1
|
Téblick A, Gunst J, Van den Berghe G. Critical Illness-induced Corticosteroid Insufficiency: What It Is Not and What It Could Be. J Clin Endocrinol Metab 2022; 107:2057-2064. [PMID: 35358303 PMCID: PMC9202732 DOI: 10.1210/clinem/dgac201] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 01/07/2023]
Abstract
Critical illnesses are hallmarked by increased systemic cortisol availability, a vital part of the stress response. Acute stress may trigger a life-threatening adrenal crisis when a disease of the hypothalamic-pituitary-adrenal (HPA) axis is present and not adequately treated with stress doses of hydrocortisone. Stress doses of hydrocortisone are also used to reduce high vasopressor need in patients suffering from septic shock, in the absence of adrenal insufficiency. Research performed over the last 10 years focusing on the HPA axis during critical illness has led to the insight that neither of these conditions can be labeled "critical illness-induced corticosteroid insufficiency" or CIRCI. Instead, these data suggested using the term CIRCI for a condition that may develop in prolonged critically ill patients. Indeed, when patients remain dependent on vital organ support for weeks, they are at risk of acquiring central adrenal insufficiency. The sustained increase in systemic glucocorticoid availability, mainly brought about by suppressed circulating cortisol-binding proteins and suppressed hepatic/renal cortisol metabolism, exerts negative feedback inhibition at the hypothalamus/pituitary, while high levels of other glucocorticoid receptor ligands, such as bile acids, and drugs, such as opioids, may further suppress adrenocorticotropic hormone (ACTH) secretion. The adrenal cortex, depleted from ACTH-mediated trophic signaling for weeks, may become structurally and functionally impaired, resulting in insufficient cortisol production. Such a central HPA axis suppression may be maladaptive by contributing to lingering vasopressor need and encephalopathy, hence preventing recovery. Here, we review this concept of CIRCI and we advise on how to recognize and treat this poorly understood condition.
Collapse
Affiliation(s)
- Arno Téblick
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University, B-3000 Leuven, Belgium
| | - Jan Gunst
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University, B-3000 Leuven, Belgium
| | | |
Collapse
|
2
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
3
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Kemppainen RJ, Behrend EN. Acute inhibition of carboxypeptidase E expression in AtT-20 cells does not affect regulated secretion of ACTH. ACTA ACUST UNITED AC 2010; 165:174-9. [PMID: 20655338 DOI: 10.1016/j.regpep.2010.07.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 06/12/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
Carboxypeptidase E (CPE) is an exopeptidase that removes C-terminal basic amino acids from a variety of bioactive peptides. In addition to this role, data obtained in recent years has supported a potential function for CPE as a sorting receptor, helping direct peptides destined for regulated secretion from the trans-Golgi to granules in preparation for release. This possible sorting function was assessed using mouse AtT-20 cells, a well-established corticotroph cell line that synthesizes and releases POMC/ACTH in regulated fashion. Cells that were treated with siRNA to Cpe effectively suppressed CPE expression. ACTH was released in a regulated fashion from CPE-depleted cells in response to two secretagogues, 8-bromo-cyclic AMP and corticotrophin-releasing hormone. POMC/ACTH content of CPE-depleted cells was higher than that of control cells, but both released a similar percentage of ACTH content in response to secretagogue addition. Cells depleted of CPE generally secreted more high-molecular weight forms of POMC/ACTH under basal conditions than control cells; however, the CPE-depleted cells responded to a secretagogue by releasing newly synthesized ACTH 1-39 in a manner similar to controls. These results, whereby RNAi was used to acutely suppress CPE, do not support a role for this protein as necessary for or central to sorting of POMC/ACTH to the regulated secretory pathway in AtT-20 cells.
