1
|
Ruan SQ, Wang ZH, Wang SW, Fu ZX, Xu KL, Li DB, Zhang SZ. Heregulin-β1-induced GPR30 upregulation promotes the migration and invasion potential of SkBr3 breast cancer cells via ErbB2/ErbB3-MAPK/ERK pathway. Biochem Biophys Res Commun 2012; 420:385-90. [PMID: 22425775 DOI: 10.1016/j.bbrc.2012.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 11/27/2022]
Abstract
Estrogen receptor (ER)-negative breast cancer cells are probably more aggressive with larger metastatic potential than ER-positive cells. Loss of ER in recurrent breast cancer is associated with poor response to endocrine therapy. G protein-coupled receptor 30 (GPR30) is expressed in half of ER-negative breast cancers. Tumor cell-derived heregulin-β1 (HRG-β1) is also found mainly in ER-negative cancer. In SkBr3 breast cancer cells that lack ER but express GPR30, HRG-β1 upregulates mRNA and protein levels of GPR30 by promoting ErbB2-ErbB3 heterodimerization and activating the downstream MAPK-ERK signaling pathway. Moreover, GPR30 boosts HRG-β1-induced migration and invasion of SkBr3 cells after combinative treatment with E2, 4-hydroxy-tamoxifen or the specific GPR30 agonist G-1, which are blocked by the specific GPR30 antagonist G-15 or the transfection with the small interfering RNA for GPR30. The ErbB2 inhibitor AG825 and the MEK1/2 inhibitor U0126 also partly inhibit the enhanced migration and invasion. Therefore, HRG-β1-induced migration and invasion partly depend on the upregulation of GPR30 expression through activation of the ErbB2-ERK pathway in SkBr3 cells. The results of this study indicate that the crosstalk between GPR30 and HRGs signaling is important for endocrine therapy resistance and may provide a new therapeutic way to treat breast cancer.
Collapse
Affiliation(s)
- Shu-Qin Ruan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | | | | | | | | | | | | |
Collapse
|
2
|
Ngo ST, Cole RN, Sunn N, Phillips WD, Noakes PG. Neuregulin-1 potentiates agrin-induced acetylcholine receptor clustering through muscle-specific kinase phosphorylation. J Cell Sci 2012; 125:1531-43. [PMID: 22328506 DOI: 10.1242/jcs.095109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At neuromuscular synapses, neural agrin (n-agrin) stabilizes embryonic postsynaptic acetylcholine receptor (AChR) clusters by signalling through the muscle-specific kinase (MuSK) complex. Live imaging of cultured myotubes showed that the formation and disassembly of primitive AChR clusters is a dynamic and reversible process favoured by n-agrin, and possibly other synaptic signals. Neuregulin-1 is a growth factor that can act through muscle ErbB receptor kinases to enhance synaptic gene transcription. Recent studies suggest that neuregulin-1-ErbB signalling can modulate n-agrin-induced AChR clustering independently of its effects on transcription. Here we report that neuregulin-1 increased the size of developing AChR clusters when injected into muscles of embryonic mice. We investigated this phenomenon using cultured myotubes, and found that in the ongoing presence of n-agrin, neuregulin-1 potentiates AChR clustering by increasing the tyrosine phosphorylation of MuSK. This potentiation could be blocked by inhibiting Shp2, a postsynaptic tyrosine phosphatase known to modulate the activity of MuSK. Our results provide new evidence that neuregulin-1 modulates the signaling activity of MuSK and hence might function as a second-order regulator of postsynaptic AChR clustering at the neuromuscular synapse. Thus two classic synaptic signalling systems (neuregulin-1 and n-agrin) converge upon MuSK to regulate postsynaptic differentiation.
