] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the role of agrin in the formation of the neuromuscular junction is well established, other functions for agrin have remained elusive. The present study was undertaken to assess the role of agrin in neurite outgrowth mediated by the heparin-binding growth factor basic fibroblast growth factor (FGF-2), which we have shown previously to bind to agrin with high affinity and that has been shown to mediate neurite outgrowth from a number of neuronal cell types. Using both an established neuronal cell line, PC12 cells, and primary chick retina neuronal cultures, we find that agrin potentiates the ability of FGF-2 to stimulate neurite outgrowth. In PC12 cells and retinal neurons agrin increases the efficacy of FGF-2 stimulation of neurite outgrowth mediated by the FGF receptor, as an inhibitor of the FGF receptor abolished neurite outgrowth in the presence of agrin and FGF-2. We also examined possible mechanisms by which agrin may modulate neurite outgrowth, analyzing ERK phosphorylation and c-fos phosphorylation. These studies indicate that agrin augments a transient early phosphorylation of ERK in the presence of FGF-2, and augments and sustains FGF-2 mediated increases in c-fos phosphorylation. These data are consistent with established mechanisms where heparan sulfate proteoglycans such as agrin may increase the affinity between FGF-2 and the FGF receptor. In summary, our studies suggest that neural agrin contributes to the establishment of axon pathways by modulating the function of neurite promoting molecules such as FGF-2.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, North Carolina 27606, USA
| | | | | | | |
Collapse
|
22
|
Abstract
The heparan sulphate proteoglycan agrin is expressed as several isoforms in various tissues. Agrin is best known as a crucial organizer of postsynaptic differentiation at the neuromuscular junction, but it has recently also been implicated in the formation of the immunological synapse, the organization of the cytoskeleton and the amelioration of function in diseased muscle. So the activities of agrin might be of broader significance than previously anticipated.
Collapse
Affiliation(s)
- Gabriela Bezakova
- Department of Pharmacology/Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
23
|
Kröger S, Schröder JE. Agrin in the developing CNS: new roles for a synapse organizer. Physiology (Bethesda) 2002; 17:207-12. [PMID: 12270958 DOI: 10.1152/nips.01390.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The heparan sulfate proteoglycan agrin is responsible for the formation, maintenance, and regeneration of the neuromuscular junction. In the central nervous system, agrin is widely expressed and concentrated at interneuronal synapses, but its function during synaptogenesis remains controversial. Instead, evidence for additional functions of agrin during axonal growth, establishment of the blood-brain barrier, and Alzheimer's disease is accumulating.
Collapse
Affiliation(s)
- Stephan Kröger
- Institute for Physiological Chemistry and Pathobiochemistry, University of Mainz, D-55099 Mainz, Germany
| | | |
Collapse
|
24
|
Burgess RW, Dickman DK, Nunez L, Glass DJ, Sanes JR. Mapping sites responsible for interactions of agrin with neurons. J Neurochem 2002; 83:271-84. [PMID: 12423238 DOI: 10.1046/j.1471-4159.2002.01102.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The multidomain proteoglycan agrin is a critical organizer of postsynaptic differentiation at the skeletal neuromuscular junction. Agrin is also abundant in the brain, but its roles there are unknown. As a step toward understanding these roles, we mapped sites responsible for interactions of neurons with agrin. First, we used a series of recombinant agrin fragments to show that at least four sites on agrin interact with chick ciliary neurons. Use of blocking antibodies and peptides indicated that neurons adhere to a site in the second of three G domains by means of alphaVbeta1 integrin, and to a site in the last of four epidermal growth factor (EGF) repeats via a distinct beta1 integrin. A third, integrin-independent adhesion site is near to but distinct from the site that induces postsynaptic differentiation in muscles. These domains are insufficient, however, to account for neurite outgrowth-inhibiting properties of full-length agrin, which are mediated by the N-terminal half of the molecule. We then used a second set of agrin mutants to demonstrate and map a transmembrane domain in the amino-terminus of the SN-isoform of agrin. The extracellular matrix-bound form of agrin, called LN, bears an amino-terminus required for secretion and binding to laminin. The SN form, which is selectively expressed by neurons, bears a variant amino terminus that converts agrin from a secreted, matrix-associated protein to a type-II transmembrane protein, providing a mechanism for presenting agrin in central, as opposed to neuromuscular, synaptic clefts. The SN-amino terminus can mediate externalization and membrane anchoring of heterologous proteins, but is insufficient to target them to the synapse. Together, these studies define sites that contribute to the subcellular localization of and signaling by neuronal agrin.
