1
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Seq’ing the origins of cells in the developing spinal cord. J Biol Chem 2022; 298:102602. [DOI: 10.1016/j.jbc.2022.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
|
3
|
Dermitzakis I, Manthou ME, Meditskou S, Miliaras D, Kesidou E, Boziki M, Petratos S, Grigoriadis N, Theotokis P. Developmental Cues and Molecular Drivers in Myelinogenesis: Revisiting Early Life to Re-Evaluate the Integrity of CNS Myelin. Curr Issues Mol Biol 2022; 44:3208-3237. [PMID: 35877446 PMCID: PMC9324160 DOI: 10.3390/cimb44070222] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023] Open
Abstract
The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind OL-dependent myelinogenesis, remain largely unknown. In this comprehensive review, we determine the developmental cues and molecular drivers which regulate normal myelination both at the prenatal and postnatal periods. We have indexed the individual stages of myelinogenesis sequentially; from the initiation of oligodendrocyte precursor cells, including migration and proliferation, to first contact with the axon that enlists positive and negative regulators for myelination, until the ultimate maintenance of the axon ensheathment and myelin growth. Here, we highlight multiple developmental pathways that are key to successful myelin formation and define the molecular pathways that can potentially be targets for pharmacological interventions in a variety of neurological disorders that exhibit demyelination.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Dimosthenis Miliaras
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC 3004, Australia;
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
- Correspondence:
| |
Collapse
|
4
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Kolos EA, Korzhevskii DE. Glutamine Synthetase in the Cells of the Developing Rat Spinal Cord. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421050040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Raffaele S, Boccazzi M, Fumagalli M. Oligodendrocyte Dysfunction in Amyotrophic Lateral Sclerosis: Mechanisms and Therapeutic Perspectives. Cells 2021; 10:cells10030565. [PMID: 33807572 PMCID: PMC8000560 DOI: 10.3390/cells10030565] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Myelin is the lipid-rich structure formed by oligodendrocytes (OLs) that wraps the axons in multilayered sheaths, assuring protection, efficient saltatory signal conduction and metabolic support to neurons. In the last few years, the impact of OL dysfunction and myelin damage has progressively received more attention and is now considered to be a major contributing factor to neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). Upon OL injury, oligodendrocyte precursor cells (OPCs) of adult nervous tissue sustain the generation of new OLs for myelin reconstitution, but this spontaneous regeneration process fails to successfully counteract myelin damage. Of note, the functions of OPCs exceed the formation and repair of myelin, and also involve the trophic support to axons and the capability to exert an immunomodulatory role, which are particularly relevant in the context of neurodegeneration. In this review, we deeply analyze the impact of dysfunctional OLs in ALS pathogenesis. The possible mechanisms underlying OL degeneration, defective OPC maturation, and impairment in energy supply to motor neurons (MNs) have also been examined to provide insights on future therapeutic interventions. On this basis, we discuss the potential therapeutic utility in ALS of several molecules, based on their remyelinating potential or capability to enhance energy metabolism.
Collapse
|
7
|
Zhang C, Huang H, Chen Z, Zhang Z, Lu W, Qiu M. The transcription factor NKX2-2 regulates oligodendrocyte differentiation through domain-specific interactions with transcriptional corepressors. J Biol Chem 2020; 295:1879-1888. [PMID: 31932307 DOI: 10.1074/jbc.ra119.011163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/30/2019] [Indexed: 01/21/2023] Open
Abstract
The homeodomain protein NK2 homeobox 2 (NKX2-2) is a transcription factor that plays a critical role in the control of cell fate specification and differentiation in many tissues. In the developing central nervous system, this developmentally important transcription factor functions as a transcriptional repressor that governs oligodendrocyte (OL) differentiation and myelin gene expression, but the roles of various NKX2-2 structural domains in this process are unclear. In this study, using in situ hybridization, immunofluorescence, and coimmunoprecipitation, we determined the structural domains that mediate the repressive functions of murine NKX2-2 and identified the transcriptional corepressors that interact with it in OL cells. Through in ovo electroporation in embryonic chicken spinal cords, we demonstrate that the N-terminal Tinman domain and C-terminal domain synergistically promote OL differentiation by recruiting distinct transcriptional corepressors, including enhancer of split Groucho 3 (GRG3), histone deacetylase 1 (HDAC1), and DNA methyltransferase 3 α (DNMT3A). We also observed that the NK2-specific domain suppresses the function of the C-terminal domain in OL differentiation. These findings delineate the distinct NKX2-2 domains and their roles in OL differentiation and suggest that NKX2-2 regulates differentiation by repressing gene expression via multiple cofactors and molecular mechanisms.
Collapse
Affiliation(s)
- Chengfu Zhang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou Normal University, 16 Xuelin Street, Hangzhou 311121, China
| | - Hao Huang
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou Normal University, 16 Xuelin Street, Hangzhou 311121, China
| | - Zhen Chen
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou Normal University, 16 Xuelin Street, Hangzhou 311121, China
| | - Zunyi Zhang
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou Normal University, 16 Xuelin Street, Hangzhou 311121, China
| | - Wenwen Lu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou Normal University, 16 Xuelin Street, Hangzhou 311121, China
| | - Mengsheng Qiu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou Normal University, 16 Xuelin Street, Hangzhou 311121, China.
| |
Collapse
|
8
|
Traiffort E, Zakaria M, Laouarem Y, Ferent J. Hedgehog: A Key Signaling in the Development of the Oligodendrocyte Lineage. J Dev Biol 2016; 4:jdb4030028. [PMID: 29615592 PMCID: PMC5831774 DOI: 10.3390/jdb4030028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 01/11/2023] Open
Abstract
The Hedgehog morphogen aroused an enormous interest since it was characterized as an essential signal for ventral patterning of the spinal cord two decades ago. The pathway is notably implicated in the initial appearance of the progenitors of oligodendrocytes (OPCs), the glial cells of the central nervous system which after maturation are responsible for axon myelination. In accordance with the requirement for Hedgehog signaling in ventral patterning, the earliest identifiable cells in the oligodendrocyte lineage are derived from the ventral ventricular zone of the developing spinal cord and brain. Here, we present the current knowledge about the involvement of Hedgehog signaling in the strict spatial and temporal regulation which characterizes the initiation and progression of the oligodendrocyte lineage. We notably describe the ability of the Hedgehog signaling to tightly orchestrate the appearance of specific combinations of genes in concert with other pathways. We document the molecular mechanisms controlling Hedgehog temporal activity during OPC specification. The contribution of the pathway to aspects of OPC development different from their specification is also highlighted especially in the optic nerve. Finally, we report the data demonstrating that Hedgehog signaling-dependency is not a universal situation for oligodendrocyte generation as evidenced in the dorsal spinal cord in contrast to the dorsal forebrain.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- Neuroprotective, Neuroregenerative and Remyelinating Small Molecules' U1195, INSERM-Université Paris-Sud, Université Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre F-94276, France.
| | - Mary Zakaria
- Neuroprotective, Neuroregenerative and Remyelinating Small Molecules' U1195, INSERM-Université Paris-Sud, Université Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre F-94276, France.
| | - Yousra Laouarem
- Neuroprotective, Neuroregenerative and Remyelinating Small Molecules' U1195, INSERM-Université Paris-Sud, Université Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre F-94276, France.
| | - Julien Ferent
- IRCM, Molecular Biology of Neural Development, 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada.
| |
Collapse
|
9
|
Küspert M, Wegner M. SomethiNG 2 talk about-Transcriptional regulation in embryonic and adult oligodendrocyte precursors. Brain Res 2015; 1638:167-182. [PMID: 26232072 DOI: 10.1016/j.brainres.2015.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 12/26/2022]
Abstract
Glial cells that express the chondroitin sulfate proteoglycan NG2 represent an inherently heterogeneous population. These so-called NG2-glia are present during development and in the adult CNS, where they are referred to as embryonic oligodendrocyte precursors and adult NG2-glia, respectively. They give rise to myelinating oligodendrocytes at all times of life. Over the years much has been learnt about the transcriptional network in embryonic oligodendrocyte precursors, and several transcription factors from the HLH, HMG-domain, zinc finger and homeodomain protein families have been identified as main constituents. Much less is known about the corresponding network in adult NG2-glia. Here we summarize and discuss current knowledge on functions of each of these transcription factor families in NG2-glia, and where possible compare transcriptional regulation in embryonic oligodendrocyte precursors and adult NG2-glia. This article is part of a Special Issue entitled SI:NG2-glia (Invited only).