Collapse
Affiliation(s)
- Shyuan T Ngo
- School of Biomedical Sciences, University of Queensland, St. Lucia, 4072, Queensland, Australia
| | | | | | | | | |
Collapse
|
3
|
Transcriptome profile reveals AMPA receptor dysfunction in the hippocampus of the Rsk2-knockout mice, an animal model of Coffin–Lowry syndrome. Hum Genet 2010; 129:255-69. [DOI: 10.1007/s00439-010-0918-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
4
|
Lok KC, Fu AKY, Ip FCF, Wong YH, Ip NY. NRG induces membrane targeting of Galphaz in muscle: implication in myogenesis. Neuroreport 2007; 18:1433-6. [PMID: 17712269 DOI: 10.1097/wnr.0b013e3282e9a5b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neuregulins (NRGs) constitute a family of trophic factors that are known to play critical roles during neural development. We recently reported that Gbeta subunit regulates NRG-mediated signaling and gene transcription in cultured C2C12 myotubes. In this study, we demonstrated that NRG treatment of C2C12 myotubes stimulates a rapid translocation of Galphaz protein to the plasma membranes. In addition, Galphaz protein is localized to the postsynaptic regions at adult neuromuscular junctions and is prominently expressed in rat skeletal muscle during early postnatal stages. Interestingly, we found that expression of the constitutively activated Galphaz in C2C12 myoblasts attenuates myogenic differentiation. Taken together, our observations reveal an unanticipated role of Galphaz in mediating the actions of NRG during neural development.
Collapse
Affiliation(s)
- Ka-Chun Lok
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China
| | | | | | | | | |
Collapse
|
5
|
Lok KC, Fu AKY, Ip FCF, Wong YH, Ip NY. Expression of G protein β subunits in rat skeletal muscle after nerve injury: Implication in the regulation of neuregulin signaling. Neuroscience 2007; 146:594-603. [PMID: 17368953 DOI: 10.1016/j.neuroscience.2007.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 02/02/2007] [Accepted: 02/03/2007] [Indexed: 11/21/2022]
Abstract
Tight regulation of gene transcription is critical in muscle development as well as during the formation and maintenance of the neuromuscular junction (NMJ). We previously demonstrated that the transcription of G protein beta1 (Gbeta1) is enhanced by treatment of cultured myotubes with neuregulin (NRG), a trophic factor that plays an important role in neural development. In the current study, we report that the transcript levels of Gbeta1 and Gbeta2 subunits in skeletal muscle are up-regulated following sciatic nerve injury or blockade of nerve activity. These observations prompted us to explore the possibility that G protein subunits regulate NRG-mediated signaling and gene transcription. We showed that overexpression of Gbeta1 or Gbeta2 in COS7 cells attenuates NRG-induced extracellular signal-regulated kinase (ERK) 1/2 activation, whereas suppression of Gbeta2 expression in C2C12 myotubes enhances NRG-mediated ERK1/2 activation and c-fos transcription. These results suggest that expression of Gbeta protein negatively regulates NRG-stimulated gene transcription in cultured myotubes. Taken together, our observations provide evidence that specific heterotrimeric G proteins regulate NRG-mediated signaling and gene transcription during rat muscle development.
Collapse
Affiliation(s)
- K-C Lok
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
6
|
Dong XP, Li XM, Gao TM, Zhang EE, Feng GS, Xiong WC, Mei L. Shp2 Is Dispensable in the Formation and Maintenance of the Neuromuscular Junction. Neurosignals 2006; 15:53-63. [PMID: 16837792 DOI: 10.1159/000094484] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 05/04/2006] [Indexed: 01/23/2023] Open
Abstract
SHP2, a protein tyrosine phosphatase with two SH2 domains, has been implicated in regulating acetylcholine receptor (AChR) gene expression and cluster formation in cultured muscle cells. To understand the role of SHP2 in neuromuscular junction (NMJ) formation in vivo, we generated mus cle-specific deficient mice by using a loxP/Cre strategy since Shp2 null mutation causes embryonic lethality. Shp2(floxed/floxed) mice were crossed with mice expressing the Cre gene under the control of the human skeletal alpha-actin (HSA) promoter. Expression of SHP2 was reduced or diminished specifically in skeletal muscles of the conditional knockout (CKO) mice. The mutant mice were viable and fertile, without apparent muscle defects. The mRNA of the AChR alpha subunit and AChR clusters in CKO mice were localized in a narrow central region surrounding the phrenic nerve primary branches, without apparent change in intensity. AChR clusters colocalized with markers of synaptic vesicles and Schwann cells, suggesting proper differentiation of presynaptic terminals and Schwann cells. In comparison with age-matched littermates, no apparent difference was observed in the size and length of AChR clusters in CKO mice. Both the frequency and amplitude of mEPPs in CKO mice were similar to those in controls, suggesting normal neurotransmission when SHP2 was deficient. These results suggest that Shp2 is not required for NMJ formation and/or maintenance.
