1
|
Alaverdian D, Corradi AM, Sterlini B, Benfenati F, Murru L, Passafaro M, Brunetti J, Meloni I, Mari F, Renieri A, Frullanti E. Modelling PCDH19 clustering epilepsy by Neurogenin 2 induction of patient-derived induced pluripotent stem cells. Epileptic Disord 2023. [PMID: 37186408 DOI: 10.1002/epd2.20065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Loss of function mutations in PCDH19 gene cause an X-linked, infant-onset clustering epilepsy, associated with intellectual disability and autistic features. The unique pattern of inheritance includes random X-chromosome inactivation, which leads to pathological tissue mosaicism. Females carrying PCDH19 mutations are affected, while males have normal phenotype. No cure is presently available for this disease. METHODS Fibroblasts from a female patient carrying frameshift mutation were reprogrammed into human induced pluripotent stem cells (hiPSC). To create a cell model of PCDH19-clustering epilepsy (PCDH19-CE) where both cell populations co-exist, we created mosaic neurons by mixing wild-type (WT) and mutated (mut) human iPSC clones, and differentiated them into mature neurons with overexpression of the transcriptional factor Neurogenin 2. RESULTS We generated functional neurons from patient-derived iPSC using a rapid and efficient method of differentiation through overexpression of Neurogenin 2. Was revealed an accelerated maturation and higher arborisation in the mutated neurons, while the mosaic neurons showed the highest frequency of action potential firing and hyperexcitability features, compared to mutated and WT neurons. CONCLUSIONS Our findings provide evidence that PCDH19 c.2133delG mutation affects proper metaphases with increased numbers of centrosomes in stem cells and accelerates neuronal maturation in premature cells. PCDH19 mosaic neurons showed an elevated excitability, representing the situation in PCDH19-CE brain. We suggest an Ngn-2 hiPSC-derived PCDH19 neurons as an informative experimental tool for understanding the pathogenesis of PCDH19-CE and a suitable approach for use in targeted drug screening strategies.
Collapse
Affiliation(s)
- Diana Alaverdian
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Margherita Corradi
- Department of Experimental Medicine, Section of Physiology, University of Genoa, Viale Benedetto XV, 3, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Bruno Sterlini
- Department of Experimental Medicine, Section of Physiology, University of Genoa, Viale Benedetto XV, 3, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Luca Murru
- Institute of Neuroscience, IN-CNR, 20129, Milan, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Maria Passafaro
- Institute of Neuroscience, IN-CNR, 20129, Milan, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Jlenia Brunetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100, Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Goad J, Rudolph J, Zandigohar M, Tae M, Dai Y, Wei JJ, Bulun SE, Chakravarti D, Rajkovic A. Single-cell sequencing reveals novel cellular heterogeneity in uterine leiomyomas. Hum Reprod 2022; 37:2334-2349. [PMID: 36001050 PMCID: PMC9802286 DOI: 10.1093/humrep/deac183] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/29/2022] [Indexed: 01/07/2023] Open
Abstract
STUDY QUESTION What are the cellular composition and single-cell transcriptomic differences between myometrium and leiomyomas as defined by single-cell RNA sequencing? SUMMARY ANSWER We discovered cellular heterogeneity in smooth muscle cells (SMCs), fibroblast and endothelial cell populations in both myometrium and leiomyoma tissues. WHAT IS KNOWN ALREADY Previous studies have shown the presence of SMCs, fibroblasts, endothelial cells and immune cells in myometrium and leiomyomas. However, there is no information on the cellular heterogeneity in these tissues and the transcriptomic differences at the single-cell level between these tissues. STUDY DESIGN, SIZE, DURATION We collected five leiomyoma and five myometrium samples from a total of eight patients undergoing hysterectomy. We then performed single-cell RNA sequencing to generate a cell atlas for both tissues. We utilized our single-cell sequencing data to define cell types, compare cell types by tissue type (leiomyoma versus myometrium) and determine the transcriptional changes at a single-cell resolution between leiomyomas and myometrium. Additionally, we performed MED12-variant analysis at the single-cell level to determine the genotype heterogeneity within leiomyomas. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected five MED12-variant positive leiomyomas and five myometrium samples from a total of eight patients. We then performed single-cell RNA sequencing on freshly isolated single-cell preparations. Histopathological assessment confirmed the identity of the samples. Sanger sequencing was performed to confirm the presence of the MED12 variant in leiomyomas. MAIN RESULTS AND ROLE OF CHANCE Our data revealed previously unknown heterogeneity in the SMC, fibroblast cell and endothelial cell populations of myometrium and leiomyomas. We discovered the presence of two different lymphatic endothelial cell populations specific to uterine leiomyomas. We showed that both myometrium and MED12-variant leiomyomas are relatively similar in cellular composition but differ in cellular transcriptomic profiles. We found that fibroblasts influence the leiomyoma microenvironment through their interactions with endothelial cells, immune cells and SMCs. Variant analysis at the single-cell level revealed the presence of both MED12 variants as well as the wild-type MED12 allele in SMCs of leiomyomatous tissue. These results indicate genotype heterogeneity of cellular composition within leiomyomas. LARGE SCALE DATA The datasets are available in the NCBI Gene Expression Omnibus (GEO) using GSE162122. LIMITATIONS, REASONS FOR CAUTION Our study focused on MED12-variant positive leiomyomas for single-cell RNA sequencing analyses. Leiomyomas carrying other genetic rearrangements may differ in their cellular composition and transcriptomic profiles. WIDER IMPLICATIONS FOR THE FINDINGS Our study provides a cellular atlas for myometrium and MED12-variant positive leiomyomas as defined by single-cell RNA sequencing. Our analysis provides significant insight into the differences between myometrium and leiomyomas at the single-cell level and reveals hitherto unknown genetic heterogeneity in multiple cell types within human leiomyomas. Our results will be important for future studies into the origin and growth of human leiomyomas. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by funding from the National Institute of Child Health and Human Development (HD098580 and HD088629). The authors declare no competing interests.