Collapse
Affiliation(s)
- Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, Erlangen D-91054, Germany.
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, Erlangen D-91054, Germany.
| |
Collapse
|
10
|
Huettl RE, Eckstein S, Stahl T, Petricca S, Ninkovic J, Götz M, Huber AB. Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development. Dev Biol 2015; 413:86-103. [PMID: 26187199 DOI: 10.1016/j.ydbio.2015.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/21/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
During development of the CNS, stem and progenitor cell proliferation, cell fate designation, and patterning decisions are tightly regulated by interdependent networks of key transcriptional regulators. In a genetic approach we analyzed divergent functionality of the PAI and RED sub-domains of the Pax6 Paired domain (PD) during progenitor zone formation, motor and interneuron development, and peripheral connectivity at distinct levels within the neural tube: within the hindbrain, mutation of the PAI sub-domain severely affected patterning of the p3 and pMN domains and establishment of the corresponding motor neurons. Exit point designation of hypoglossal axons was disturbed in embryos harboring either mutations in the PD sub-domains or containing a functional Pax6 Null allele. At brachial spinal levels, we propose a selective involvement of the PAI sub-domain during patterning of ventral p2 and pMN domains, critically disturbing generation of specific motor neuron subtypes and increasing V2 interneuron numbers. Our findings present a novel aspect of how Pax6 not only utilizes its modular structure to perform distinct functions via its paired and homeodomain. Individual sub-domains can exert distinct functions, generating a new level of complexity for transcriptional regulation by one single transcription factor not only in dorso-ventral, but also rostro-caudal neural tube patterning.
Collapse
Affiliation(s)
- Rosa-Eva Huettl
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Simone Eckstein
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Tessa Stahl
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefania Petricca
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Andrea B Huber
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
11
|
Morales Torres C, Laugesen A, Helin K. Utx is required for proper induction of ectoderm and mesoderm during differentiation of embryonic stem cells. PLoS One 2013; 8:e60020. [PMID: 23573229 PMCID: PMC3616089 DOI: 10.1371/journal.pone.0060020] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/21/2013] [Indexed: 11/19/2022] Open
Abstract
Embryonic development requires chromatin remodeling for dynamic regulation of gene expression patterns to ensure silencing of pluripotent transcription factors and activation of developmental regulators. Demethylation of H3K27me3 by the histone demethylases Utx and Jmjd3 is important for the activation of lineage choice genes in response to developmental signals. To further understand the function of Utx in pluripotency and differentiation we generated Utx knockout embryonic stem cells (ESCs). Here we show that Utx is not required for the proliferation of ESCs, however, Utx contributes to the establishment of ectoderm and mesoderm in vitro. Interestingly, this contribution is independent of the catalytic activity of Utx. Furthermore, we provide data showing that the Utx homologue, Uty, which is devoid of detectable demethylase activity, and Jmjd3 partly compensate for the loss of Utx. Taken together our results show that Utx is required for proper formation of ectoderm and mesoderm in vitro, and that Utx, similar to its C.elegans homologue, has demethylase dependent and independent functions.
Collapse
Affiliation(s)
- Cristina Morales Torres
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Anne Laugesen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
- The Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Endogenous proliferation after spinal cord injury in animal models. Stem Cells Int 2012; 2012:387513. [PMID: 23316243 PMCID: PMC3539424 DOI: 10.1155/2012/387513] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/06/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) results in motor and sensory deficits, the severity of which depends on the level and extent of the injury. Animal models for SCI research include transection, contusion, and compression mouse models. In this paper we will discuss the endogenous stem cell response to SCI in animal models. All SCI animal models experience a similar peak of cell proliferation three days after injury; however, each specific type of injury promotes a specific and distinct stem cell response. For example, the transection model results in a strong and localized initial increase of proliferation, while in contusion and compression models, the initial level of proliferation is lower but encompasses the entire rostrocaudal extent of the spinal cord. All injury types result in an increased ependymal proliferation, but only in contusion and compression models is there a significant level of proliferation in the lateral regions of the spinal cord. Finally, the fate of newly generated cells varies from a mainly oligodendrocyte fate in contusion and compression to a mostly astrocyte fate in the transection model. Here we will discuss the potential of endogenous stem/progenitor cell manipulation as a therapeutic tool to treat SCI.
Collapse
|
13
|
Pang Y, Zheng B, Kimberly SL, Cai Z, Rhodes PG, Lin RCS. Neuron-oligodendrocyte myelination co-culture derived from embryonic rat spinal cord and cerebral cortex. Brain Behav 2012; 2:53-67. [PMID: 22574274 PMCID: PMC3343299 DOI: 10.1002/brb3.33] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/13/2011] [Accepted: 12/18/2011] [Indexed: 02/07/2023] Open
Abstract
An in vitro myelination model derived from rat central nervous system (CNS) remains to be established. Here, we describe a simple and reproducible myelination culture method using dissociated neuron-oligodendrocyte (OL) co-cultures from either the embryonic day 16 (E16) rat spinal cord or cerebral cortex. The dissociated cells are plated directly on poly-L-lysine-coated cover slips and maintained in a modified myelination medium that supports both OL and neuron differentiation. The spinal cord derived OL progenitor cells develop quickly into myelin basic protein (MBP)+ mature OLs and start to myelinate axons around 17 days in vitro (DIV17). Myelination reaches its peak around six weeks (DIV40) and the typical nodes of Ranvier are revealed by paranodal proteins Caspr and juxaparanodal protein Kv1.2 immunoreactivity. Electron microscopy (EM) shows typical myelination cytoarchitecture and synaptic organization. In contrast, the cortical-derived co-culture requires triiodothyronine (T3) in the culture medium for myelination. Finally, either hypomyelination and/or demyelination can be induced by exposing proinflammatory cytokines or demyelinating agents to the co-culture, suggesting the feasibility of this modified in vitro myelination model for myelin-deficit investigation.
Collapse
Affiliation(s)
- Yi Pang
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Baoying Zheng
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Simpson L. Kimberly
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Zhengwei Cai
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Philip G. Rhodes
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Rick C. S. Lin
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
14
|
Di Lullo E, Haton C, Le Poupon C, Volovitch M, Joliot A, Thomas JL, Prochiantz A. Paracrine Pax6 activity regulates oligodendrocyte precursor cell migration in the chick embryonic neural tube. Development 2011; 138:4991-5001. [PMID: 22028031 DOI: 10.1242/dev.066282] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homeoprotein transcription factors play fundamental roles in development, ranging from embryonic polarity to cell differentiation and migration. Research in recent years has underscored the physiological importance of homeoprotein intercellular transfer in eye field development, axon guidance and retino-tectal patterning, and visual cortex plasticity. Here, we have used the embryonic chick neural tube to investigate a possible role for homeoprotein Pax6 transfer in oligodendrocyte precursor cell (OPC) migration. We report the extracellular expression of Pax6 and the effects of gain and loss of extracellular Pax6 activity on OPCs. Open book cultures with recombinant Pax6 protein or Pax6 blocking antibodies, as well as in ovo gene transfer experiments involving expression of secreted Pax6 protein or secreted Pax6 antibodies, provide converging evidences that OPC migration is promoted by extracellular Pax6. The paracrine effect of Pax6 on OPC migration is thus a new example of direct non-cell autonomous homeoprotein activity.