Collapse
Affiliation(s)
- Robert W Burgess
- Department of Anatomy and Neurobiology, Washington University Medical School, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
25
|
Blank M, Blake DJ, Kröger S. Molecular diversity of the dystrophin-like protein complex in the developing and adult avian retina. Neuroscience 2002; 111:259-73. [PMID: 11983313 DOI: 10.1016/s0306-4522(02)00032-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in dystrophin cause muscular dystrophy but also affect the CNS, including information processing in the retina. To better understand the molecular basis of these CNS deficits, we analyzed the molecular composition and developmental appearance of dystrophin and of the dystrophin-associated protein complex (DPC) in the embryonic and adult avian retina. We detected a concentration of the DPC at the vitreal border and in the outer plexiform layer of the adult retina. At both locations the complex had a different molecular composition and different developmental expression pattern. At the vitreal border, the complex was composed of utrophin, alpha-dystrobrevin-1, and dystroglycan, and was present at all stages of retinal development even before neurogenesis and gliogenesis. On the other hand, the complex in the outer plexiform layer consisted of dystrophin, beta-dystrobrevin and dystroglycan. The distribution of this complex changed from a diffusely distributed to an aggregated form during development concomitant with synapse formation in the outer plexiform layer. Solubilization of the retinal extracellular matrix by intravitreal injection of collagenase resulted in a redistribution of the complex at the retinal vitreal border but had no influence on the distribution of the dystrophin-associated proteins in the outer plexiform layer. These results demonstrate two types of dystrophin-like complexes in the chick retina with differential molecular compositions, different anchorage to the extracellular matrix, and different developmental expression patterns, suggesting distinct functions for the DPC at both locations.
Collapse
Affiliation(s)
- M Blank
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, Frankfurt, Germany
| | | | | |
Collapse
|
26
|
Dong S, Landfair J, Balasubramani M, Bier ME, Cole G, Halfter W. Expression of basal lamina protein mRNAs in the early embryonic chick eye. J Comp Neurol 2002; 447:261-73. [PMID: 11984820 DOI: 10.1002/cne.10245] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Laminin, collagen IV, collagen XVIII, agrin, and nidogen are major protein constituents of the chick retinal basal lamina. To determine their sites of synthesis during de novo basal lamina assembly in vivo, we localized their mRNA expression in the eye during maximum expansion of the retina between embryonic day (E) 2.5 and E6. Our in situ hybridization studies showed that the expression pattern of every basal lamina protein mRNA in the developing eye is unique. Collagen IV and perlecan originate predominantly from the lens epithelium, whereas collagen XVIII, nidogen, and the laminin gamma 1 and beta1 chains are synthesized mainly by the ciliary body. Agrin, collagen XVIII, collagen IV, and laminin gamma 1 also originate from cells of the optic disc. The only basal lamina protein that is synthesized by the neural retina throughout development is agrin with ganglion cells as its main source. Some of the mRNAs have short, transient expressions in the retina, most notably that of collagen IV and laminin gamma 1, both of which appear in the ventral retina between E4 and E5. That most retinal basal lamina proteins originate from extraretinal tissues infers that the basal lamina proteins have to be shed from the lens, optic disc, and ciliary body into the vitreous body. The assembly of the retinal basal lamina then occurs by the binding of these proteins by cellular receptor proteins on the vitreal endfeet of the retinal neuroepithelial cells.