Collapse
Affiliation(s)
- Jyoti Goad
- Correspondence address. Department of Pathology, HSW-518, 513 Parnassus Ave, San Francisco, CA 94143, USA. Tel: +415-502-4961; E-mail: (A.R.); Tel: +415-514-4687, E-mail: (J.G.)
| | - Joshua Rudolph
- Department of Medicine, Lung Biology Center, University of California, San Francisco, CA, USA
| | - Mehrdad Zandigohar
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew Tae
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian-Jun Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Serdar E Bulun
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Debabrata Chakravarti
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aleksandar Rajkovic
- Correspondence address. Department of Pathology, HSW-518, 513 Parnassus Ave, San Francisco, CA 94143, USA. Tel: +415-502-4961; E-mail: (A.R.); Tel: +415-514-4687, E-mail: (J.G.)
| |
Collapse
|
3
|
Muñoz-García N, Jara-Acevedo M, Caldas C, Bárcena P, López A, Puig N, Alcoceba M, Fernández P, Villamor N, Flores-Montero JA, Gómez K, Lemes MA, Hernández JC, Álvarez-Twose I, Guerra JL, González M, Orfao A, Almeida J. STAT3 and STAT5B Mutations in T/NK-Cell Chronic Lymphoproliferative Disorders of Large Granular Lymphocytes (LGL): Association with Disease Features. Cancers (Basel) 2020; 12:cancers12123508. [PMID: 33255665 PMCID: PMC7760806 DOI: 10.3390/cancers12123508] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary STAT3 and STAT5B mutations have been identified in a subset of T and NK large granular lymphocytic leukemia (T/NK-LGLL). The aim of our study was to evaluate the frequency and type of these mutations in all different subtypes of T/NK-LGL expansions (n = 100 patients), as well as to analyze its association with biological and clinical features of the disease. We show for the first time that STAT3/5B mutations were present in all different T/NK-cell LGLL categories here studied; further, STAT3 mutations were associated with overall reduced counts of almost all normal residual populations of immune cells in blood, together with a shorter time-to-therapy vs. wild type T/NK-LGLL. These findings contribute to support the utility of the STAT3 mutation analysis for diagnostic and prognostic purposes in LGLL. Abstract STAT3 and STAT5B (STAT3/STAT5B) mutations are the most common mutations in T-cell large granular lymphocytic leukemia (T-LGLL) and chronic lymphoproliferative disorders of NK cells (CLPD-NK), but their clinical impact remains unknown. We investigated the frequency and type of STAT3/STAT5B mutations in FACS-sorted populations of expanded T/NK-LGL from 100 (82 clonal; 6 oligoclonal; 12 polyclonal) patients, and its relationship with disease features. Seventeen non-LGL T-CLPD patients and 628 age-matched healthy donors were analyzed as controls. STAT3 (n = 30) and STAT5B (n = 1) mutations were detected in 28/82 clonal T/NK-LGLL patients (34%), while absent (0/18, 0%) among oligoclonal/polyclonal LGL-lymphocytosis. Mutations were found across all diagnostic subgroups: TCD8+-LGLL, 36%; CLPD-NK, 38%; TCD4+-LGLL, 7%; Tαβ+DP-LGLL, 100%; Tαβ+DN-LGLL, 50%; Tγδ+-LGLL, 44%. STAT3-mutated T-LGLL/CLPD-NK showed overall reduced (p < 0.05) blood counts of most normal leukocyte subsets, with a higher rate (vs. nonmutated LGLL) of neutropenia (p = 0.04), severe neutropenia (p = 0.02), and cases requiring treatment (p = 0.0001), together with a shorter time-to-therapy (p = 0.0001), particularly in non-Y640F STAT3-mutated patients. These findings confirm and extend on previous observations about the high prevalence of STAT3 mutations across different subtypes of LGLL, and its association with a more marked decrease of all major blood-cell subsets and a shortened time-to-therapy.
Collapse
Affiliation(s)
- Noemí Muñoz-García
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - María Jara-Acevedo
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Carolina Caldas
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Paloma Bárcena
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Antonio López
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Noemí Puig
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
| | - Miguel Alcoceba
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
| | - Paula Fernández
- Institut für Labormedizin, Kantonsspital, 5001 Aarau, Switzerland;
| | - Neus Villamor
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Department of Pathology, Hematopathology Unit, Hospital Clínic, IDIBAPS, 08036 Barcelona, Spain
| | - Juan A. Flores-Montero
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Karoll Gómez
- Hematology Service, Juan Ramón Jiménez Hospital, 21005 Huelva, Spain;
| | - María Angelina Lemes
- Hematology Service, Dr. Negrín Hospital, 35010 Las Palmas de Gran Canaria, Spain;
| | | | - Iván Álvarez-Twose
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, 45071 Toledo, Spain
| | - Jose Luis Guerra
- Hematology Service, Virgen de la Luz Hospital, 16002 Cuenca, Spain;
| | - Marcos González
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
- Department of Nursery and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Julia Almeida
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Correspondence: ; Tel.: +34-923-294-811 (ext. 5816)
| |
Collapse
|
4
|
Age-related clonal hematopoiesis: implications for hematopoietic stem cell transplantation. Curr Opin Hematol 2019; 25:441-445. [PMID: 30124476 DOI: 10.1097/moh.0000000000000465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Over the past decade, advances in hematopoietic stem cell transplantation (HSCT) have enabled older individuals to undergo the procedure as well as to serve as donors. Recently, aging has been linked with the development of age-related clonal hematopoiesis (ARCH), defined as the gradual clonal expansion of hematopoietic stem and progenitor cells (HSPC) carrying recurrent disruptive genetic variants in individuals without a diagnosis of hematologic malignancy. Here we will review the implications of ARCH in the context of HSCT. RECENT FINDINGS ARCH is highly prevalent in the general population and commonly involves genes that are recurrently mutated in hematologic malignancies. Nevertheless, the vast majority of individuals with ARCH will not develop overt hematologic disease in their lifetime. The presence of ARCH may increase the risk of therapy-related myeloid neoplasms (t-MN) in individuals undergoing autologous HSCT. In the setting of allogeneic HSCT, ARCH present in the donor may contribute to adverse outcomes such as unexplained cytopenias posttransplant and donor cell leukemia. SUMMARY A better understanding of the hematopoietic milieu of HSCT recipients and of the importance of ARCH in the context of the replicative pressures imposed on transplanted HSPCs is needed in order to optimize conditioning regimens, donor selection and clinical outcomes post-HSCT.