Collapse
Affiliation(s)
- Elizabeth Di Lullo
- Collège de France, Center for Interdisciplinary Research in Biology, 11 place Marcelin Berthelot, Paris F-75005, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Dorsally and ventrally derived oligodendrocytes have similar electrical properties but myelinate preferred tracts. J Neurosci 2011; 31:6809-6819. [PMID: 21543611 DOI: 10.1523/jneurosci.6474-10.2011] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the developing spinal cord, most oligodendrocyte precursors (OLPs) arise from the ventral ventricular zone (VZ) under the influence of Sonic Hedgehog, but a minority are generated from the dorsal VZ in a Hedgehog-independent manner. In the developing forebrain too, OLPs arise from both the ventral and the dorsal VZ. It is not known whether dorsally and ventrally derived oligodendrocyte (OL) lineage cells have different properties. We generated a dual reporter mouse line to color code ventrally and dorsally derived OLPs (vOLPs and dOLPs) and their differentiated oligodendrocyte progeny (vOLs and dOLs) for functional studies. We found that ∼80% of OL lineage cells in the postnatal spinal cord and ∼20% in the corpus callosum are ventrally derived. In both spinal cord and corpus callosum, vOLPs and dOLPs had indistinguishable electrical properties, as did vOLs and dOLs. However, vOLPs and dOLPs had different migration and settling patterns. In the spinal cord, vOLPs appeared early and spread uniformly throughout the cord, whereas dOLPs arrived later and remained mainly in the dorsal and dorsolateral funiculi. During adulthood, corticospinal and rubrospinal tracts became myelinated mainly by dOLs, even though vOLs dominated these tracts during early postnatal life. Thus, dOLPs are electrically similar to vOLPs but appear to outcompete them for dorsal axons.
Collapse
|
16
|
Zhu Q, Whittemore SR, Devries WH, Zhao X, Kuypers NJ, Qiu M. Dorsally-derived oligodendrocytes in the spinal cord contribute to axonal myelination during development and remyelination following focal demyelination. Glia 2011; 59:1612-21. [PMID: 21710609 DOI: 10.1002/glia.21203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/26/2011] [Indexed: 11/10/2022]
Abstract
In the developing spinal cord, the majority of oligodendrocytes are derived from the ventral ventricular zone. Several recent studies suggested that a small number of oligodendrocyte precursor cells (OPCs) can also be generated in the dorsal spinal cord. However, it is not clear whether these dorsal oligodendrocyte precursor cells participate in myelination and remyelination. To investigate the fate and potential function of these dorsally-derived oligodendrocytes (dOLs) in the adult spinal cord, Cre-lox genetic fate mapping in transgenic mice was employed. We used the Pax3(Cre) knock-in mouse to drive Cre expression in the entire dorsal epithelium and the Rosa26-lacZ or Z/EG reporter line to trace their spatial distribution and population dynamics in the spinal cord. The dorsal OPCs generated from the Pax3-expressing domains migrate into all regions of spinal cord and subsequently undergo terminal differentiation and axonal myelination. In response to a focal demyelination injury, a large number of newly differentiated oligodendrocytes originated from dOLs, suggesting that dOLs may provide an important source of OPCs for axonal remyelination in multiple sclerosis or spinal cord injury.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
17
|
Li H, de Faria JP, Andrew P, Nitarska J, Richardson WD. Phosphorylation regulates OLIG2 cofactor choice and the motor neuron-oligodendrocyte fate switch. Neuron 2011; 69:918-29. [PMID: 21382552 PMCID: PMC3093612 DOI: 10.1016/j.neuron.2011.01.030] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2011] [Indexed: 01/22/2023]
Abstract
A fundamental feature of central nervous system development is that neurons are generated before glia. In the embryonic spinal cord, for example, a group of neuroepithelial stem cells (NSCs) generates motor neurons (MNs), before switching abruptly to oligodendrocyte precursors (OLPs). We asked how transcription factor OLIG2 participates in this MN-OLP fate switch. We found that Serine 147 in the helix-loop-helix domain of OLIG2 was phosphorylated during MN production and dephosphorylated at the onset of OLP genesis. Mutating Serine 147 to Alanine (S147A) abolished MN production without preventing OLP production in transgenic mice, chicks, or cultured P19 cells. We conclude that S147 phosphorylation, possibly by protein kinase A, is required for MN but not OLP genesis and propose that dephosphorylation triggers the MN-OLP switch. Wild-type OLIG2 forms stable homodimers, whereas mutant (unphosphorylated) OLIG2S147A prefers to form heterodimers with Neurogenin 2 or other bHLH partners, suggesting a molecular basis for the switch.
Collapse
Affiliation(s)
- Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | | | | |
Collapse
|
18
|
Abstract
Various types of neurons and glia are generated following a precise spatial and temporal order during neurogenesis. The mechanisms that control this sequential generation of neuronal and glial cell types from the same progenitor population are not well understood. Growth differentiation factor 11 (Gdf11) belongs to the TGF-β family of proteins and is expressed transiently in newly born neurons adjacent to the progenitor domain in the developing spinal cord. We examined the phenotypes of Gdf11(-/-) mouse embryos and found that without Gdf11, neuronal differentiation in the spinal cord progresses at a slower rate. Higher progenitor proliferation rate, along with a delay in gliogenesis, is also observed in Gdf11(-/-) spinal cord but only after the peak of Gdf11 expression, indicating that Gdf11 can cause long-lasting changes in progenitor properties. These changes can be preserved in vitro, as neurospheres derived from Gdf11(-/-) and wild-type littermates at a stage after, but not before the onset of Gdf11 expression, exhibit differences in proliferation and differentiation potential. Moreover, these changes in progenitor properties can be induced in vitro by the addition of Gdf11. We also demonstrate that the effects of Gdf11 on progenitor cells are associated with its ability to upregulate p57(Kip2) and p27(Kip1) while downregulating Pax6 expression. These results support a model in which Gdf11 secreted by newly born neurons in the developing spinal cord facilitates the temporal progression of neurogenesis by acting as a positive feedback signal on the progenitor cells to promote cell cycle exit and decrease proliferation ability, thus changing their differentiation potential.
Collapse
|
19
|
Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol 2010; 119:37-53. [PMID: 19847447 PMCID: PMC2799635 DOI: 10.1007/s00401-009-0601-5] [Citation(s) in RCA: 573] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/09/2009] [Accepted: 10/10/2009] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so.
Collapse
Affiliation(s)
- Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria.
| | | |
Collapse
|
20
|
SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch. Biochem Biophys Res Commun 2009; 390:1114-20. [DOI: 10.1016/j.bbrc.2009.08.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/13/2022]
|
21
|
Abstract
One of the special attributes of vertebrates is their myelinated nervous system. By increasing the conduction velocity of axons, myelin allows for increased body size, rapid movement and a large and complex brain. In the central nervous system (CNS), oligodendrocytes (OLs) are the myelin-forming cells. The transcription factors OLIG1 and OLIG2, master regulators of OL development, presumably also played a seminal role during the evolution of the genetic programme leading to myelination in the CNS. From the available ontogenetic and phylogenetic data we attempt to reconstruct the evolutionary events that led to the emergence of the Olig gene family and speculate about the links between Olig genes, their specific cis-regulatory elements and myelin evolution. In addition, we report a putative myelin basic protein (MBP) ancestor in the lancelet Branchiostoma floridae, which lacks compact myelin. The lancelet 'Mbp' gene lacks the OLIG1/2- and SOX10-binding sites that characterize vertebrate Mbp homologs, raising the possibility that insertion of cis-regulatory elements might have been involved in evolution of the myelinating programme.
Collapse
|
22
|
Genethliou N, Panayiotou E, Panayi H, Orford M, Mean R, Lapathitis G, Malas S. Spatially distinct functions of PAX6 and NKX2.2 during gliogenesis in the ventral spinal cord. Biochem Biophys Res Commun 2009; 382:69-73. [PMID: 19258013 DOI: 10.1016/j.bbrc.2009.02.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 02/23/2009] [Indexed: 11/17/2022]
Abstract
During ventral spinal cord (vSC) development, the p3 and pMN progenitor domain boundary is thought to be maintained by cross-repressive interactions between NKX2.2 and PAX6. Using loss-of-function analysis during the neuron-glial fate switch we show that the identity of the p3 domain is not maintained by the repressive function of NKX2.2 on Pax6 expression, even in the absence of NKX2.9. We further show that NKX2.2 is necessary to induce the expression of Slit1 and Sulfatase 1 (Sulf1) in the vSC in a PAX6-independent manner. Conversely, we show that PAX6 regulates Sulf1/Slit1 expression in the vSC in an NKX2.2/NKX6.1-independent manner. Consequently, deregulation of Sulf1 expression in Pax6-mutant embryos has stage-specific implications on neural patterning, associated with enhancement of Sonic Hedgehog activity. On the other hand, deregulation of Slit1 expression in gliogenic neural progenitors leads to changes in Astrocyte subtype identity. These data provide important insights into specific functions of PAX6 and NKX2.2 during glial cell specification that have so far remained largely unexplored.