Collapse
Affiliation(s)
- Robert J Kemppainen
- Departments of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
5
|
Stevens A, White A. ACTH: cellular peptide hormone synthesis and secretory pathways. Results Probl Cell Differ 2009; 50:63-84. [PMID: 19888563 DOI: 10.1007/400_2009_30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adrenocorticotrophic hormone (ACTH) is derived from the prohormone, pro-opiomelanocortin (POMC). This precursor undergoes proteolytic cleavage to yield a number of different peptides which vary depending on the tissue. In the anterior pituitary, POMC is processed to ACTH by the prohormone convertase, PC1 and packaged in secretory granules ready for stimulated secretion. In response to stress, corticotrophin releasing hormone (CRH), stimulates release of ACTH from the pituitary cell which in turn causes release of glucocorticoids from the adrenal gland. In tissues, such as the hypothalamus and skin, ACTH is further processed intracellularly to alpha melanocyte stimulating hormone (alphaMSH) which has distinct roles in these tissues. The prohormone, POMC, is itself released from cells and found in the human circulation at concentrations greater than ACTH. While much is known about the tightly regulated synthesis of POMC, there is still a lot to learn about the mechanisms for differentiating secretion of POMC, and the POMC-derived peptides. Understanding what happens to the POMC released from cells will provide new insights into its function.
Collapse
Affiliation(s)
- Adam Stevens
- Endocrine Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, M13 9PT, UK.
| | | |
Collapse
|
6
|
Creemers JWM, Lee YS, Oliver RL, Bahceci M, Tuzcu A, Gokalp D, Keogh J, Herber S, White A, O'Rahilly S, Farooqi IS. Mutations in the amino-terminal region of proopiomelanocortin (POMC) in patients with early-onset obesity impair POMC sorting to the regulated secretory pathway. J Clin Endocrinol Metab 2008; 93:4494-9. [PMID: 18697863 DOI: 10.1210/jc.2008-0954] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Mutations in the proopiomelanocortin (POMC) gene that impair the synthesis or structure of POMC-derived peptides predispose to human obesity. OBJECTIVE Our objective was to identify and characterize novel mutations in the POMC gene found in patients with early-onset obesity. DESIGN AND PATIENTS The POMC gene was screened in 500 patients with severe early-onset obesity. The biosynthesis, processing, sorting, and secretion of wild-type POMC and two newly identified POMC mutants was studied using metabolic labeling, Western blotting, and immunoassay analysis of lysates and conditioned media of transiently transfected beta-TC3 cells. RESULTS Two novel heterozygous missense mutations in POMC (C28F and L37F) were identified in unrelated probands with early-onset obesity and their overweight or obese family members. Both mutations lie in a region of the N terminus of POMC that has been suggested to be involved in its sorting to the regulated secretory pathway. Metabolic labeling studies indicate that whereas the mutations do not reduce intracellular levels of POMC, both mutations (C28F>L37F) impair the ability of POMC to be processed to generate bioactive products. Studies of the secretion of POMC products suggest, particularly with C28F, that the impaired propeptide processing of these mutations results, at least in part, from a mistargeting of mutant POMC to the constitutive rather than the regulated secretory pathway. CONCLUSION These mutations in patients with early-onset obesity represent a novel molecular mechanism of human POMC deficiency whereby naturally occurring mutations in its N-terminal sequence impair the ability of POMC to enter the trafficking pathway in which serial propeptide processing normally occurs.
Collapse
Affiliation(s)
- John W M Creemers
- University of Leuven, Center for Human Genetics, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Unstimulated amylase secretion is proteoglycan-dependent in rat parotid acinar cells. Arch Biochem Biophys 2008; 469:165-73. [DOI: 10.1016/j.abb.2007.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/09/2007] [Accepted: 10/13/2007] [Indexed: 11/22/2022]
|
8
|
Rousseau K, Kauser S, Pritchard LE, Warhurst A, Oliver RL, Slominski A, Wei ET, Thody AJ, Tobin DJ, White A. Proopiomelanocortin (POMC), the ACTH/melanocortin precursor, is secreted by human epidermal keratinocytes and melanocytes and stimulates melanogenesis. FASEB J 2007; 21:1844-56. [PMID: 17317724 PMCID: PMC2253185 DOI: 10.1096/fj.06-7398com] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proopiomelanocortin (POMC) can be processed to ACTH and melanocortin peptides. However, processing is incomplete in some tissues, leading to POMC precursor release from cells. This study examined POMC processing in human skin and the effect of POMC on the melanocortin-1 receptor (MC-1R) and melanocyte regulation. POMC was secreted by both human epidermal keratinocytes (from 5 healthy donors) and matched epidermal melanocytes in culture. Much lower levels of alpha-MSH were secreted and only by the keratinocytes. Neither cell type released ACTH. Cell extracts contained significantly more ACTH than POMC, and alpha-MSH was detected only in keratinocytes. Nevertheless, the POMC processing components, prohormone convertases 1, 2 and regulatory protein 7B2, were detected in melanocytes and keratinocytes. In contrast, hair follicle melanocytes secreted both POMC and alpha-MSH, and this was enhanced in response to corticotrophin-releasing hormone (CRH) acting primarily through the CRH receptor 1. In cells stably transfected with the MC-1R, POMC stimulated cAMP, albeit with a lower potency than ACTH, alpha-MSH, and beta-MSH. POMC also increased melanogenesis and dendricity in human pigment cells. This release of POMC from skin cells and its functional activity at the MC-1R highlight the importance of POMC processing as a key regulatory event in the skin.