Collapse
|
5
|
Randi ML, Bertozzi I, Putti MC. Contemporary management of essential thrombocythemia in children. Expert Rev Hematol 2019; 12:367-373. [PMID: 30925843 DOI: 10.1080/17474086.2019.1602034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Essential thrombocythemia (ET) is a disease which is extremely rare in children. Only recently, data on pediatric ET have become available. Areas covered: In children with sustained platelet count over 450 x 109/L, secondary thrombocytosis must be ruled out. ET workup comprehends research of JAK2V617F, CALR and MPL mutations and bone marrow biopsy (BM). In asymptomatic children wait and watch is the best option. Aspirin controls headache and other microvascular disturbances. Patients with venous thrombosis need anticoagulation. Cytoreductive drugs in children with ET should be prescribed as a last choice. Hydroxyurea and IFN-a are first-line therapy at any age including children; Anagrelide is not licensed as first-line therapy for ET in Europe. New JAK2-inhibitors are not clearly useful in ET and hence not approved for ET. Expert opinion: The most challenging problem is to understand if a child with prolonged not secondary thrombocytosis really has ET. Diagnostic workup requires molecular and histological studies. The rare children with clonal ET have features like those of adults. Patients with ET have long expected survival and the treatment in children must be long-term efficacious and well tolerated.
Collapse
Affiliation(s)
- Maria Luigia Randi
- a Department of Medicine - DIMED, First Medical Clinic , University of Padua , Padova , Italy
| | - Irene Bertozzi
- a Department of Medicine - DIMED, First Medical Clinic , University of Padua , Padova , Italy
| | - Maria Caterina Putti
- b Department of Women's and Children's Health, Pediatric Hemato-Oncology , University of Padova , Padova , Italy
| |
Collapse
|
6
|
Kim H, Kim CY, Park KH, Kim A. Clonality analysis of multifocal ipsilateral breast carcinomas using X-chromosome inactivation patterns. Hum Pathol 2018; 78:106-114. [PMID: 29727695 DOI: 10.1016/j.humpath.2018.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 02/04/2023]
Abstract
The definition of multifocal breast cancer is ambiguous, and its incidence varies depending on the definition and detection methods. Multifocal breast cancers either have the same clonal origin or arise from completely distinct progenitor cells. The current American Joint Committee on Cancer Staging system and College of American Pathologists breast tumor guidelines state that only the largest tumor needs to be staged and studied immunohistochemically, on the assumption that they are of the same origin. However, some multifocal tumors have been proved to have arisen from different clones. In the present study, 71 cases of surgically resected multifocal breast cancers were selected. To detect and characterize the tumors of each clonal origin, a human androgen receptor gene (HUMARA) assay to compare the X-chromosome inactivation patterns of multiple tumors was conducted. Twenty-nine of 71 (40.8%) patients were revealed to be heterozygous for HUMARA. Sixty-four (90.1%) patients had the same X chromosome inactivated in different tumors. Seven (9.9%) cases had different inactivated X chromosomes between multifocal tumors, indicating that those tumors were from separate progenitor cells. Five (7.0%) cases showed identical histologic features but had different inactivated HUMARA alleles. According to these results, 2 separate tumors might be synchronous primary tumors, although their histopathologic characteristics are similar. Furthermore, multifocal tumors can be of different origins despite being closely located to each other. These findings suggest that separate grouping of multiple breast tumors based on their clonal origin is needed for future studies.
Collapse
Affiliation(s)
- Hayeon Kim
- Department of Pathology, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Chung-Yeul Kim
- Department of Pathology, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Kyong Hwa Park
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Aeree Kim
- Department of Pathology, Korea University Guro Hospital, Seoul 08308, Republic of Korea.
| |
Collapse
|
7
|
Homan CC, Pederson S, To TH, Tan C, Piltz S, Corbett MA, Wolvetang E, Thomas PQ, Jolly LA, Gecz J. PCDH19 regulation of neural progenitor cell differentiation suggests asynchrony of neurogenesis as a mechanism contributing to PCDH19 Girls Clustering Epilepsy. Neurobiol Dis 2018; 116:106-119. [PMID: 29763708 DOI: 10.1016/j.nbd.2018.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 01/12/2023] Open
Abstract
PCDH19-Girls Clustering Epilepsy (PCDH19-GCE) is a childhood epileptic encephalopathy characterised by a spectrum of neurodevelopmental problems. PCDH19-GCE is caused by heterozygous loss-of-function mutations in the X-chromosome gene, Protocadherin 19 (PCDH19) encoding a cell-cell adhesion molecule. Intriguingly, hemizygous males are generally unaffected. As PCDH19 is subjected to random X-inactivation, heterozygous females are comprised of a mosaic of cells expressing either the normal or mutant allele, which is thought to drive pathology. Despite being the second most prevalent monogeneic cause of epilepsy, little is known about the role of PCDH19 in brain development. In this study we show that PCDH19 is highly expressed in human neural stem and progenitor cells (NSPCs) and investigate its function in vitro in these cells of both mouse and human origin. Transcriptomic analysis of mouse NSPCs lacking Pcdh19 revealed changes to genes involved in regulation of neuronal differentiation, and we subsequently show that loss of Pcdh19 causes increased NSPC neurogenesis. We reprogramed human fibroblast cells harbouring a pathogenic PCDH19 mutation into human induced pluripotent stem cells (hiPSC) and employed neural differentiation of these to extend our studies into human NSPCs. As in mouse, loss of PCDH19 function caused increased neurogenesis, and furthermore, we show this is associated with a loss of human NSPC polarity. Overall our data suggests a conserved role for PCDH19 in regulating mammalian cortical neurogenesis and has implications for the pathogenesis of PCDH19-GCE. We propose that the difference in timing or "heterochrony" of neuronal cell production originating from PCDH19 wildtype and mutant NSPCs within the same individual may lead to downstream asynchronies and abnormalities in neuronal network formation, which in-part predispose the individual to network dysfunction and epileptic activity.