Collapse
Affiliation(s)
- Nicholas Genethliou
- The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios 2370, Nicosia, Cyprus
| | | | | | | | | | | | | |
Collapse
|
23
|
Gil JE, Woo DH, Shim JH, Kim SE, You HJ, Park SH, Paek SH, Kim SK, Kim JH. Vitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells. FEBS Lett 2009; 583:561-7. [PMID: 19162023 DOI: 10.1016/j.febslet.2008.12.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/01/2008] [Accepted: 12/29/2008] [Indexed: 02/06/2023]
Abstract
We demonstrate enhanced differentiation of oligodendrocytes during neurogenesis of human embryonic stem cells (hESCs) using an extracellular matrix protein, vitronectin (VN). We show that VN is expressed in the ventral part of the developing human spinal cord. Combined treatment of retinoic acid, sonic hedgehog, and noggin in the presence of VN allows hESCs to differentiate into O4-positive oligodendrocytes. Particularly, VN profoundly promotes the derivation of oligodendrocyte progenitors that proliferate and differentiate into oligodendrocytes in response to mitogenic and survival factors. These results support the beneficial effect of VN on oligodendrocytic differentiation of hESCs.
Collapse
Affiliation(s)
- Jung-Eun Gil
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Huang Z, Kawase-Koga Y, Zhang S, Visvader J, Toth M, Walsh CA, Sun T. Transcription factor Lmo4 defines the shape of functional areas in developing cortices and regulates sensorimotor control. Dev Biol 2008; 327:132-42. [PMID: 19111533 DOI: 10.1016/j.ydbio.2008.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/01/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
Proper formation of the shape and size of cortical functional areas is essential for complex brain function, including sensory perception and motor control. Our previous work identified the transcription factor Lim domain only 4 (Lmo4), a regulator in calcium-dependent gene transcription, that has unique, region-specific expression in postnatal mouse cortices with high expression anteriorly and posteriorly but very low expression in between. Here we report that Lmo4 expression coincides with the timing of the development of the somatosensory barrel field. Lmo4 cortical deletion causes changes in expression patterns of cortical regional markers and results in rostro-medial shrinkage but not rostral or caudal shift of the somatosensory barrel subfield. Fine regulation of accurate shape of the barrel subfield by Lmo4, as well as Lmo4-mediated calcium-dependent gene expression, is critical for normal brain functions, as Lmo4-deficient mice display impaired sensorimotor performance. Moreover, even though Lmo4 has broad expression in the central nervous system, it plays a subtle role in the development of non-cortical regions. Our results reveal a new mechanism of cortical area formation and normal sensorimotor control that is regulated by genes with region-specific expression in the developing cortex.
Collapse
Affiliation(s)
- Zhenyong Huang
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Yoshimura S, Murray JI, Lu Y, Waterston RH, Shaham S. mls-2 and vab-3 Control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans. Development 2008; 135:2263-75. [PMID: 18508862 DOI: 10.1242/dev.019547] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glia are essential components of nervous systems. However, genetic programs promoting glia development and regulating glia-neuron interactions have not been extensively explored. Here we describe transcriptional programs required for development and function of the C. elegans cephalic sheath (CEPsh) glia. We demonstrate ventral- and dorsal-restricted roles for the mls-2/Nkx/Hmx and vab-3/Pax6/Pax7 genes, respectively, in CEPsh glia differentiation and expression of the genes hlh-17/Olig and ptr-10/Patched-related. Using mls-2 and vab-3 mutants, as well as CEPsh glia-ablated animals, we show that CEPsh glia are important for sensory dendrite extension, axon guidance/branching within the nerve ring, and nerve ring assembly. We demonstrate that UNC-6/Netrin, expressed in ventral CEPsh glia, mediates glia-dependent axon guidance. Our results suggest possible similarities between CEPsh glia development and oligodendrocyte development in vertebrates, and demonstrate that C. elegans provides a unique environment for studying glial functions in vivo.
Collapse
Affiliation(s)
- Satoshi Yoshimura
- The Rockefeller University, Laboratory of Developmental Genetics, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
26
|
Kessaris N, Pringle N, Richardson WD. Specification of CNS glia from neural stem cells in the embryonic neuroepithelium. Philos Trans R Soc Lond B Biol Sci 2008; 363:71-85. [PMID: 17282992 PMCID: PMC2605487 DOI: 10.1098/rstb.2006.2013] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
All the neurons and glial cells of the central nervous system are generated from the neuroepithelial cells in the walls of the embryonic neural tube, the 'embryonic neural stem cells'. The stem cells seem to be equivalent to the so-called 'radial glial cells', which for many years had been regarded as a specialized type of glial cell. These radial cells generate different classes of neurons in a position-dependent manner. They then switch to producing glial cells (oligodendrocytes and astrocytes). It is not known what drives the neuron-glial switch, although downregulation of pro-neural basic helix-loop-helix transcription factors is one important step. This drives the stem cells from a neurogenic towards a gliogenic mode. The stem cells then choose between developing as oligodendrocytes or astrocytes, of which there might be intrinsically different subclasses. This review focuses on the different extracellular signals and intracellular responses that influence glial generation and the choice between oligodendrocyte and astrocyte fates.
Collapse
|
27
|
Abstract
Oligodendrocytes (OGs) assemble the myelin sheath around axons in the central nervous system. Specification of cells into the OG lineage is largely the result of interplay between bone morphogenetic protein, sonic hedgehog and Notch signaling pathways, which regulate expression of transcription factors (TFs) dictating spatial and temporal aspects of oligodendrogenesis. Many of these TFs and others then direct OG development through to a mature myelinating OG. Here we describe signaling pathways and TFs that are inductive, inhibitory, and/or permissive to OG specification and maturation. We develop a basic transcriptional network and identify similarities and differences between regulation of oligodendrogenesis in the spinal cord and brain.
Collapse
Affiliation(s)
- Danette J Nicolay
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, and Cameco MS Neuroscience Research Center, City Hospital, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
28
|
Wegner M. A matter of identity: transcriptional control in oligodendrocytes. J Mol Neurosci 2007; 35:3-12. [PMID: 18401762 DOI: 10.1007/s12031-007-9008-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/26/2007] [Indexed: 01/30/2023]
Abstract
Oligodendrocyte development progresses from specification to terminal differentiation through several phases. By now, a number of transcription factors have been identified that are essential for one or more of these phases. They stem from transcription factor families with known roles in many developmental processes. Basic helix-loop-helix, homeodomain, and high-mobility-group containing transcription factors such as the Olig, Nkx, and Sox proteins have been particularly well studied. A complex picture has emerged in which these transcription factors interact in transcriptional networks and thereby combine and influence their respective activities as repressors or activators in such a way that stage- and cell-type specific gene expression is achieved during oligodendrocyte development.
Collapse
Affiliation(s)
- Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen, Fahrstrasse 17, 91054 Erlangen, Germany.
| |
Collapse
|
29
|
Bel-Vialar S, Medevielle F, Pituello F. The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord. Dev Biol 2007; 305:659-73. [PMID: 17399698 DOI: 10.1016/j.ydbio.2007.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 02/08/2007] [Accepted: 02/12/2007] [Indexed: 11/25/2022]
Abstract
During neurogenesis, complex networks of genes act sequentially to control neuronal differentiation. In the neural tube, the expression of Pax6, a paired-box-containing gene, just precedes the appearance of the first post-mitotic neurons. So far, its only reported function in the spinal cord is in specifying subsets of neurons. Here we address its possible function in controlling the balance between proliferation and commitment of neural progenitors. We report that increasing Pax6 level is sufficient to push neural progenitors toward cell cycle exit and neuronal commitment via Neurogenin 2 (Ngn2) upregulation. However, neuronal precursors maintaining Pax6(On) fail to perform neuronal differentiation. Conversely, turning off Pax6 function in these precursors is sufficient to provoke premature differentiation and the number of differentiated neurons depends of the amount of Pax6 protein. Moreover, we found that Pax6 expression involves negative feedback regulation by Ngn2 and this repression is critical for the proneural activity of Ngn2. We present a model in which the level of Pax6 activity first conditions the moment when a given progenitor will leave the cell cycle and second, the moment when a selected neuronal precursor will irreversibly differentiate.