Collapse
Affiliation(s)
- Karine Rousseau
- Faculties of Life Sciences and Medical and Human Sciences, Stopford Building, University of Manchester, Manchester, UK
| | - Sobia Kauser
- Medical Biosciences Research, University of Bradford, West Yorkshire, UK
| | - Lynn E. Pritchard
- Faculties of Life Sciences and Medical and Human Sciences, Stopford Building, University of Manchester, Manchester, UK
| | - Anne Warhurst
- Faculties of Life Sciences and Medical and Human Sciences, Stopford Building, University of Manchester, Manchester, UK
| | - Robert L. Oliver
- Faculties of Life Sciences and Medical and Human Sciences, Stopford Building, University of Manchester, Manchester, UK
| | - Andrzej Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Edward T. Wei
- School of Public Health, University of California, Berkeley, California, USA
| | | | - Desmond J. Tobin
- Medical Biosciences Research, University of Bradford, West Yorkshire, UK
| | - Anne White
- Faculties of Life Sciences and Medical and Human Sciences, Stopford Building, University of Manchester, Manchester, UK
- Correspondence: Endocrine Sciences, Faculties of Life Sciences and Medicine and Human Sciences, Stopford Bldg., University of Manchester, Manchester M13 9PT, UK. E-mail:
| |
Collapse
|
9
|
Lara-Lemus R, Liu M, Turner MD, Scherer P, Stenbeck G, lyengar P, Arvan P. Lumenal protein sorting to the constitutive secretory pathway of a regulated secretory cell. J Cell Sci 2006; 119:1833-42. [PMID: 16608874 PMCID: PMC2547412 DOI: 10.1242/jcs.02905] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newly synthesized secretory granule content proteins are delivered via the Golgi complex for storage within mature granules, whereas constitutive secretory proteins are not stored. Most soluble proteins traveling anterograde through the trans-Golgi network are not excluded from entering immature secretory granules, whether or not they have granule-targeting signals. However, the ;sorting-for-entry' hypothesis suggests that soluble lumenal proteins lacking signals enter transport intermediates for the constitutive secretory pathway. We aimed to investigate how these constitutive secretory proteins are sorted. In a pancreatic beta-cell line, we stably expressed two lumenal proteins whose normal sorting information has been deleted: alkaline phosphatase, truncated to eliminate its glycosylphosphatidylinositol membrane anchor (SEAP); and Cab45361, a Golgi lumenal resident, truncated to eliminate its intracellular retention (Cab308Myc). Both truncated proteins are efficiently secreted, but whereas SEAP enters secretory granules, Cab308Myc behaves as a true constitutive marker excluded from granules. Interestingly, upon permeabilization of organelle membranes with saponin, SEAP is extracted as a soluble protein whereas Cab308Myc remains associated with the membrane. These are among the first data to support a model in which association with the lumenal aspect of Golgi and/or post-Golgi membranes can serve as a means for selective sorting of constitutive secretory proteins.