Collapse
Affiliation(s)
- Xian-Ping Dong
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Fu AKY, Ip FCF, Fu WY, Cheung J, Wang JH, Yung WH, Ip NY. Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc Natl Acad Sci U S A 2005; 102:15224-9. [PMID: 16203963 PMCID: PMC1257743 DOI: 10.1073/pnas.0507678102] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinase (Cdk)5 is a key regulator of neural development. We have previously demonstrated that Cdk5/p35 are localized to the postsynaptic muscle and are implicated in the regulation of neuregulin/ErbB signaling in myotube culture. To further elucidate whether Cdk5 activity contributes to neuromuscular junction (NMJ) development in vivo, the NMJ of Cdk5-/- mice was examined. Consistent with our previous demonstration that Cdk5 phosphorylates ErbB2/3 to regulate its tyrosine phosphorylation, we report here that the phosphorylation of ErbB2 and ErbB3 and the ErbB2 kinase activity are reduced in Cdk5-deficient muscle. In addition, Cdk5-/- mice also display morphological abnormalities at the NMJ pre- and postsynaptically. Whereas the outgrowth of the main nerve trunk is grossly normal, the intramuscular nerve projections exhibit profuse and anomalous branching patterns in the Cdk5-/- embryos. The central band of acetylcholine receptor (AChR) clusters is also wider in Cdk5-/- diaphragms, together with the absence of S100 immunoreactivity along the phrenic nerve during late embryonic stages. Moreover, we unexpectedly discovered that the agrin-induced formation of large AChR clusters is significantly increased in primary muscle cultures prepared from Cdk5-null mice and in C2C12 myotubes when Cdk5 activity was suppressed. These abnormalities are accompanied by elevated frequency of miniature endplate potentials in Cdk5-null diaphragm. Taken together, our findings reveal the essential role of Cdk5 in regulating the development of motor axons and neuromuscular synapses in vivo.
Collapse
Affiliation(s)
- Amy K Y Fu
- Department of Biochemistry, Biotechnology Research Institute, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Madhavan R, Zhao XT, Ruegg MA, Peng HB. Tyrosine phosphatase regulation of MuSK-dependent acetylcholine receptor clustering. Mol Cell Neurosci 2005; 28:403-16. [PMID: 15737732 DOI: 10.1016/j.mcn.2004.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 10/05/2004] [Accepted: 10/11/2004] [Indexed: 11/25/2022] Open
Abstract
During vertebrate neuromuscular junction (NMJ) development, nerve-secreted agrin induces acetylcholine receptor (AChR) clustering in muscle by activating the muscle-specific tyrosine kinase MuSK. Recently, it has been recognized that MuSK activation-dependent AChR clustering occurs in embryonic muscle even in the absence of agrin, but how this process is regulated is poorly understood. We report that inhibition of tyrosine phosphatases in cultured C2 mouse myotubes using pervanadate enhanced MuSK auto-activation and agrin-independent AChR clustering. Moreover, phosphatase inhibition also enlarged the AChR clusters induced by agrin in these cells. Conversely, in situ activation of MuSK in cultured Xenopus embryonic muscle cells, either focally by anti-MuSK antibody-coated beads or globally by agrin, stimulated downstream tyrosine phosphatases, which could be blocked by pervanadate treatment. Immunoscreening identified Shp2 as a major tyrosine phosphatase in C2 myotubes and down-regulation of its expression by RNA interference alleviated tyrosine phosphatase suppression of MuSK activation. Significantly, depletion of Shp2 increased both agrin-independent and agrin-dependent AChR clustering in myotubes. Our results suggest that muscle tyrosine phosphatases tightly regulate MuSK activation and signaling and support a novel role of Shp2 in MuSK-dependent AChR clustering.