Collapse
Affiliation(s)
- Sophie Bel-Vialar
- Centre de Biologie du Développement, CNRS UMR5547 Bât 4R3, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 09, France.
| | | | | |
Collapse
|
30
|
Sugimori M, Nagao M, Bertrand N, Parras CM, Guillemot F, Nakafuku M. Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord. Development 2007; 134:1617-29. [PMID: 17344230 DOI: 10.1242/dev.001255] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During development, the three major neural cell lineages, neurons, oligodendrocytes and astrocytes, differentiate in specific temporal orders at topologically defined positions. How the timing and position of their generation are coordinately regulated remains poorly understood. Here, we provide evidence that the transcription factors Pax6, Olig2 and Nkx2.2 (Nkx2-2), which define the positional identity of multipotent progenitors early in development, also play crucial roles in controlling the timing of neurogenesis and gliogenesis in the developing ventral spinal cord. We show that each of these factors has a unique ability to either enhance or inhibit the activities of the proneural helix-loop-helix (HLH) factors Ngn1 (Neurog1), Ngn2 (Neurog2), Ngn3 (Neurog3) and Mash1 (Ascl1), and the inhibitory HLH factors Id1 and Hes1, thereby regulating both the timing of differentiation of multipotent progenitors and their fate. Consistent with this, dynamic changes in their co-expression pattern in vivo are closely correlated to stage- and domain-specific generation of three neural cell lineages. We also show that genetic manipulations of their temporal expression patterns in mice alter the timing of differentiation of neurons and glia. We propose a molecular code model whereby the combinatorial actions of two classes of transcription factors coordinately regulate the domain-specific temporal sequence of neurogenesis and gliogenesis in the developing spinal cord.
Collapse
Affiliation(s)
- Michiya Sugimori
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
31
|
Hu QD, Ma QH, Gennarini G, Xiao ZC. Cross-talk between F3/contactin and Notch at axoglial interface: a role in oligodendrocyte development. Dev Neurosci 2006; 28:25-33. [PMID: 16508301 DOI: 10.1159/000090750] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Accepted: 07/20/2005] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence has shown that the Notch signalling pathway regulates oligodendrogliogenesis. Upon binding to classical Delta/Serrate/Lag-2 ligands, Notch signalling promotes generation of oligodendrocyte precursor cells while inhibiting their further differentiation into myelinating oligodendrocytes. In our recent studies, we have found that two neural cell adhesion molecules, F3/contactin and NB-3 interact with Notch receptors and promote oligodendrocyte development. Remarkably, all these F3 and NB-3/Notch cascade-related events required Deltex1 as the intermediate element. Experiments using several animal models further imply the function of F3/Notch signalling in vivo, which designates Notch signalling as a ligand-dependent, multipotential cascade involved in oligodendrocyte development.
Collapse
Affiliation(s)
- Qi-Dong Hu
- Institute of Molecular and Cell Biology, Singapore General Hospital, Singapore, Singapore, and Department of Pharmacology and Human Physiology, University of Bari, Italy
| | | | | | | |
Collapse
|
32
|
Wilson PG, Stice SS. Development and differentiation of neural rosettes derived from human embryonic stem cells. ACTA ACUST UNITED AC 2006; 2:67-77. [PMID: 17142889 DOI: 10.1007/s12015-006-0011-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/17/2022]
Abstract
Neurons and glia are important targets of human embryonic stem cell research, promising a renewable source of these differentiated cells for biomedical research and regenerative medicine. Neurons and glia are derived in vivo from the neuroepithelium of the neural tube. Concomitant to development along the anterior to posterior axis, gradients of morphogens across the dorsal and ventral axis of the neural tube establish positional codes that generate distinct progenitor domains and ultimately specify subtype identity. The neural rosette is the developmental signature of neuroprogenitors in cultures of differentiating embryonic stem cells; rosettes are radial arrangements of columnar cells that express many of the proteins expressed in neuroepithelial cells in the neural tube. In addition to similar morphology, neuroprogenitors within neural rosettes differentiate into the main classes of progeny of neuroepithelial cells in vivo: neurons, oligodendrocytes, and astrocytes. Despite these similarities, important differences exist and the extent to which neural rosettes can model neurogenesis in vivo is not yet clear. Here, the authors review the recent studies on the development and differentiation of neural rosettes from human embryonic stem cells. The authors focus on efforts to generate motor neurons and oligodendrocytes in vitro as representative of the challenges to obtaining the progeny of a single progenitor domain with in vitro methods. Opportunities for further progress are discussed.
Collapse
Affiliation(s)
- Patricia G Wilson
- Regenerative Bioscience Center, University of Georgia, Athens, GA. pgwilson@@uga.edu
| | | |
Collapse
|
33
|
Ohsawa R, Ohtsuka T, Kageyama R. Mash1 and Math3 are required for development of branchiomotor neurons and maintenance of neural progenitors. J Neurosci 2006; 25:5857-65. [PMID: 15976074 PMCID: PMC6724803 DOI: 10.1523/jneurosci.4621-04.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors are known to play important roles in neuronal determination and differentiation. However, their exact roles in neural development still remain to be determined because of the functional redundancy. Here, we examined the roles of neural bHLH genes Mash1 and Math3 in the development of trigeminal and facial branchiomotor neurons, which derive from rhombomeres 2-4. In Math3-null mutant mice, facial branchiomotor neurons are misspecified, and both trigeminal and facial branchiomotor neurons adopt abnormal migratory pathways. In Mash1;Math3 double-mutant mice, trigeminal and facial branchiomotor neurons are severely reduced in number partly because of increased apoptosis. In addition, neurons with migratory defects are intermingled over the midline from either side of the neural tube. Furthermore, oligodendrocyte progenitors of rhombomere 4 are reduced in number. In the absence of Mash1 and Math3, expression of Notch signaling components is severely downregulated in rhombomere 4 and neural progenitors are not properly maintained, which may lead to intermingling of neurons and a decrease in oligodendrocyte progenitors. These results indicate that Mash1 and Math3 not only promote branchiomotor neuron development but also regulate the subsequent oligodendrocyte development and the cytoarchitecture by maintaining neural progenitors through Notch signaling.
Collapse
Affiliation(s)
- Ryosuke Ohsawa
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
34
|
Oh S, Huang X, Chiang C. Specific requirements of sonic hedgehog signaling during oligodendrocyte development. Dev Dyn 2006; 234:489-96. [PMID: 15880651 DOI: 10.1002/dvdy.20422] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oligodendrocyte precursors (OLPs) in the developing spinal cord are generated from the same part of the ventral neuroepithelium as motor neurons, by inductive processes that include a temporal switch from neuronal to glial cell fate. Recent studies have implicated Shh as a key signal in the generation of both OLPs and ventral neurons. In this study, we used Shh(-/-), Gli3(-/-), and Shh(-/-);Gli3(-/-) mutants to address the role of Shh signaling during oligodendrocyte development. We find that, in the absence of Gli3, Shh signaling is dispensable for the generation and maintenance of OLPs. However, Shh is required for OLPs to emerge at the appropriate developmental stages and for subsequent differentiation of OLPs into mature oligodendrocytes. The initial delay and reduction in OLP generation in Shh(-/-);Gli3(-/-) mutants are accompanied by extended neurogenesis and persistent expression of Neurogenin 2 in the Olig2 progenitor domain, suggesting that Shh signaling influences the timing of neuron-glia fate switching. Thus, our studies suggest that Shh signaling plays multiple roles during development of oligodendrocytes.