Collapse
Affiliation(s)
- Sucai Dong
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
27
|
Aricescu AR, McKinnell IW, Halfter W, Stoker AW. Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma. Mol Cell Biol 2002; 22:1881-92. [PMID: 11865065 PMCID: PMC135600 DOI: 10.1128/mcb.22.6.1881-1892.2002] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RPTPsigma is a cell adhesion molecule-like receptor protein tyrosine phosphatase involved in nervous system development. Its avian orthologue, known as cPTPsigma or CRYPalpha, promotes intraretinal axon growth and controls the morphology of growth cones. The molecular mechanisms underlying the functions of cPTPsigma are still to be determined, since neither its physiological ligand(s) nor its substrates have been described. Nevertheless, a major class of ligand(s) is present in the retinal basal lamina and glial endfeet, the potent native growth substrate for retinal axons. We demonstrate here that cPTPsigma is a heparin-binding protein and that its basal lamina ligands include the heparan sulfate proteoglycans (HSPGs) agrin and collagen XVIII. These molecules interact with high affinity with cPTPsigma in vitro, and this binding is totally dependent upon their heparan sulfate chains. Using molecular modelling and site-directed mutagenesis, a binding site for heparin and heparan sulfate was identified in the first immunoglobulin-like domain of cPTPsigma. HSPGs are therefore a novel class of heterotypic ligand for cPTPsigma, suggesting that cPTPsigma signaling in axons and growth cones is directly responsive to matrix-associated cues.
Collapse
Affiliation(s)
- A Radu Aricescu
- Neural Development Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | |
Collapse
|
28
|
Huh KH, Fuhrer C. Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses. Mol Neurobiol 2002; 25:79-112. [PMID: 11890459 DOI: 10.1385/mn:25:1:079] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fast and accurate synaptic transmission requires high-density accumulation of neurotransmitter receptors in the postsynaptic membrane. During development of the neuromuscular junction, clustering of acetylcholine receptors (AChR) is one of the first signs of postsynaptic specialization and is induced by nerve-released agrin. Recent studies have revealed that different mechanisms regulate assembly vs stabilization of AChR clusters and of the postsynaptic apparatus. MuSK, a receptor tyrosine kinase and component of the agrin receptor, and rapsyn, an AChR-associated anchoring protein, play crucial roles in the postsynaptic assembly. Once formed, AChR clusters and the postsynaptic membrane are stabilized by components of the dystrophin/utrophin glycoprotein complex, some of which also direct aspects of synaptic maturation such as formation of postjunctional folds. Nicotinic receptors are also expressed across the peripheral and central nervous system (PNS/CNS). These receptors are localized not only at the pre- but also at the postsynaptic sites where they carry out major synaptic transmission. In neurons, they are found as clusters at synaptic or extrasynaptic sites, suggesting that different mechanisms might underlie this specific localization of nicotinic receptors. This review summarizes the current knowledge about formation and stabilization of the postsynaptic apparatus at the neuromuscular junction and extends this to explore the synaptic structures of interneuronal cholinergic synapses.
Collapse
Affiliation(s)
- Kyung-Hye Huh
- Department of Neurochemistry, Brain Research Institute, University of Zürich, Switzerland
| | | |
Collapse
|
29
|
Libby RT, Brunken WJ, Hunter DD. Roles of the extracellular matrix in retinal development and maintenance. Results Probl Cell Differ 2001; 31:115-40. [PMID: 10929404 DOI: 10.1007/978-3-540-46826-4_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- R T Libby
- MRC Institute of Hearing Research, Nottingham, UK
| | | | | |
Collapse
|
30
|
Neumann FR, Bittcher G, Annies M, Schumacher B, Kröger S, Ruegg MA. An alternative amino-terminus expressed in the central nervous system converts agrin to a type II transmembrane protein. Mol Cell Neurosci 2001; 17:208-25. [PMID: 11161480 DOI: 10.1006/mcne.2000.0932] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Agrin is a basal lamina-associated heparansulfate proteoglycan that is a key molecule in the formation of the vertebrate neuromuscular junction. The carboxy-terminal part of agrin is involved in its synaptogenic activity. The amino-terminal end of chick agrin consists of a signal sequence, required for the targeting of the protein to the secretory pathway, and the amino-terminal agrin (NtA) domain that binds to basal lamina-associated laminins. The cDNA encoding rat agrin lacks this NtA domain and instead codes for a shorter amino-terminal end. While the NtA domain is conserved in several species, including human, sequences homologous to the amino-terminus of rat agrin have not been described. In this work, we have characterized these amino-terminal sequences in mouse and chick. We show that they all serve as a noncleaved signal anchor that immobilizes the protein in a N(cyto)/C(exo) orientation in the plasma membrane. Like the secreted form, this transmembrane form of agrin is highly glycosylated indicative of a heparansulfate proteoglycan. The structure of the 5' end of the mouse agrin gene suggests that a distinct promoter drives expression of the transmembrane form. Agrin transcripts encoding this form are enriched in the embryonic brain, particularly in neurons. To our knowledge, this is the first example of a molecule that is synthesized both as a basal lamina and a plasma membrane protein.