Collapse
Affiliation(s)
- Raghavan Madhavan
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, SAR, Hong Kong, China
| | | | | | | |
Collapse
|
9
|
Gu Z, Jiang Q, Fu AKY, Ip NY, Yan Z. Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. J Neurosci 2005; 25:4974-84. [PMID: 15901778 PMCID: PMC6724849 DOI: 10.1523/jneurosci.1086-05.2005] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 04/13/2005] [Accepted: 04/13/2005] [Indexed: 11/21/2022] Open
Abstract
Recent linkage studies have identified a significant association of the neuregulin gene with schizophrenia, but how neuregulin is involved in schizophrenia is primarily unknown. Aberrant NMDA receptor functions have been implicated in the pathophysiology of schizophrenia. Therefore, we hypothesize that neuregulin, which is present in glutamatergic synaptic vesicles, may affect NMDA receptor functions via actions on its ErbB receptors enriched in postsynaptic densities, hence participating in emotional regulation and cognitive processes that are impaired in schizophrenia. To test this, we examined the regulation of NMDA receptor currents by neuregulin signaling pathways in prefrontal cortex (PFC), a prominent area affected in schizophrenia. We found that bath perfusion of neuregulin significantly reduced whole-cell NMDA receptor currents in acutely isolated and cultured PFC pyramidal neurons and decreased NMDA receptor-mediated EPSCs in PFC slices. The effect of neuregulin was mainly blocked by application of the ErbB receptor tyrosine kinase inhibitor, phospholipase C (PLC) inhibitor, IP3 receptor (IP3R) antagonist, or Ca2+ chelators. The neuregulin regulation of NMDA receptor currents was also markedly attenuated in cultured neurons transfected with mutant forms of Ras or a dominant-negative form of MEK1 (mitogen-activated protein kinase kinase 1). Moreover, the neuregulin effect was prevented by agents that stabilize or disrupt actin polymerization but not by agents that interfere with microtubule assembly. Furthermore, neuregulin treatment increased the abundance of internalized NMDA receptors in cultured PFC neurons, which was also sensitive to agents affecting actin cytoskeleton. Together, our study suggests that both PLC/IP3R/Ca2+ and Ras/MEK/ERK (extracellular signal-regulated kinase) signaling pathways are involved in the neuregulin-induced reduction of NMDA receptor currents, which is likely through enhancing NR1 internalization via an actin-dependent mechanism.
Collapse
Affiliation(s)
- Zhenglin Gu
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
10
|
Ngo ST, Balke C, Phillips WD, Noakes PG. Neuregulin potentiates agrin-induced acetylcholine receptor clustering in myotubes. Neuroreport 2005; 15:2501-5. [PMID: 15538183 DOI: 10.1097/00001756-200411150-00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Agrin and neuregulin (HRG-beta1) play complementary roles in synapse formation. While HRG-beta1 induces transcriptional up-regulation of postsynaptic proteins, here we present evidence that it can potentiate agrin-induced acetylcholine receptor (AChR) clustering in C2 myotubes. Agrin induced maximal AChR clustering in 4 h. HRG-beta1 treatment for 4 h produced no increase over basal AChR cluster numbers. When myotubes were treated for 4 h with 100 pM agrin, HRG-beta1 augmented AChR cluster numbers by 2-fold compared to myotubes treated with 100 pM agrin alone. Thus, HRG-beta1 can potentiate agrin-induced AChR clustering.