Collapse
Affiliation(s)
- Claire C Homan
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Thu-Hien To
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Chuan Tan
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia
| | - Sandra Piltz
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Mark A Corbett
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia
| | - Paul Q Thomas
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Lachlan A Jolly
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia.
| | - Jozef Gecz
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia.
| |
Collapse
|
8
|
Bárcena P, Jara-Acevedo M, Tabernero MD, López A, Sánchez ML, García-Montero AC, Muñoz-García N, Vidriales MB, Paiva A, Lecrevisse Q, Lima M, Langerak AW, Böttcher S, van Dongen JJM, Orfao A, Almeida J. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality. Oncotarget 2016; 6:42938-51. [PMID: 26556869 PMCID: PMC4767482 DOI: 10.18632/oncotarget.5480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/27/2015] [Indexed: 01/08/2023] Open
Abstract
Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56low NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56low NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94hi/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality.
Collapse
Affiliation(s)
- Paloma Bárcena
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Jara-Acevedo
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | | | - Antonio López
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Luz Sánchez
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Andrés C García-Montero
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Noemí Muñoz-García
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Belén Vidriales
- Department of Hematology and Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Análises Clínicas e Saúde Pública, Coimbra,Portugal
| | - Quentin Lecrevisse
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Margarida Lima
- Department of Hematology, Laboratory of Cytometry, Hospital de Santo António, Centro Hospitalar do Porto, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Porto, Portugal
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sebastian Böttcher
- Medical Clinic II, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Alberto Orfao
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Julia Almeida
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
9
|
KIT D816V–mutated bone marrow mesenchymal stem cells in indolent systemic mastocytosis are associated with disease progression. Blood 2016; 127:761-8. [DOI: 10.1182/blood-2015-07-655100] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Key Points
Acquisition of the KIT D816V mutation in an early pluripotent progenitor cell confers ISM cases a greater risk for disease progression. Despite the early acquisition of the KIT mutation, onset of clinical symptoms of ISM is often delayed to middle adulthood.
Collapse
|
10
|
Álvarez-Twose I, Jara-Acevedo M, Morgado JM, García-Montero A, Sánchez-Muñoz L, Teodósio C, Matito A, Mayado A, Caldas C, Mollejo M, Orfao A, Escribano L. Clinical, immunophenotypic, and molecular characteristics of well-differentiated systemic mastocytosis. J Allergy Clin Immunol 2016; 137:168-178.e1. [DOI: 10.1016/j.jaci.2015.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/17/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022]
|
11
|
Comertpay S, Pastorino S, Tanji M, Mezzapelle R, Strianese O, Napolitano A, Baumann F, Weigel T, Friedberg J, Sugarbaker P, Krausz T, Wang E, Powers A, Gaudino G, Kanodia S, Pass HI, Parsons BL, Yang H, Carbone M. Evaluation of clonal origin of malignant mesothelioma. J Transl Med 2014; 12:301. [PMID: 25471750 PMCID: PMC4255423 DOI: 10.1186/s12967-014-0301-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022] Open
Abstract
Background The hypothesis that most cancers are of monoclonal origin is often accepted as a fact in the scientific community. This dogma arose decades ago, primarily from the study of hematopoietic malignancies and sarcomas, which originate as monoclonal tumors. The possible clonal origin of malignant mesothelioma (MM) has not been investigated. Asbestos inhalation induces a chronic inflammatory response at sites of fiber deposition that may lead to malignant transformation after 30-50 years latency. As many mesothelial cells are simultaneously exposed to asbestos fibers and to asbestos-induced inflammation, it may be possible that more than one cell undergoes malignant transformation during the process that gives rise to MM, and result in a polyclonal malignancy. Methods and results To investigate the clonality patterns of MM, we used the HUMARA (Human Androgen Receptor) assay to examine 16 biopsies from 14 women MM patients. Out of 16 samples, one was non-informative due to skewed Lyonization in its normal adjacent tissue. Fourteen out of the 15 informative samples revealed two electrophoretically distinct methylated HUMARA alleles, the Corrected Allele Ratio (CR) calculated on the allele peak areas indicating polyclonal origin MM. Conclusions Our results show that MM originate as polyclonal tumors and suggest that the carcinogenic “field effect” of mineral fibers leads to several premalignant clones that give rise to these polyclonal malignancies. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0301-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michele Carbone
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
12
|
Fernandez C, Santos-Silva MC, López A, Matarraz S, Jara-Acevedo M, Ciudad J, Gutierrez ML, Sánchez ML, Salvador-Osuna C, Berruezo MJ, Díaz-Arias JÁ, Palomo-Hernández AM, Colado E, González N, Gallardo D, Asensio A, García-Sánchez R, Saldaña R, Cerveró C, Carboné-Bañeres A, Gutierrez O, Orfao A. Newly diagnosed adult AML and MPAL patients frequently show clonal residual hematopoiesis. Leukemia 2013; 27:2149-56. [DOI: 10.1038/leu.2013.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 11/09/2022]
|
13
|
van Dongen JJM, Lhermitte L, Böttcher S, Almeida J, van der Velden VHJ, Flores-Montero J, Rawstron A, Asnafi V, Lécrevisse Q, Lucio P, Mejstrikova E, Szczepański T, Kalina T, de Tute R, Brüggemann M, Sedek L, Cullen M, Langerak AW, Mendonça A, Macintyre E, Martin-Ayuso M, Hrusak O, Vidriales MB, Orfao A. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012; 26:1908-75. [PMID: 22552007 PMCID: PMC3437410 DOI: 10.1038/leu.2012.120] [Citation(s) in RCA: 666] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 02/14/2012] [Accepted: 04/19/2012] [Indexed: 12/21/2022]
Abstract
Most consensus leukemia & lymphoma antibody panels consist of lists of markers based on expert opinions, but they have not been validated. Here we present the validated EuroFlow 8-color antibody panels for immunophenotyping of hematological malignancies. The single-tube screening panels and multi-tube classification panels fit into the EuroFlow diagnostic algorithm with entries defined by clinical and laboratory parameters. The panels were constructed in 2-7 sequential design-evaluation-redesign rounds, using novel Infinicyt software tools for multivariate data analysis. Two groups of markers are combined in each 8-color tube: (i) backbone markers to identify distinct cell populations in a sample, and (ii) markers for characterization of specific cell populations. In multi-tube panels, the backbone markers were optimally placed at the same fluorochrome position in every tube, to provide identical multidimensional localization of the target cell population(s). The characterization markers were positioned according to the diagnostic utility of the combined markers. Each proposed antibody combination was tested against reference databases of normal and malignant cells from healthy subjects and WHO-based disease entities, respectively. The EuroFlow studies resulted in validated and flexible 8-color antibody panels for multidimensional identification and characterization of normal and aberrant cells, optimally suited for immunophenotypic screening and classification of hematological malignancies.