Collapse
Affiliation(s)
- F R Neumann
- Department of Pharmacology/Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, CH-4056, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Bandtlow CE, Zimmermann DR. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev 2000; 80:1267-90. [PMID: 11015614 DOI: 10.1152/physrev.2000.80.4.1267] [Citation(s) in RCA: 490] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteoglycans are a heterogeneous class of proteins bearing sulfated glycosaminoglycans. Some of the proteoglycans have distinct core protein structures, and others display similarities and thus may be grouped into families such as the syndecans, the glypicans, or the hyalectans (or lecticans). Proteoglycans can be found in almost all tissues being present in the extracellular matrix, on cellular surfaces, or in intracellular granules. In recent years, brain proteoglycans have attracted growing interest due to their highly regulated spatiotemporal expression during nervous system development and maturation. There is increasing evidence that different proteoglycans act as regulators of cell migration, axonal pathfinding, synaptogenesis, and structural plasticity. This review summarizes the most recent data on structures and functions of brain proteoglycans and focuses on new physiological concepts for their potential roles in the developing central nervous system.
Collapse
Affiliation(s)
- C E Bandtlow
- Brain Research Institute, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland.
| | | |
Collapse
|
32
|
Hering H, Koulen P, Kröger S. Distribution of the integrin beta 1 subunit on radial cells in the embryonic and adult avian retina. J Comp Neurol 2000; 424:153-64. [PMID: 10888745 DOI: 10.1002/1096-9861(20000814)424:1<153::aid-cne11>3.0.co;2-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The distribution of the beta1 integrin subunit was investigated in the developing and adult chick retina at the light and electron microscopic levels, using two different monoclonal antibodies. Western blotting revealed a single band with a molecular weight of approximately 130 kDa in the retina and in a number of other tissues, indicating the specificity of the antibodies. In the retina, immunoreactivity was detected on radial cells spanning the entire width between the pigment epithelium and the vitreal border. These cells were undifferentiated neuroepithelial cells at early stages and radial Müller glial cells at later stages of development. At all stages, the beta1 subunit was concentrated at the vitreal border of the retina around the inner limiting membrane. Mechanical isolation of the inner limiting membrane, as well as immunoelectron microscopy, demonstrated that this immunoreactivity was due to a concentration of the beta1 subunit in the endfeet of neuroepithelial and Müller glial cells. Injection of collagenase into the vitreous of live embryos, a procedure that selectively removes the inner limiting membrane, but does not proteolytically degrade the integrin protein, resulted in a redistribution of the integrin immunoreactivity, demonstrating that the integrity of the basal lamina is required for the maintenance of the concentration of the beta1 subunit in the endfeet. These results suggest a role for the beta1 subunit-containing integrin heterodimers in the adhesion of neuroepithelial and Müller glial cells to extracellular matrix components of the inner limiting membrane, possibly stabilizing the radial morphology of these cells.
Collapse
Affiliation(s)
- H Hering
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, D-60528 Frankfurt, Germany
| | | | | |
Collapse
|
33
|
Abstract
The vitreous gel is a transparent extracellular matrix that fills the cavity behind the lens of the eye and is surrounded by and attached to the retina. This gel liquefies during ageing and in 25-30% of the oppulation the residual gel structure eventually collapses away from the posterior retina in a process called posterior retina in a process called posterior vitreous detachment. This process plays a pivotal role in a number of common blinding conditions including rhegmatogenous retinal detachment, proliferative diabetic retinopathy and macular hole formation. In order to understand the molecular events underlying vitreous liquefaction and posterior vitreous detachment and to develop new therapies it is important to understand the molecular basis of normal vitreous gel structure and how this is altered during ageing. It has previously been established that a dilute dispersion of thin (heterotypic) collagen fibrils is essential to the gel structure and that age-related vitreous liquefaction is intimately related to a process whereby these collagen fibrils aggregate. Collagen fibrils have a natural tendency to aggregate so a key question that has to be addressed is: what normally maintains the spacing of the collagen fibrils? In mammalian vitreous a network of hyaluronan normally fills the spaces between these collagen fibrils. This hyaluronan network can be removed without destroying the gel structure, so the hyaluronan is not essential for maintaining the spacing of the collagen fibrils although it probably does increase the mechanical resilience of the gel. The thin heterotypic collagen fibrils have a coating of non-covalently bound macromolecules which, along with the surface features of the collagen fibrils themselves, probably play a fundamental role in maintaining gel stability. They are likely to both maintain the short-range spacing of vitreous collagen fibrils and to link the fibrils together to form a contiguous network. A collagen fibril-associated macromolecule that may contribute to the maintenance of short-range spacing is opticin, a newly discovered extracellular matrix leucine-rich repeat protein. In addition, surface features of the collagen fibrils such as the chondroitin sulphate glycosaminoglycan chains of type IX collagen proteoglycan may also play an important role in maintaining fibril spacing. Furthering our knowledge of these and other components related to the surface of the heterotypic collagen fibrils will allow us to make important strides in understanding the macromolecular organisation of this unique and fascinating tissue. In addition, it will open up new therapeutic opportunities as it will allow the development of therapeutic reagents that can be used to modulate vitreous gel structure and thus treat a number of common, potentially blinding, ocular conditions.