Collapse
Affiliation(s)
- Shyuan T Ngo
- School of Biomedical Sciences, University of Queensland, St. Lucia 4072 QLD, Australia
| | | | | | | |
Collapse
|
11
|
Li Z, David G, Hung KW, DePinho RA, Fu AKY, Ip NY. Cdk5/p35 Phosphorylates mSds3 and Regulates mSds3-mediated Repression of Transcription. J Biol Chem 2004; 279:54438-44. [PMID: 15489224 DOI: 10.1074/jbc.m411002200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5), a serine/threonine kinase that displays kinase activity predominantly in neurons, is activated by two non-cyclin activators, p35 or p39. Here, we report a physical and functional interaction between the Cdk5/p35 complex and mouse Sds3 (mSds3), an essential component of mSin3-histone deacetylase (HDAC) co-repressor complex. mSds3 binds to p35 both in vitro and in vivo, enabling active Cdk5 to phosphorylate mSds3 at serine 228. A mSds3 S228A mutant retained mSin3 binding activity, but its dimerization was not greatly enhanced by p35 when compared with wild type. Notably, p35 overexpression augmented mSds3-mediated transcriptional repression in vitro. Interestingly, mutational studies revealed that the ability of exogenous mSds3 to rescue cell growth and viability in mSds3 null cells correlates with its ability to be phosphorylated by Cdk5. The identification of mSds3 as a substrate of the Cdk5/p35 complex reveals a new regulatory mechanism in controlling the mSin3-HDAC transcriptional repressor activity and provides a new potential therapeutic means to inhibit specific HDAC activities in disease.
Collapse
Affiliation(s)
- Zhen Li
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
12
|
Fu AKY, Fu WY, Ng AKY, Chien WWY, Ng YP, Wang JH, Ip NY. Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proc Natl Acad Sci U S A 2004; 101:6728-33. [PMID: 15096606 PMCID: PMC404113 DOI: 10.1073/pnas.0307606100] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Indexed: 11/18/2022] Open
Abstract
The activity of cyclin-dependent kinase 5 (Cdk5) depends on the association with one of its activators, p35 and p39, which are prominently expressed in the nervous system. Studies on the repertoire of protein substrates for Cdk5 have implicated the involvement of Cdk5 in neuronal migration and synaptic plasticity. Our recent analysis of the sequence of signal transducer and activator of transcription (STAT)3, a key transcription factor, reveals the presence of potential Cdk5 phosphorylation site. We report here that the Cdk5/p35 complex associates with STAT3 and phosphorylates STAT3 on the Ser-727 residue in vitro and in vivo. Intriguingly, whereas the Ser phosphorylation of STAT3 can be detected in embryonic and postnatal brain and muscle of wild-type mice, it is essentially absent from those of Cdk5-deficient embryos. In addition, treatment of cultured myotubes with neuregulin enhances the Ser phosphorylation of STAT3 and transcription of STAT3 target genes, such as c-fos and junB, in a Cdk5-dependent manner. Both the DNA-binding activity of STAT3 and the transcription of specific target genes, such as fibronectin, are reduced in Cdk5-deficient muscle. Taken together, these results reveal a physiological role of Cdk5 in regulating STAT3 phosphorylation and modulating its transcriptional activity.