Collapse
Affiliation(s)
- J J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam (Erasmus MC), Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
ALVAREZ-TWOSE I, MORGADO JM, SÁNCHEZ-MUÑOZ L, GARCÍA-MONTERO A, MOLLEJO M, ORFAO A, ESCRIBANO L. Current state of biology and diagnosis of clonal mast cell diseases in adults. Int J Lab Hematol 2012; 34:445-60. [DOI: 10.1111/j.1751-553x.2012.01427.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Paquette RL, Nicoll J, Chalukya M, Gondek L, Jasek M, Sawyers CL, Shah NP, Maciejewski J. Clonal hematopoiesis in Philadelphia chromosome-negative bone marrow cells of chronic myeloid leukemia patients receiving dasatinib. Leuk Res 2009; 34:708-13. [PMID: 19804904 DOI: 10.1016/j.leukres.2009.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/15/2009] [Accepted: 08/30/2009] [Indexed: 10/20/2022]
Abstract
A clonal cytogenetic abnormality was observed in Philadelphia chromosome-negative bone marrow cells of 6/27 chronic myeloid leukemia patients (+8 in 4, -7 in 1, and 20q- in 1) with dasatinib-induced remissions. The X-linked human androgen receptor gene assay demonstrated clonality in one additional patient. Single nucleotide polymorphism array analysis revealed somatic uniparental disomy involving chromosome 17(p12-pter) in another patient. The TP53 gene had a 5' splice site deletion of exon 6 that caused alternative splicing, frame shifting and introduction of a premature stop codon. After three years, no patient developed myelodysplastic syndrome or acute myeloid leukemia.
Collapse
|
16
|
Lips DJ, Barker N, Clevers H, Hennipman A. The role of APC and beta-catenin in the aetiology of aggressive fibromatosis (desmoid tumors). Eur J Surg Oncol 2008; 35:3-10. [PMID: 18722078 DOI: 10.1016/j.ejso.2008.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/05/2008] [Accepted: 07/09/2008] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Aggressive fibromatosis (syn. desmoid tumor) is a sporadically occurring neoplastic proliferation of fibroblasts originating from musculoaponeurotic planes, forming invasively growing masses without the capability to metastasize. The choice of treatment remains surgical resection with or without radiotherapy, and is characterized by high recurrence rates. Better understanding of the aetiology of aggressive fibromatosis is needed to be able to develop new treatment strategies to cope with the high recurrence rates. METHODS Relevant studies were identified through a search of the electronic databases PubMed/ Medline. The following search terms were used: 'aggressive fibromatosis', 'desmoid tumor', 'adenomatous polyposis coli', 'APC', 'beta-catenin', 'Wnt', 'Wingless' and 'Wnt/Wingless'. Studies were selected for review on the basis of abstract reading. A hand search was performed by checking reference lists in selected articles. RESULTS The neoplastic nature of aggressive fibromatosis and the role of the adenomatous polyposis coli (APC) and beta-catenin signaling cascade in driving the onset and progression of this disease are discussed. CONCLUSION Mutations in either the APC or beta-catenin genes are likely to be a major driving force in the formation of these desmoid tumors. More research is needed to develop new treatment strategies.
Collapse
Affiliation(s)
- D J Lips
- Department of Surgery, Jeroen Bosch Hospital, Den Bosch, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Somatic mosaicism for a PDHA1 mutation in a female with pyruvate dehydrogenase deficiency. Hum Genet 2008; 124:187-93. [DOI: 10.1007/s00439-008-0538-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 02/04/2023]
|
18
|
Randi ML, Putti MC, Scapin M, Pacquola E, Tucci F, Micalizzi C, Zanesco L, Fabris F. Pediatric patients with essential thrombocythemia are mostly polyclonal and V617FJAK2 negative. Blood 2006; 108:3600-2. [PMID: 16849644 DOI: 10.1182/blood-2006-04-014746] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
Essential thrombocythemia (ET) is rare in children, and little or no information is available about clonality or JAK2 mutations. However, the analyses in this work prove useful for the diagnosis of adult myeloproliferative disorders (MPDs). We evaluated the clonality status and V617FJAK2 mutation in 20 children affected by ET and compared them with 47 consecutive adult ET cases. Clonality was evaluated on the DNA of granulocytes and on the RNA of platelets. V617FJAK2 was analyzed by sequencing tests, allele-specific polymerase chain reaction (PCR), and digestion by BsaXI. A monoclonal pattern was found in 4 (28.5%) of 14 children and in 45% of informative adults. Heterozygous V617FJAK2 was found less frequently in children than in adults (P < .009). Only 2 girls showed both the V617FJAK2 mutation and a monoclonal pattern; one of them was the only child presenting a major thrombotic complication. In contrast to adults, most children with ET do not show either a clonal disorder or the V617FJAK2 mutation.