Collapse
Affiliation(s)
- Saeock Oh
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
35
|
Abstract
Oligodendrocyte precursors first arise in a restricted ventral part of the embryonic spinal cord and migrate laterally and dorsally from there. Later, secondary sources develop in the dorsal cord. Normally, the ventrally-derived precursors compete with and suppress their dorsal counterparts. There are also ventral and dorsal sources in the forebrain, but here the more dorsal precursors prevail and the ventral-most lineage is eliminated during postnatal life. How do the different populations compete and what is the outcome of the competition? Do different embryonic origins signify different functional subgroups of oligodendrocyte?
Collapse
Affiliation(s)
- William D Richardson
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
36
|
Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 2005; 9:173-9. [PMID: 16388308 PMCID: PMC6328015 DOI: 10.1038/nn1620] [Citation(s) in RCA: 820] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 11/30/2005] [Indexed: 11/09/2022]
Abstract
The developmental origin of oligodendrocyte progenitors (OLPs) in the forebrain has been controversial. We now show, by Cre-lox fate mapping in transgenic mice, that the first OLPs originate in the medial ganglionic eminence (MGE) and anterior entopeduncular area (AEP) in the ventral forebrain. From there, they populate the entire embryonic telencephalon including the cerebral cortex before being joined by a second wave of OLPs from the lateral and/or caudal ganglionic eminences (LGE and CGE). Finally, a third wave arises within the postnatal cortex. When any one population is destroyed at source by the targeted expression of diphtheria toxin, the remaining cells take over and the mice survive and behave normally, with a normal complement of oligodendrocytes and myelin. Thus, functionally redundant populations of OLPs compete for space in the developing brain. Notably, the embryonic MGE- and AEP-derived population is eliminated during postnatal life, raising questions about the nature and purpose of the competition.
Collapse
Affiliation(s)
- Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | |
Collapse
|
37
|
de Castro F, Bribián A. The molecular orchestra of the migration of oligodendrocyte precursors during development. ACTA ACUST UNITED AC 2005; 49:227-41. [PMID: 16111552 DOI: 10.1016/j.brainresrev.2004.12.034] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 11/11/2004] [Accepted: 12/10/2004] [Indexed: 02/06/2023]
Abstract
During development of the central nervous system (CNS), postmitotic cells (including neurons and myelin-generating cells, the oligodendrocytes) migrate from the germinal areas of the neural tube where they originate to their final destination sites. The migration of neurons during development has been extensively studied and has been the topic of detailed reviews. The migration of oligodendrocyte precursor cells (OPCs) is also an extremely complex and precise event, with a widespread migration of OPCs across many regions to colonize the entire CNS. Different mechanisms have been shown to direct the migration of OPCs, among them contact-mediated mechanisms (adhesion molecules) and long-range cues (chemotropic molecules). This review provides a detailed overview and discussion of the cellular and molecular basis of OPCs migration during development. Because it has been shown that neuronal and oligodendroglial lineages share some of these mechanisms, we briefly summarize similarities and differences between these two types of neural cells. We also summarize the changes in the normal migration of OPCs during development that would be relevant for different neurological diseases (including demyelinating diseases, such as multiple sclerosis, and glial cancers). We also examine the relevance of these migratory properties of the oligondendrocytic cell lineage for the repair of neural damage.
Collapse
Affiliation(s)
- Fernando de Castro
- Instituto de Neurociencias de Castilla y León-INCyL, Universidad de Salamanca, Avda. de Alfonso X el Sabio, s/n, E-37007-Salamanca, Spain.
| | | |
Collapse
|
38
|
Zhou YH, Wu X, Tan F, Shi YX, Glass T, Liu TJ, Wathen K, Hess KR, Gumin J, Lang F, Yung WKA. PAX6 suppresses growth of human glioblastoma cells. J Neurooncol 2005; 71:223-9. [PMID: 15735909 DOI: 10.1007/s11060-004-1720-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2004] [Indexed: 10/25/2022]
Abstract
PURPOSE Glioblastomas (GBMs) are the most common primary malignant brain tumors. Majority of GBMs has loss of heterozygosity of chromosome 10. The PAX6 encodes a transcription factor that involves in development of the brain, where its expression persists. We have reported that the expression of PAX6 was significantly reduced in GBMs and that a low level of PAX6 expression is a harbinger of an unfavorable prognosis for patients with malignant astrocytic glioma. Interestingly, PAX6 expression was increased in suppressed somatic cell hybrids derived from introducing a normal human chromosome 10 into U251 GBM cells. Thus it is interesting to determine if repression of PAX6 expression is involved in anti-tumor suppression function in GBM. EXPERIMENTAL DESIGN We overexpressed PAX6 in a GBM cell line U251HF via either stable transfection or infection with recombinant adenovirus, and examined cell growth in vitro and in vivo. RESULT Although we did not observe changes in the cell doubling time for PAX6-stable transfectants, significantly fewer numbers of PAX6-positive colonies grew in soft agar. Transient overexpression of PAX6 via adenovirus, however, suppressed cell growth by increasing the number of cells in G1 and by decreasing the number of cells in S-phase, and later on caused a dramatic level of cell death. Repeated subcutaneous and intracranial implantation experiments in nude mice using PAX6-stable transfectants provided solid evidence that PAX6 suppressed tumor growth in vivo and significantly extended mouse survival. CONCLUSION Our data demonstrate that PAX6exerts a tumor suppressor function that limits the growth of GBM cells.
Collapse
Affiliation(s)
- Yi-Hong Zhou
- Department of Neurobiology and Developmental Sciences, Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 753, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fogarty M, Richardson WD, Kessaris N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 2005; 132:1951-9. [PMID: 15790969 DOI: 10.1242/dev.01777] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many oligodendrocytes in the spinal cord are derived from a region of the ventral ventricular zone (VZ) that also gives rise to motoneurons. Cell fate specification in this region depends on sonic hedgehog (Shh) from the notochord and floor plate. There have been suggestions of an additional source(s) of oligodendrocytes in the dorsal spinal cord. We revisited this idea by Cre-lox fate-mapping in transgenic mice. We found that a subpopulation of oligodendrocytes is generated from the Dbx1-expressing domain of the VZ,spanning the dorsoventral midline. Dbx-derived oligodendrocytes comprise less than 5% of the total; they are formed late during embryogenesis by transformation of radial glia and settle mainly in the lateral white matter. Development of Dbx-derived oligodendrocytes in vitro can occur independently of Shh but requires FGF signalling. Dbx-expressing precursors also generate astrocytes and interneurons, but do not contribute to the ependymal layer of the postnatal spinal cord.
Collapse
Affiliation(s)
- Matthew Fogarty
- The Wolfson Institute for Biomedical Research and Department of Biology, University College London (UCL), London, UK
| | | | | |
Collapse
|
40
|
Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, Li Q, Sander M, Qiu M. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 2005; 45:41-53. [PMID: 15629701 DOI: 10.1016/j.neuron.2004.12.028] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 10/07/2004] [Accepted: 11/16/2004] [Indexed: 02/07/2023]
Abstract
In the developing spinal cord, early progenitor cells of the oligodendrocyte lineage are induced in the motor neuron progenitor (pMN) domain of the ventral neuroepithelium by the ventral midline signal Sonic hedgehog (Shh). The ventral generation of oligodendrocytes requires Nkx6-regulated expression of the bHLH gene Olig2 in this domain. In the absence of Nkx6 genes or Shh signaling, the initial expression of Olig2 in the pMN domain is completely abolished. In this study, we provide the in vivo evidence for a late phase of Olig gene expression independent of Nkx6 and Shh gene activities and reveal a brief second wave of oligodendrogenesis in the dorsal spinal cord. In addition, we provide genetic evidence that oligodendrogenesis can occur in the absence of hedgehog receptor Smoothened, which is essential for all hedgehog signaling.