Collapse
Affiliation(s)
- Amy K Y Fu
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Lai KO, Chen Y, Po HM, Lok KC, Gong K, Ip NY. Identification of the Jak/Stat Proteins as Novel Downstream Targets of EphA4 Signaling in Muscle. J Biol Chem 2004; 279:13383-92. [PMID: 14729671 DOI: 10.1074/jbc.m313356200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eph receptors and their cognate ligands ephrins are important players in axon guidance and neural patterning during development of the nervous system. Much of our knowledge about the signal transduction pathways triggered by Eph receptors has been related to the modulation of actin cytoskeleton, which is fundamental in mediating the cellular responses in growth cone navigation, cell adhesion, and cell migration. In contrast, little was known about whether long term activation of Eph receptor would regulate gene expression. Here we report a novel signaling pathway of EphA4, which involves activation of the tyrosine kinase Jak2 and the transcriptional activator Stat3. Transfection of COS7 cells with EphA4, but not the kinase-dead mutant, induced tyrosine phosphorylation of Jak2, Stat1, and Stat3. Treatment of cultured C2C12 myotubes with ephrin-A1 also induced tyrosine phosphorylation of Stat3, which was abolished by the Jak2 inhibitor AG490. Moreover, Jak2 was co-immunoprecipitated with EphA4 in muscle, and both proteins were concentrated at the neuromuscular junction (NMJ) of adult muscle. By using microarray analysis, we have identified acetylcholinesterase, the critical enzyme that hydrolyzed the neurotransmitter acetylcholine at the NMJ, as a downstream target gene of the Jak/Stat pathway in muscle. More importantly, ephrin-A1 increased the expression of acetylcholinesterase protein in C2C12 myotubes, which was abolished by AG490. In contrast, ephrin-A1 reduced the expression of fibronectin mRNA in C2C12 myotubes independently of Jak2. Finally, the expression level of acetylcholinesterase in limb muscle of EphA4 null mice was significantly reduced compared with the wild-type control. Taken together, these results have identified Jak/Stat proteins as the novel downstream targets of EphA4 signaling. In addition, the present study provides the first demonstration of a potential function of Eph receptors and Jak/Stat proteins at the NMJ.
Collapse
Affiliation(s)
- Kwok-On Lai
- Department of Biochemistry, Molecular Neuroscience Center and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Cheng K, Li Z, Fu WY, Wang JH, Fu AKY, Ip NY. Pctaire1 interacts with p35 and is a novel substrate for Cdk5/p35. J Biol Chem 2002; 277:31988-93. [PMID: 12084709 DOI: 10.1074/jbc.m201161200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase that plays important roles during central nervous system development. Cdk5 kinase activity depends on its regulatory partners, p35 or p39, which are prominently expressed in the central nervous system. We have previously demonstrated the involvement of Cdk5 in the regulation of acetylcholine receptor expression at the neuromuscular junction, suggesting a novel functional role of Cdk5 at the synapse. Here we report the identification of Pctaire1, a member of the Cdk-related kinase family, as a p35-interacting protein in muscle. Binding of Pctaire1 to p35 can be demonstrated by in vitro binding assay and co-immunoprecipitation experiments. Pctaire1 is associated with p35 in cultured myotubes and skeletal muscle, and is concentrated at the neuromuscular junction. Furthermore, Pctaire1 can be phosphorylated by the Cdk5/p25 complex, and serine 95 is the major phosphorylation site. In brain and muscle of Cdk5 null mice, Pctaire1 activity is significantly reduced. Moreover, Pctaire1 activity is increased following preincubation with brain extracts and phosphorylation by the Cdk5/p25 complex. Taken together, our findings demonstrate that Pctaire1 interacts with p35, both in vitro and in vivo, and that phosphorylation of Pctaire1 by Cdk5 enhances its kinase activity.
Collapse
Affiliation(s)
- Kai Cheng
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
15
|
Fu WY, Fu AKY, Lok KC, Ip FCF, Ip NY. Induction of Cdk5 activity in rat skeletal muscle after nerve injury. Neuroreport 2002; 13:243-7. [PMID: 11893918 DOI: 10.1097/00001756-200202110-00014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) was originally identified as a serine/threonine kinase and subsequently demonstrated to play a critical role in the development of CNS. We recently reported the novel function of Cdk5 in the neuregulin signaling pathway during the development of neuromuscular junction (NMJ). Here, we report the regulation of Cdk5 and p35 in rat skeletal muscle after nerve injury. Northern blot analysis revealed that Cdk5 and p35 transcripts were up-regulated in muscle after nerve denervation. The temporal profiles for the regulation of Cdk5 and p35 transcripts were different, suggesting that these changes in gene transcription might be regulated by different mechanism. Our finding on the ability of tetrodotoxin to induce p35 transcript in muscle suggested that electrical activity could regulate p35 expression. In addition to the induction of mRNA expression, the total Cdk5 and p35-associated kinase activity in muscle increased prominently after nerve denervation. Taken together, our findings suggest that Cdk5 and p35 may play important physiological roles in muscle regeneration following nerve injury.