Collapse
Affiliation(s)
- Maria Luigia Randi
- Department of Medical and Surgical Sciences, University of Padua, via Giustiniani 2, 35128 Padua, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
WRIGHT NA. Review article: is there a common principle in the development of gastrointestinal cancers? Stem cells in the origin of cancer. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1746-6342.2006.00023.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Guertl B, Leuschner I, Harms D, Hoefler G. Genetic clonality is a feature unifying nephroblastomas regardless of the variety of morphological subtypes. Virchows Arch 2006; 449:171-4. [PMID: 16715229 DOI: 10.1007/s00428-006-0225-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 04/13/2006] [Indexed: 12/20/2022]
Abstract
Nephroblastomas are embryonal tumors exhibiting a wide variety of different morphological features and genetic changes. Some of the genetic aberrations were associated with a certain histological subtype. It is generally assumed that nephroblastomas develop as subclonal proliferations from nephrogenic rests. However, so far, a very limited amount of tumors from only part of the morphological spectrum of nephroblastomas was investigated. We therefore investigated the clonality of 45 tumors of all different histological subtypes. The number of each subtype was in accordance with the percentage of occurrence of the respective subtype. We analyzed a highly polymorphic locus of the human androgen receptor gene for nonrandom X-inactivation of genomic DNA using a methylation-sensitive restriction enzyme. Data were obtained for 39 tumors. Eighteen of the tumors included were noninformative in the genetic locus examined, the remaining 21 tumors were monoclonal regardless of the histological subtype. Our findings therefore support the hypothesis that Wilms' tumors are monoclonal proliferations despite their large variety of morphological features.
Collapse
Affiliation(s)
- Barbara Guertl
- Institute of Pathology, Paracelsus Private Medical University Salzburg, Salzburg Landeskrankenanstalten, Müllner Strasse 48, Salzburg 5020, Austria.
| | | | | | | |
Collapse
|
21
|
Vaglio A, Greif G, Bernal M, Sanguinetti C, Mechoso B, Quadrelli A, Tucci P, Milunsky JM, Huang XL, Pagano S, Quadrelli R. Prenatal and Postnatal Characterization of a De Novo Xq22.1 Terminal Deletion. ACTA ACUST UNITED AC 2006; 10:272-6. [PMID: 17253933 DOI: 10.1089/gte.2006.10.272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We present a case of a de novo Xq22.1 chromosomal terminal deletion discovered prenatally by conventional cytogenetics. The pregnancy resulted in the birth of a normal girl. Preferential inactivation of the abnormal X was demonstrated postnatally. Fluorescence in situ hybridization (FISH) demonstrated a terminal Xq deletion spanning Xq22.1 -->qter. An X painting probe ruled out a translocation. The deleted X chromosome was determined to be of paternal origin. The girl is now 4 years old with normal physical and psychomotor development. X chromosomal deletions are infrequent findings in prenatal diagnosis and present a difficult counseling challenge when they occur. Prenatal X-inactivation studies provide an opportunity for more informative genetic counseling when a de novo X chromosome deletion is detected.
Collapse
Affiliation(s)
- Alicia Vaglio
- Instituto de Genética Médica, Hospital Italiano, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Leedham SJ, Schier S, Thliveris AT, Halberg RB, Newton MA, Wright NA. From gene mutations to tumours--stem cells in gastrointestinal carcinogenesis. Cell Prolif 2005; 38:387-405. [PMID: 16300652 PMCID: PMC6496903 DOI: 10.1111/j.1365-2184.2005.00359.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 09/02/2005] [Indexed: 12/18/2022] Open
Abstract
Stem cells share many properties with malignant cells, such as the ability to self-renew and proliferate. Cancer is believed to be a disease of stem cells. The gastrointestinal tract has high cancer prevalence partly because of rapid epithelial cell turnover and exposure to dietary toxins. The molecular pathways of carcinogenesis differ according to the tissue. Work on hereditary cancer syndromes including familial adenomatous polyposis (FAP) has led to advances in our understanding of the events that occur in tumour development from a gastrointestinal stem cell. The initial mutation involved in the adenoma-carcinoma sequence is in the 'gatekeeper' tumour-suppressor gene adenomatous polyposis coli (APC). Somatic hits in this gene are non-random in FAP, with the type of mutation selected for by the position of the germline mutation. In the stomach, a metaplasia-dysplasia sequence occurs and is often related to Helicobacter pylori infection. Clonal expansion of mutated cells occurs by niche succession. Further expansion of the aberrant clone then occurs by the longitudinal division of crypts into two daughter units--crypt fission. Two theories seek to explain the early development of adenomas--the 'top down' and 'bottom up' hypotheses. Initial studies suggested that colorectal tumours were monoclonal; however, later work on chimeric mice and a sex chromosome mixoploid patient with FAP suggested that up to 76% of early adenomas were polyclonal. Introduction of a homozygous resistance allele has reduced tumour multiplicity in the mouse and has been used to rule out random collision of polyps as the cause of these observations. It is likely that short-range interaction between adjacent initiated crypts is responsible for polyclonality.