Collapse
Affiliation(s)
- Jun Cai
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Agius E, Soukkarieh C, Danesin C, Kan P, Takebayashi H, Soula C, Cochard P. Converse control of oligodendrocyte and astrocyte lineage development by Sonic hedgehog in the chick spinal cord. Dev Biol 2004; 270:308-21. [PMID: 15183716 DOI: 10.1016/j.ydbio.2004.02.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 02/18/2004] [Accepted: 02/18/2004] [Indexed: 11/28/2022]
Abstract
In the developing spinal cord, oligodendrocyte progenitors (OLPs) originate from the ventral neuroepithelium and the specification of this lineage depends on the inductive activity of Sonic hedgehog (Shh) produced by ventral midline cells. On the other hand, it has been shown that OLP identity is acquired by the coexpression of the transcription factors olig2 and nkx2.2. Although initially expressed in adjacent nonoverlapping domains of the ventral neuroepithelium, these transcription factors become coexpressed in the pMN domain at the time of OLP specification through dorsal extension of the Nkx2.2 domain. Here we show that Shh is sufficient to promote the coexpression of Olig2 and Nkx2.2 in neuroepithelial cells. In addition, Shh activity is necessary for this coexpression since blocking Shh signalling totally abolishes Olig2 expression and impedes dorsal extension of Nkx2.2. Although Shh at these stages affects neuroepithelial cell proliferation, the dorsal extension of the Nkx2.2 domain is not due to progenitor proliferation but to repatterning of the ventral neuroepithelium. Finally, Shh not only stimulates OLP specification but also simultaneously restricts the ventral extension of the astrocyte progenitor (AP) domain and reduces astrocyte development. We propose that specification of distinct glial lineages is the result of a choice that depends on Shh signalling.
Collapse
Affiliation(s)
- Eric Agius
- Centre de Biologie du Développement, UMR5547 CNRS/UPS, Université Paul Sabatier, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Woodruff RH, Fruttiger M, Richardson WD, Franklin RJM. Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci 2004; 25:252-62. [PMID: 15019942 DOI: 10.1016/j.mcn.2003.10.014] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 10/02/2003] [Accepted: 10/21/2003] [Indexed: 10/26/2022] Open
Abstract
To design therapies for demyelinating diseases such as multiple sclerosis, it will be important to understand the mechanisms that control oligodendrocyte progenitor cell (OPC) numbers in the adult central nervous system (CNS). During development, OPC numbers are limited by the supply of platelet-derived growth factor-A (PDGF-A). Here, we examine the role of PDGF-A in regulating OPC numbers in normal and demyelinated adult CNS using transgenic mice that overexpress PDGF-A in astrocytes under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-PDGF-A mice). In adult GFAP-PDGF-A mice, there was a marked increase in OPC density, particularly in white matter tracts, indicating that the PDGF-A supply controls OPC numbers in the adult CNS as well as during development. To discover whether increasing PDGF expression increases the number of OPCs following demyelination and whether this enhances the efficiency of remyelination, we induced demyelination in GFAP-PDGF-A transgenic mice by intraspinal injection of lysolecithin or dietary administration of cuprizone. In both demyelinating models, OPC density within lesions was significantly increased compared to wild-type mice. However, morphological analysis of lysolecithin lesions did not reveal any difference in the time course or extent of remyelination between GFAP-PDGF-A and wild-type mice. We conclude that the availability of OPCs is not rate limiting for remyelination of focal demyelinated lesions in the mouse. Nevertheless, our experiments show that it is possible to increase OPC population density in demyelinated areas by artificially increasing the supply of PDGF.
Collapse
Affiliation(s)
- Rachel H Woodruff
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
43
|
Abstract
1. Although recent advances have provided insight into the transcriptional control of oligodendrocyte (OG) development, little information exists on the role of clustered Hox genes in this process. The aim of this study was to examine the expression profile of Hoxb4 in the oligodendroglial lineage. 2. Immunocytochemical analysis of primary mixed glial cultures demonstrated that Hoxb4 was expressed throughout OG development, being coexpressed with oligodendroglial markers, A2B5, O4 (97%). GalC (91%), and MBP (93%). 3. Immunohistochemical analysis of transverse spinal cord sections demonstrated diffuse expression of Hoxb4 throughout the spinal cord at E12.5 (C16/T19), after which expression was confined primarily to the presumptive gray matter. 4. At E14.25 (C19+/T21), Olig2+ cells had begun to migrate out from the ventral ventricular zone into the presumptive gray matter. These results suggest that Olig2+ cells could coexpress Hoxb4 since it is expressed throughout this region. 5. The expression of Hoxb4 by cells of the OG lineage indicates that it could play a role in OG maturation.
Collapse
Affiliation(s)
- Danette J Nicolay
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
44
|
Wilson L, Gale E, Chambers D, Maden M. Retinoic acid and the control of dorsoventral patterning in the avian spinal cord. Dev Biol 2004; 269:433-46. [PMID: 15110711 DOI: 10.1016/j.ydbio.2004.01.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 01/21/2004] [Accepted: 01/23/2004] [Indexed: 11/21/2022]
Abstract
The development of neural subtypes in the dorsoventral (DV) axis of the vertebrate central nervous system (CNS) involves the integration of signalling pathways coupled with the combinatorial expression of homeodomain transcription factors. Previous studies have implicated a role for retinoic acid in the specification of a subtype of motor neurons (MN) and in the patterning of a group of interneurons within the ventral spinal cord. In this study, we use the vitamin A-deficient (VAD) quail model to further investigate the role of retinoids in the patterning of the neural tube. Using genetic markers specific to neuronal cell populations, we demonstrate that in the absence of retinoic acid, there is a disruption to the molecular mechanisms associated with the dorsoventral patterning of the spinal cord. In particular, we observe an uneven dorsal expansion of ventral-specific genes, accompanied by a reduction in the domain of roof plate and dorsal patterning genes, both of which are rescued upon addition of retinoids during development. In addition, there is a loss of V1 interneuron-specific gene expression and a decrease in the ventricular zone expression of motor neuron patterning genes. Interestingly, these effects are localised to the rostral half of the spinal cord, indicating that RA is integrated in both anteroposterior (AP) and dorsoventral patterning processes. Using differential display techniques, we have isolated 27 retinoic acid-regulated genes within the spinal cord that together reveal several interesting potential biological functions for retinoids within the avian neural tube. In summary, we propose that retinoids have an essential role in the patterning of the dorsoventral axis of the spinal cord, and are also required for the correct integration of anteroposterior patterning signals with dorsoventral determinants in the rostral spinal cord.
Collapse
Affiliation(s)
- Leigh Wilson
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | |
Collapse
|
45
|
Nicolay DJ, Doucette JR, Nazarali AJ. Early stages of oligodendrocyte development in the embryonic murine spinal cord proceed normally in the absence ofHoxa2. Glia 2004; 48:14-26. [PMID: 15326611 DOI: 10.1002/glia.20028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent discoveries have enhanced our knowledge of the transcriptional control of oligodendrocyte (OG) development. In particular, the transcription factors (TFs) Olig2, Pax6, and Nkx2.2 have been shown to be important in the specification and/or maturation of the OG lineage. Although numerous other TFs are expressed by OGs, little is known regarding their role(s) in oligodendrogenesis. One such TF is the homeobox gene Hoxa2, which was recently shown to be expressed by O4(+) pro-oligodendrocytes. The objectives of this study were to examine the expression of Hoxa2 during the early stages of OG development, as well as to determine whether Hoxa2 is required for specification and/or early maturation of OGs. Immunocytochemical analysis of primary mixed glial cultures demonstrated that Hoxa2 was expressed throughout oligodendrogenesis, diminishing only with the acquisition of a myelinating phenotype. Serial transverse spinal cord sections from embryonic days 12.5, 14.25, 16, and 18 Hoxa2(+/+), Hoxa2(+/-), and Hoxa2(-/-) mice were subjected to single and double immunohistochemical analysis in order to examine Hoxa2, Olig2, Nkx2.2, and Pax6 expression profiles. Results obtained from Hoxa2(+/+) and Hoxa2(+/-) mice suggested that Hoxa2 was expressed by migratory oligodendroglial cells. In addition, comparison of spinal cord sections obtained from Hoxa2(+/+), Hoxa2(+/-), and Hoxa2(-/-) mice suggested that specification and early maturation of OGs proceeded normally in the absence of Hoxa2, since there were no obvious alterations in the expression patterns of Olig2, Nkx2.2, and/or Pax6. Hence, although Hoxa2 is expressed throughout OG development, it does not appear to be critical for early stages of oligodendrogenesis in the murine spinal cord.