Collapse
Affiliation(s)
- Wing-Yu Fu
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | |
Collapse
|
16
|
Lai KO, Ip FC, Cheung J, Fu AK, Ip NY. Expression of Eph receptors in skeletal muscle and their localization at the neuromuscular junction. Mol Cell Neurosci 2001; 17:1034-47. [PMID: 11414792 DOI: 10.1006/mcne.2001.0997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The participation of ephrins and Eph receptors in guiding motor axons during muscle innervation has been well documented, but little is known about their expression and functional significance in muscle at later developmental stages. Our present study investigates the expression and localization of Eph receptors and ephrins in skeletal muscle. Prominent expression of EphA4, EphA7, and ephrin-A ligands was detected in muscle during embryonic development. More importantly, both EphA4 and EphA7, as well as ephrin-A2, were localized at the neuromuscular junction (NMJ) of adult muscle. Despite their relative abundance, they were not localized at the synapses during embryonic stages. The concentration of EphA4, EphA7, and ephrin-A2 at the NMJ was observed at postnatal stages and the synaptic localization became prominent at later developmental stages. In addition, expression of Eph receptors was increased by neuregulin and after nerve injury. Furthermore, we demonstrated that overexpression of EphA4 led to tyrosine phosphorylation of the actin-binding protein cortactin and that EphA4 was coimmunoprecipitated with cortactin in muscle. Taken together, our findings indicate that EphA4 is associated with the actin cytoskeleton. Since actin cytoskeleton is critical to the formation and stability of NMJ, the present findings raise the intriguing possibility that Eph receptors may have a novel role in NMJ formation and/or maintenance.
Collapse
MESH Headings
- Aging/genetics
- Animals
- COS Cells
- Cortactin
- Fetal Proteins/genetics
- Fetal Proteins/metabolism
- Gene Expression Regulation, Developmental/physiology
- Immunohistochemistry
- Membrane Glycoproteins/metabolism
- Microfilament Proteins/metabolism
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Nerve Tissue Proteins/metabolism
- Neuregulins/pharmacology
- Neuromuscular Junction/cytology
- Neuromuscular Junction/embryology
- Neuromuscular Junction/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, EphA2
- Receptor, EphA4
- Receptor, EphA7
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/metabolism
- Schwann Cells/metabolism
- Schwann Cells/ultrastructure
- Signal Transduction/genetics
- Synaptic Membranes/metabolism
- Synaptic Membranes/ultrastructure
- Synaptic Transmission/genetics
- Transfection
Collapse
Affiliation(s)
- K O Lai
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | |
Collapse
|
17
|
Fu AK, Fu WY, Cheung J, Tsim KW, Ip FC, Wang JH, Ip NY. Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat Neurosci 2001; 4:374-81. [PMID: 11276227 DOI: 10.1038/86019] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we describe an important involvement of Cdk5/p35 in regulating the gene expression of acetylcholine receptor (AChR) at the neuromuscular synapse. Cdk5 and p35 were prominently expressed in embryonic muscle, and concentrated at the neuromuscular junction in adulthood. Neuregulin increased the p35-associated Cdk5 kinase activity in the membrane fraction of cultured C2C12 myotubes. Co-immunoprecipitation studies revealed the association between Cdk5, p35 and ErbB receptors in muscle and cultured myotubes. Inhibition of Cdk5 activity not only blocked the NRG-induced AChR transcription, but also attenuated ErbB activation in cultured myotubes. In light of our finding that overexpression of p35 alone led to an increase in AChR promoter activity in muscle, Cdk5 activation is sufficient to mediate the up-regulation of AChR gene expression. Taken together, these results reveal the unexpected involvement of Cdk5/p35 in neuregulin signaling at the neuromuscular synapse.