Collapse
Affiliation(s)
- P N Bishop
- Research Group in Eye & Vision Science, The Medical School and Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
34
|
Koulen P, Honig LS, Fletcher EL, Kröger S. Expression, distribution and ultrastructural localization of the synapse-organizing molecule agrin in the mature avian retina. Eur J Neurosci 1999; 11:4188-96. [PMID: 10594644 DOI: 10.1046/j.1460-9568.1999.00848.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At the vertebrate neuromuscular junction the extracellular matrix molecule agrin is responsible for the formation, maintenance and regeneration of most if not all postsynaptic specializations. Several agrin isoforms are generated by alternative splicing which differ in their function and which are all expressed in the CNS. To analyse the role of agrin in the CNS, we investigated the expression and ultrastructural localization of agrin in the posthatched chick retina. In situ hybridization revealed the presence of agrin mRNA in all cellular layers of the mature retina, indicating that most if not all major retinal cell types synthesize agrin. Pan-specific as well as isoform-specific antiagrin antisera stained the optic fibre layer and the outer plexiform layer. However, only the pan-specific antiserum additionally stained the inner limiting membrane. Immunoelectron microscopy showed that in the optic fibre layer agrin was associated with ganglion cell axons and that at least part of this agrin corresponds to a neuronal isoform of agrin. In the outer plexiform layer, agrin was localized in the cleft between the photoreceptor terminals and the invaginating horizontal and bipolar cell dendrites. In the synapse-containing inner plexiform layer both antisera revealed punctate immunoreactivity. This staining corresponded to agrin concentrated in the synaptic cleft of conventional synapses as determined by preembedding immunoelectron microscopy. Agrin is thus concentrated at mature interneuronal synapses as it is at the neuromuscular junction, consistent with a role of agrin during formation and/or maintenance of synapses in the CNS.
Collapse
Affiliation(s)
- P Koulen
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | | | | | | |
Collapse
|
35
|
Hering H, Kröger S. Synapse formation and agrin expression in stratospheroid cultures from embryonic chick retina. Dev Biol 1999; 214:412-28. [PMID: 10525344 DOI: 10.1006/dbio.1999.9410] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stratospheroids are three-dimensional cellular spheres which develop in vitro through the proliferation and differentiation of retinal neuroepithelial precursor cells. We investigated synapse formation in stratospheroids by analyzing the development of aggregates of synapse-associated molecules and of electron microscopically identifiable synaptic specializations. Our results show that the first aggregates of the GABA(A) receptor, the glycine receptor, and gephyrin appear in the inner plexiform layer after 8 days in culture simultaneously with the development of the first active zones and postsynaptic densities. In contrast, presynaptic molecules including synaptophysin could be detected in the inner plexiform layer before synaptogenesis, suggesting functions for these molecules in addition to neurotransmitter exocytosis at mature synapses. Similar to the retina in vivo, synapses were not found in the nuclear layers of stratospheroids. We also analyzed the isoform pattern, expression, and distribution of the extracellular matrix molecule agrin, a key regulator during formation, maintenance, and regeneration of the neuromuscular junction. In stratospheroids, several agrin isoforms were expressed as highly glycosylated proteins with an apparent molecular weight of approximately 400 kDa, similar to the molecular weight of agrin in the retina in vivo. The expression specifically of the neuronal isoforms of agrin was concurrent with the onset of synaptogenesis. Moreover, the neuronal agrin isoforms were exclusively found in the synapse-containing inner plexiform layer, whereas other agrin isoforms were associated also with the inner limiting membrane and with Müller glial cells. These results show that synapse formation is very similar in stratospheroids and in the retina in vivo, and they suggest an important role for agrin during CNS development.