Collapse
Affiliation(s)
- Danette J Nicolay
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan
| | | | | |
Collapse
|
46
|
Liu R, Cai J, Hu X, Tan M, Qi Y, German M, Rubenstein J, Sander M, Qiu M. Region-specific and stage-dependent regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 homeodomain transcription factor. Development 2003; 130:6221-31. [PMID: 14602683 DOI: 10.1242/dev.00868] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During early neural development, the Nkx6.1 homeodomain neural progenitor gene is specifically expressed in the ventral neural tube, and its activity is required for motoneuron generation in the spinal cord. We report that Nkx6.1 also controls oligodendrocyte development in the developing spinal cord, possibly by regulating Olig gene expression in the ventral neuroepithelium. In Nkx6.1 mutant spinal cords, expression of Olig2 in the motoneuron progenitor domain is diminished, and the generation and differentiation of oligodendrocytes are significantly delayed and reduced. The regulation of Olig gene expression by Nkx6.1 is stage dependent, as ectopic expression of Nkx6.1 in embryonic chicken spinal cord results in an induction of Olig2 expression at early stages, but an inhibition at later stages. Moreover, the regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 also appears to be region specific. In the hindbrain, unlike in the spinal cord, Olig1 and Olig2 can be expressed both inside and outside the Nkx6.1-expressing domains and oligodendrogenesis in this region is not dependent on Nkx6.1 activity.
Collapse
Affiliation(s)
- Rugao Liu
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Qi Y, Tan M, Hui CC, Qiu M. Gli2 is required for normal Shh signaling and oligodendrocyte development in the spinal cord. Mol Cell Neurosci 2003; 23:440-50. [PMID: 12837627 DOI: 10.1016/s1044-7431(03)00067-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Recent studies have demonstrated that oligodendrocyte progenitor (OLP) cells are induced from the ventral neural tube by the ventral midline signal, Sonic hedgehog (Shh). In this study, we investigated the role of Gli2 signal transducer in Shh induction of oligodendrocytes by studying oligodendrocyte development in Gli2-null mutants. In the absence of Gli2, the Olig1/2+ oligodendrogenic domain in the ventral spinal neuroepithelium is markedly reduced, and the initial production of OLP cells from the ventral neuroepithelium is much decreased and delayed. However, at late gestation stages, there is no discernible difference in the steady-state number of OLPs between the wild type and mutants. Interestingly, the initial delay and reduction of OLP production in the mutants is associated with a delayed expression of myelin-specific genes and oligodendrocyte differentiation. In contrast to oligodendrogenesis in the spinal cord, oligodendrocyte development in the forebrain is unaffected by Gli2 mutation. Together, our studies have suggested that Gli2 plays an important role in regulating oligodendrocyte specification and differentiation in the caudal neural tube.
Collapse
Affiliation(s)
- Yingchuan Qi
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
48
|
Pringle NP, Yu WP, Howell M, Colvin JS, Ornitz DM, Richardson WD. Fgfr3 expression by astrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains. Development 2003; 130:93-102. [PMID: 12441294 DOI: 10.1242/dev.00184] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The postnatal central nervous system (CNS) contains many scattered cells that express fibroblast growth factor receptor 3 transcripts (Fgfr3). They first appear in the ventricular zone (VZ) of the embryonic spinal cord in mid-gestation and then distribute into both grey and white matter - suggesting that they are glial cells, not neurones. The Fgfr3(+) cells are interspersed with but distinct from platelet-derived growth factor receptor alpha (Pdgfra)-positive oligodendrocyte progenitors. This fits with the observation that Fgfr3 expression is preferentially excluded from the pMN domain of the ventral VZ where Pdgfra(+) oligodendrocyte progenitors--and motoneurones--originate. Many glial fibrillary acidic protein (Gfap)- positive astrocytes co-express Fgfr3 in vitro and in vivo. Fgfr3(+) cells within and outside the VZ also express the astroglial marker glutamine synthetase (Glns). We conclude that (1) Fgfr3 marks astrocytes and their neuroepithelial precursors in the developing CNS and (2) astrocytes and oligodendrocytes originate in complementary domains of the VZ. Production of astrocytes from cultured neuroepithelial cells is hedgehog independent, whereas oligodendrocyte development requires hedgehog signalling, adding further support to the idea that astrocytes and oligodendrocytes can develop independently. In addition, we found that mice with a targeted deletion in the Fgfr3 locus strongly upregulate Gfap in grey matter (protoplasmic) astrocytes, implying that signalling through Fgfr3 normally represses Gfap expression in vivo.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/physiology
- Cells, Cultured
- Central Nervous System/cytology
- Central Nervous System/embryology
- Chick Embryo
- Epithelium/embryology
- Gene Expression Regulation, Developmental
- Glial Fibrillary Acidic Protein/genetics
- Glial Fibrillary Acidic Protein/metabolism
- Glutamate-Ammonia Ligase/genetics
- Glutamate-Ammonia Ligase/metabolism
- Hedgehog Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Oligodendroglia/cytology
- Oligodendroglia/physiology
- Protein-Tyrosine Kinases
- Rats
- Rats, Sprague-Dawley
- Receptor, Fibroblast Growth Factor, Type 3
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Spinal Cord/cytology
- Spinal Cord/embryology
- Spinal Cord/metabolism
- Stem Cells/cytology
- Stem Cells/physiology
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Nigel P Pringle
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
49
|
Bongarzone ER. Induction of oligodendrocyte fate during the formation of the vertebrate neural tube. Neurochem Res 2002; 27:1361-9. [PMID: 12512941 DOI: 10.1023/a:1021675716848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of the central nervous system (CNS) comprises a series of inductive and transforming events that includes rostro-caudal and dorso-ventral patterning, neuroglial specification and extensive cell migration. The patterning of the neural tube is also characterized by the transcription of specific genes, which encode for morphogens and transcription factors essential for cell fate specification. The generation of oligodendrocytes, the myelin forming glial cells in the CNS, appears to be restricted to specific domains localized in the ventral neuroepithelium. Signaling mediated by sonic hedgehog (Shh) seems to command the early phase of the specification of uncommitted neural stem cells into the oligodendroglial lineage. Once generated, oligodendrocyte progenitors have to follow a developmental program that involves changes in cell morphology, migratory capacity and sensitivity to extracellular trophic factors before becoming mature myelinating cells. This minireview aims to discuss molecular aspects of the early induction of oligodendroglial fate during the formation of the CNS.
Collapse
Affiliation(s)
- Ernesto R Bongarzone
- Neurobiochemistry Group, Mental Retardation Research Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Billon N, Jolicoeur C, Ying QL, Smith A, Raff M. Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells. J Cell Sci 2002; 115:3657-65. [PMID: 12186951 DOI: 10.1242/jcs.00049] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oligodendrocytes are post-mitotic cells that myelinate axons in the vertebrate central nervous system (CNS). They develop from proliferating oligodendrocyte precursor cells (OPCs), which arise in germinal zones, migrate throughout the developing white matter and divide a limited number of times before they terminally differentiate. Thus far, it has been possible to purify OPCs only from the rat optic nerve, but the purified cells cannot be obtained in large enough numbers for conventional biochemical analyses. Moreover, the CNS stem cells that give rise to OPCs have not been purified, limiting one's ability to study the earliest stages of commitment to the oligodendrocyte lineage. Pluripotent, mouse embryonic stem (ES) cells can be propagated indefinitely in culture and induced to differentiate into various cell types. We have genetically engineered ES cells both to positively select neuroepithelial stem cells and to eliminate undifferentiated ES cells. We have then used combinations of known signal molecules to promote the development of OPCs from selected, ES-cell-derived, neuroepithelial cells. We show that the earliest stages of oligodendrocyte development follow an ordered sequence that is remarkably similar to that observed in vivo, suggesting that the ES-cell-derived neuroepithelial cells follow a normal developmental pathway to produce oligodendrocytes. These engineered ES cells thus provide a powerful system to study both the mechanisms that direct CNS stem cells down the oligodendrocyte pathway and those that influence subsequent oligodendrocyte differentiation. This strategy may also be useful for producing human cells for therapy and drug screening.
Collapse
Affiliation(s)
- Nathalie Billon
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit and the Biology Department, University College London, London WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|