Collapse
Affiliation(s)
- S J Leedham
- Histopathology Unit, Cancer Research UK, London, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Kim JW, Park SY, Kim YM, Kim JM, Han JY, Ryu HM. X-chromosome inactivation patterns in Korean women with idiopathic recurrent spontaneous abortion. J Korean Med Sci 2004; 19:258-62. [PMID: 15082900 PMCID: PMC2822308 DOI: 10.3346/jkms.2004.19.2.258] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) defines as two or more consecutive losses at < or = 20 weeks of gestation and affects an estimated 1 of every 100 couples wishing to have children. However, it remains a poorly understood phenomenon. Recent reports observed a significant association between highly skewed X chromosome and RSA, supporting that X chromosome inactivation might be an important and previously unknown cause of RSA. X-inactivation pattern, using polymeric X-linked women with idiopathic RSA and 80 control subjects with a single successful pregnancy and no history of spontaneous abortion. The ratio of heterozygotes was 68.2% (45/66) in women with RSA and 67.5% (54/80) in control group. Among 45 informative RSA cases, only 1 (2.2%) woman showed extreme skewed X inactivation (> or = 90%) and 4 (8.9%) had mild skewed inactivation (> or = 85%). In 54 heterozygous control subjects, 5 (9.3%) women showed extreme skewed X inactivation and 7 (13.0%) had mild one. The frequency of skewed X inactivation between RSA patients and control group was not significantly different (p>0.05). This finding suggests that skewed x chromosome be not associated with unexplained RSA patients.
Collapse
Affiliation(s)
- Jin-Woo Kim
- Laboratory of Medical Genetics, Samsung Cheil Hospital and Women's Healthcare Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So-Yeon Park
- Laboratory of Medical Genetics, Samsung Cheil Hospital and Women's Healthcare Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Mi Kim
- Laboratory of Medical Genetics, Samsung Cheil Hospital and Women's Healthcare Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin-Mee Kim
- Laboratory of Medical Genetics, Samsung Cheil Hospital and Women's Healthcare Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Yeol Han
- Department of Obstetrics and Gynecology, Samsung Cheil Hospital and Women's Healthcare Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun-Mee Ryu
- Department of Obstetrics and Gynecology, Samsung Cheil Hospital and Women's Healthcare Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Guertl B, Ratschek M, Harms D, Jaenig U, Leuschner I, Poremba C, Hoefler G. Clonality and loss of heterozygosity of WT genes are early events in the pathogenesis of nephroblastomas. Hum Pathol 2003; 34:278-81. [PMID: 12673563 DOI: 10.1053/hupa.2003.32] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nephrogenic rests (NRs), putative precursor lesions of nephroblastomas (Wilms' tumors), are found in 25% to 40% of kidneys presenting with nephroblastomas. Nephroblastomas are clonal tumors that, according to a genetic multistep model, are thought to arise as subclonal proliferations from NRs by accumulating genetic alterations. Different candidate genes for the pathogenesis of nephroblastomas have been identified, including those at chromosomes 11p13 (WT1 gene), 11p15 (WT2 gene), and 16q (WT3 gene). We investigated clonality and loss of heterozygosity (LOH) at these loci in different subtypes of NR. After microdissection under microscopic control, we analyzed a highly polymorphic locus of the human androgen receptor gene (HUMARA) for nonrandom X-inactivation of genomic DNA using a methylation-sensitive restriction enzyme to investigate clonality. Out of 14 patients, we found that 1 case each of adenomatous and hyperplastic NR and 2 of 7 cases of sclerosing NR were monoclonal. Five patients were noninformative. We assessed LOH at chromosomes 11p13, 11p15, and 16q by analyzing polymorphic gene loci at these regions. One hyperplastic NR and the corresponding tumor showed LOH at 11p13 and 11p15; 1 sclerosing NR and the corresponding tumor exhibited LOH at chromosome 16q. We demonstrate for the first time that sclerosing NRs can exhibit genetic alterations found in nephroblastomas, namely monoclonality and LOH at the WT gene loci. The histological morphology is no different between NRs with these genetic alterations and NRs without them. We conclude that these genetic changes are early events in the multistep genetic pathogenesis of nephroblastomas; however, they do not seem to fully determine a malignant potential of NR.
Collapse
Affiliation(s)
- Barbara Guertl
- Institute of Pathology, University of Graz, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
25
|
Jovanovic L, Delahunt B, McIver B, Eberhardt NL, Grebe SK. Optimising restriction enzyme cleavage of DNA derived from archival histopathological samples: an improved HUMARA assay. Pathology 2003. [DOI: 10.1080/0031302021000062370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Brown LY, Alonso ML, Yu J, Warburton D, Brown S. Prenatal diagnosis of a familial Xq deletion in a female fetus: a case report. Prenat Diagn 2001; 21:27-30. [PMID: 11180236 DOI: 10.1002/1097-0223(200101)21:1<27::aid-pd971>3.0.co;2-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
X chromosome deletion is an infrequent finding in prenatal diagnosis and presents a difficult counseling challenge when it occurs. We present a case of a familial X chromosome long arm deletion discovered in a routine amniocentesis and subsequently in the mother. The pregnancy resulted in the birth of a normal girl, and X chromosome inactivation skewing was demonstrated in both mother and daughter. Xq deletion phenotypes and counseling issues are reviewed.
Collapse
Affiliation(s)
- L Y Brown
- Columbia University, College of Physicians and Surgeons, 630 W 9168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Riley DE, Cho IR, Krieger JN. A hemizygous short tandem repeat polymorphism 3' to the human phosphoglycerate kinase gene. Mol Biol Rep 1999; 26:159-65. [PMID: 10532310 DOI: 10.1023/a:1006908624757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human phosphoglycerate kinase (PGK) gene is located within Xq11-Xq13, a region implicated in genitourinary diseases including: prostate cancer, androgen insensitivity, perineal hypospadias, and other genetic abnormalities. The PGK gene and the androgen receptor gene are in linkage disequilibrium. PGK has been mapped extensively for nuclease-sensitive sites, methylation sites, and flanking DNA sequences. A PGK-associated BstXI polymorphism has been used to determine clonality of neoplastic tissues. Using fluorescent PCR product analysis and DNA sequencing, we discovered that a short tandem repeat (STR) in the 3' flanking region of the PGK gene is polymorphic. Among 231 individuals, there were nine distinct alleles, including eight based on variations in the number of TATC repeats. The PGK STR demonstrated hemizygosity, consistent with its X-chromosomal location and with an absence of cross-hybridizing autosomal homologs. The polymorphic PGK STR shows promise for rapid investigation of neoplastic clonality, for personal identification, and for studies of inherited predisposition to urologic disorders.