Collapse
Affiliation(s)
- A K Fu
- Department of Biochemistry, Biotechnology Research Institute, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Ip FC, Glass DG, Gies DR, Cheung J, Lai KO, Fu AK, Yancopoulos GD, Ip NY. Cloning and characterization of muscle-specific kinase in chicken. Mol Cell Neurosci 2000; 16:661-73. [PMID: 11083926 DOI: 10.1006/mcne.2000.0892] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Muscle-specific kinase (MuSK) is part of the receptor complex that is involved in the agrin-induced formation of the neuromuscular junction. In the rodent, prominent mRNA expression of MuSK is restricted to skeletal muscle while the expression of agrin can also be detected in brain and certain nonneuronal tissues. The recent identification of Xenopus MuSK reveals that MuSK can be detected in tissues other than skeletal muscle, such as the neural tube, eye vesicles, and spleen. In this study, we describe the cloning and characterization of the chicken ortholog of MuSK and demonstrate that the regulation of MuSK expression in muscle is conserved from avian to rodent. Abundant mRNA expression of MuSK can be detected in early embryonic chick muscle and is up-regulated after nerve injury. More importantly, we also demonstrate that, in the chicken, MuSK mRNA is expressed during development in brain and liver, suggesting possible novel functions for MuSK. Furthermore, the regulatory profile of MuSK expression in chick muscle closely parallels that observed for acetylcholine receptor, in terms of both mRNA expression and protein localization. Finally, studies with paralyzed chicken muscle as well as with cultured chick myotubes demonstrate the dependence of MuSK on both electrical activity and trophic factors.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chick Embryo
- Chickens/genetics
- Cloning, Molecular
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Molecular Sequence Data
- Muscle Denervation
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/enzymology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/innervation
- Nerve Crush
- Paralysis/chemically induced
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/genetics
- Rats
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptors, Cholinergic
- Sciatic Nerve/physiology
- Sequence Homology, Amino Acid
- Species Specificity
- Tetrodotoxin/pharmacology
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- F C Ip
- Department of Biochemistry and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tang H, Cheung WM, Ip FC, Ip NY. Identification and characterization of differentially expressed genes in denervated muscle. Mol Cell Neurosci 2000; 16:127-40. [PMID: 10924256 DOI: 10.1006/mcne.2000.0864] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Denervation results in a series of changes in skeletal muscle. To elucidate the molecular basis underlying these changes, it is important to identify the profile of altered gene expression in skeletal muscle following nerve injury. In the present study, we have examined the differentially expressed genes in denervated gastrocnemius muscle using RNA fingerprinting by arbitrarily primed PCR. Eight differentially expressed mRNA transcripts have been identified. A bilateral regulatory profile can be observed for the up-regulated genes in both denervated and contralateral control muscle following unilateral sciatic nerve injury. The temporal expression profiles of the denervation-regulated genes in muscle during development, together with their dependency on nerve activity, suggest potential functional roles following nerve injury in vivo. In particular, the identification of two apoptosis-related genes in denervated muscle provides molecular evidence that the apoptotic process is likely to be involved in the intricate changes that lead to muscle atrophy. Our findings not only allow the identification of novel genes, but also suggest possible functions for some known genes in muscle following nerve injury. Taken together, these findings provide important insights into our understanding of the molecular events in denervated muscle and suggest that the differentially expressed genes may play potential roles during muscle denervation and regeneration.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Blotting, Northern
- Calpain/genetics
- Carrier Proteins/genetics
- Cloning, Molecular
- Cytokines/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Glutamate-Ammonia Ligase/genetics
- Male
- Muscle Denervation
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/enzymology
- Muscle Proteins/genetics
- Muscle, Skeletal/cytology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/physiology
- Myosin Heavy Chains/genetics
- Nerve Crush
- Nicotinamide Phosphoribosyltransferase
- Phosphopyruvate Hydratase/genetics
- Polymerase Chain Reaction/methods
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Regeneration/genetics
- Sciatic Nerve/drug effects
- Sciatic Nerve/injuries
- Sciatic Nerve/physiology
- TNF Receptor-Associated Factor 2
- Tetrodotoxin/pharmacology
- Tumor Necrosis Factor Receptor-Associated Peptides and Proteins
Collapse
Affiliation(s)
- H Tang
- Shanghai Research Center of Life Science and Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|