Collapse
Affiliation(s)
- H Hering
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, Frankfurt, D-60528, Germany
| | | |
Collapse
|
36
|
Cotman SL, Halfter W, Cole GJ. Identification of extracellular matrix ligands for the heparan sulfate proteoglycan agrin. Exp Cell Res 1999; 249:54-64. [PMID: 10328953 DOI: 10.1006/excr.1999.4463] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agrin is a major brain heparan sulfate proteoglycan which is expressed in nearly all basal laminae and in early axonal pathways of the developing central nervous system. To further understand agrin's function during nervous system development, we have examined agrin's ability to interact with several heparin-binding extracellular matrix proteins. Our data show that agrin binds FGF-2 and thrombospondin by a heparan sulfate-dependent mechanism, merosin and laminin by both heparan sulfate-dependent and -independent mechanisms, and tenascin solely via agrin's protein core. Furthermore, agrin's heparan sulfate side chains encode a specificity in interactions with heparin-binding molecules since fibronectin and the cell adhesion molecule L1 do not bind agrin. Surface plasmon resonance studies (BIAcore) reveal a high affinity for agrin's interaction with FGF-2 and merosin (2.5 and 1.8 nM, respectively). Demonstrating a biological significance for these interactions, FGF-2, laminin, and tenascin copurify with immunopurified agrin and immunohistochemistry reveals a partial codistribution of agrin and its ECM ligands in the chick developing visual system. These studies and our previous studies, showing that merosin and NCAM also colocalize with agrin, provide evidence that agrin plays a crucial role in the function of the extracellular matrix and suggest a role for agrin in axon pathway development.
Collapse
Affiliation(s)
- S L Cotman
- Neurobiotechnology Center and Department of Cell Biology, Neurobiology, and Anatomy, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
37
|
Serpinskaya AS, Feng G, Sanes JR, Craig AM. Synapse formation by hippocampal neurons from agrin-deficient mice. Dev Biol 1999; 205:65-78. [PMID: 9882498 DOI: 10.1006/dbio.1998.9112] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agrin, a proteoglycan secreted by motoneurons, is a critical organizer of synaptic differentiation at skeletal neuromuscular junctions. Agrin is widely expressed in the nervous system so other functions seem likely, but none have been demonstrated. To test roles for agrin in interneuronal synapse formation, we studied hippocampi from mutant mice that completely lack the z+ splice form of agrin essential for neuromuscular differentiation and also exhibit severely ( approximately 90%) reduced levels of all agrin isoforms (M. Gautam et al., 1996, Cell 85, 525-535). The brains of neonatal homozygous agrin mutants were often smaller than those of heterozygous and wild-type littermates, but were morphologically and histologically indistinguishable. In particular, antibodies to pre- and postsynaptic components of glutamatergic synapses were similarly coaggregated at synaptic sites in both mutants and controls. Because mutants die at birth due to neuromuscular defects, we cultured neurons to assess later stages of synaptic maturation. In primary cultures, the agrin-deficient neurons formed MAP2-positive dendrites and tau-1-positive axons. Synaptic vesicle proteins, AMPA- and NMDA-type glutamate receptors, GABAA receptors, and the putative synapse-organizing proteins PSD-95, GKAP, and gephyrin formed numerous clusters at synaptic sites. Quantitatively, the number of SV2-labeled contacts per neuron at day 5 and the number of PSD-95 clusters per dendrite length at day 18 in culture showed no significant differences between genotypes. Furthermore, exogenous z+ agrin was unable to induce ectopic accumulation of components of central glutamatergic or GABAergic synapses as it does for neuromuscular cholinergic synapses. These results indicate that the z+ forms of agrin are dispensable for glutamatergic and GABAergic synaptic differentiation in the central nervous system.
Collapse
Affiliation(s)
- A S Serpinskaya
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | | | | | |
Collapse
|