Collapse
Affiliation(s)
- D E Riley
- Department of Urology, School of Medicine, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
29
|
Fox JW, Lamperti ED, Ekşioğlu YZ, Hong SE, Feng Y, Graham DA, Scheffer IE, Dobyns WB, Hirsch BA, Radtke RA, Berkovic SF, Huttenlocher PR, Walsh CA. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 1998; 21:1315-25. [PMID: 9883725 DOI: 10.1016/s0896-6273(00)80651-0] [Citation(s) in RCA: 683] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Long-range, directed migration is particularly dramatic in the cerebral cortex, where postmitotic neurons generated deep in the brain migrate to form layers with distinct form and function. In the X-linked dominant human disorder periventricular heterotopia (PH), many neurons fail to migrate and persist as nodules lining the ventricular surface. Females with PH present with epilepsy and other signs, including patent ductus arteriosus and coagulopathy, while hemizygous males die embryonically. We have identified the PH gene as filamin 1 (FLN1), which encodes an actin-cross-linking phosphoprotein that transduces ligand-receptor binding into actin reorganization, and which is required for locomotion of many cell types. FLN1 shows previously unrecognized, high-level expression in the developing cortex, is required for neuronal migration to the cortex, and is essential for embryogenesis.
Collapse
Affiliation(s)
- J W Fox
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Magda JL, Minger BA, Rimm DL. Polymerase chain reaction-based detection of clonality as a non-morphologic diagnostic tool for fine-needle aspiration of the breast. Cancer 1998; 84:262-7. [PMID: 9723602 DOI: 10.1002/(sici)1097-0142(19980825)84:4<262::aid-cncr12>3.0.co;2-q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Fine-needle aspiration (FNA) of breast specimens can be difficult and between 10-25% of the lesions ultimately are classified as "atypical," even by the most experienced cytopathologist. The goal of this study was to identify a molecular mechanism that reliably distinguishes benign and malignant (or pre-malignant) lesions and that could be used as an adjunct in these morphologically ambiguous cases. METHODS Because all malignancies represent clonal proliferations, assessment of clonality represents a potential molecular mechanism for making this distinction. Excess material preserved from breast FNAs was examined using the human androgen receptor locus clonality assay. This assay allows determination of clonality on the basis of X chromosome inactivation as detected by polymerase chain reaction analysis of genomic DNA after methylase-sensitive restriction digestion. RESULTS In this pilot study, 25 cases showed reproducible results. All malignant cases (9 of 9) were monoclonal, whereas 10 of 12 benign cases were polyclonal. Of four atypical cases, two were monoclonal and both were found to be malignant after surgical resection. Monoclonality was observed in two benign cases that were hyperplastic lesions. CONCLUSIONS These preliminary results suggest that this test may provide a non-morphologic molecular mechanism for the objective categorization of breast FNAs.
Collapse
Affiliation(s)
- J L Magda
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
31
|
Schorge JO, Muto MG, Welch WR, Bandera CA, Rubin SC, Bell DA, Berkowitz RS, Mok SC. Molecular evidence for multifocal papillary serous carcinoma of the peritoneum in patients with germline BRCA1 mutations. J Natl Cancer Inst 1998; 90:841-5. [PMID: 9625172 DOI: 10.1093/jnci/90.11.841] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Papillary serous carcinoma of the peritoneum (PSCP) diffusely involves peritoneal surfaces, while it spares or only superficially involves the ovaries. PSCP is histologically indistinguishable from serous epithelial ovarian carcinoma, and it may develop years after oophorectomy. The molecular pathogenesis of PSCP remains unresolved, although preliminary data suggest a multifocal origin in some cases. Patients with germline BRCA1 mutations may develop PSCP in addition to breast and ovarian carcinomas. The purpose of this study was to utilize the androgen receptor (AR) gene locus to test the hypothesis that some cases of PSCP have a multifocal origin and to determine if patients with germline BRCA1 mutations develop multifocal PSCP. METHODS Specimens of normal and tumor tissues from 22 women with PSCP were obtained, and DNA was extracted. The AR gene locus was evaluated for patterns of loss of heterozygosity (LOH) and X-chromosome inactivation. The methylation-sensitive Hpa II restriction enzyme was used to differentiate the active and inactive X chromosomes. Germline BRCA1 mutation status of the patients was determined previously. RESULTS Genetic analysis of tumor specimens indicated that five (23%) of 22 case subjects had patterns of selective LOH at the AR locus, consistent with multifocal, polyclonal disease origin. Two patients with selective LOH also had alternating X-chromosome inactivation patterns. Patients with germline BRCA1 mutations were more likely to have evidence of multifocal disease (two-sided Fisher's exact test, P = .01). CONCLUSIONS Our results show that PSCP has a multifocal origin in at least some cases. Furthermore, patients with germline BRCA1 mutations are more likely to develop multifocal PSCP than are patients without BRCA1 mutations.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Alleles
- Biomarkers, Tumor/genetics
- Clone Cells/ultrastructure
- Cystadenocarcinoma, Papillary/genetics
- Cystadenocarcinoma, Papillary/pathology
- DNA Methylation
- DNA, Neoplasm/genetics
- Disease Susceptibility
- Dosage Compensation, Genetic
- Female
- Genes, BRCA1
- Genes, p53
- Genetic Markers
- Humans
- Loss of Heterozygosity
- Middle Aged
- Neoplastic Stem Cells/ultrastructure
- Neoplastic Syndromes, Hereditary/genetics
- Neoplastic Syndromes, Hereditary/pathology
- Ovariectomy
- Ovary/embryology
- Peritoneal Neoplasms/genetics
- Peritoneal Neoplasms/pathology
- Peritoneum/embryology
- Receptors, Androgen/genetics
- Retrospective Studies
- Trinucleotide Repeats
- X Chromosome/genetics
Collapse
Affiliation(s)
- J O Schorge
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|