Collapse
Affiliation(s)
- Roberto Lara-Lemus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| | - Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| | - Mark D. Turner
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Queen Mary’s School of Medicine and Dentistry, University of London, Whitechapel, London, E1 1BB, UK
| | - Philipp Scherer
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gudrun Stenbeck
- Bone and Mineral Centre, University College London, London, WC1E 6JJ, UK
| | - Puneeth lyengar
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| |
Collapse
|
10
|
Sjölinder M, Uhlmann J, Ponstingl H. Characterisation of an evolutionary conserved protein interacting with the putative guanine nucleotide exchange factor DelGEF and modulating secretion. Exp Cell Res 2004; 294:68-76. [PMID: 14980502 DOI: 10.1016/j.yexcr.2003.09.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Indexed: 11/26/2022]
Abstract
A human cDNA library was screened for proteins interacting with the deafness locus putative guanine nucleotide exchange factor (DelGEF) using a yeast two-hybrid system. A protein with a predicted size of 9 kDa was identified as a binding partner, this protein was designated DelGEF interacting protein 1 (DelGIP1). The interaction between DelGEF and DelGIP1 was verified by co-immunoprecipitation of a DelGEF-DelGIP1 complex from cell lysates. Highly conserved homologues of DelGIP1 were identified in higher and lower eukaryotes by database searching. The human DelGIP1 gene is ubiquitously expressed as judged by human multiple tissue Northern blot analysis. DelGEF was recently shown to interact with Sec5, a protein involved in secretion, and to regulate secretion of proteoglycans. Downregulation of endogenous DelGIP1 in HeLa cells induced increased extracellular secretion of proteoglycans indicating a possible role for DelGIP1 in the secretion process.
Collapse
Affiliation(s)
- Mikael Sjölinder
- Division for Molecular Biology of Mitosis, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
11
|
Feng L, Arvan P. The trafficking of alpha 1-antitrypsin, a post-Golgi secretory pathway marker, in INS-1 pancreatic beta cells. J Biol Chem 2003; 278:31486-94. [PMID: 12796484 DOI: 10.1074/jbc.m305690200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A sulfated alpha1-antitrypsin (AAT), thought to be a default secretory pathway marker, is not stored in secretory granules when expressed in neuroendocrine PC12 cells. In search of a constitutive secretory pathway marker for pancreatic beta cells, we produced INS-1 cells stably expressing wild-type AAT. Because newly synthesized AAT arrives very rapidly in the Golgi complex, kinetics alone cannot resolve AAT release via distinct secretory pathways, although most AAT is secreted within a few hours and virtually none is stored in mature granules. Nevertheless, from pulse-chase analyses, a major fraction of newly synthesized AAT transiently exhibits secretogogue-stimulated exocytosis and localizes within immature secretory granules (ISGs). This trafficking occurs without detectable AAT polymerization or binding to lipid rafts. Remarkably, in a manner not requiring its glycans, all of the newly synthesized AAT is then removed from granules during their maturation, leading mostly to constitutive-like AAT secretion, whereas a smaller fraction (approximately 10%) goes on to lysosomes. Secretogogue-stimulated ISG exocytosis reroutes newly synthesized AAT directly into the medium and prevents its arrival in lysosomes. These data are most consistent with the idea that soluble AAT abundantly enters ISGs and then is efficiently relocated to the endosomal system, from which many molecules undergo constitutive-like secretion while a smaller fraction advances to lysosomes.
Collapse
Affiliation(s)
- Lijun Feng
- Division of Endocrinology and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
12
|
Sjölinder M, Uhlmann J, Ponstingl H. DelGEF, a homologue of the Ran guanine nucleotide exchange factor RanGEF, binds to the exocyst component Sec5 and modulates secretion. FEBS Lett 2002; 532:211-5. [PMID: 12459492 DOI: 10.1016/s0014-5793(02)03677-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to identify the function of deafness locus putative guanine nucleotide exchange factor (DelGEF), a protein homologous to the nucleotide exchange factor for the small GTPase Ran, a cDNA library was screened for interacting proteins using a yeast two-hybrid system. The human homologue of Sec5, a protein involved in vesicle transport and secretion, was identified as a binding partner. The interaction between DelGEF and Sec5 was found to be dependent on Mg2+ and stimulated by guanosine triphosphate (GTP) or deoxycytidine triphosphate (dCTP). Downregulation of endogenous DelGEF in HeLa cells induced increased extracellular secretion of proteoglycans indicating a possible role for DelGEF in the secretion process.
Collapse
Affiliation(s)
- Mikael Sjölinder
- Division for Molecular Biology of Mitosis, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
13
|
Chen S, Liang MC, Chia JN, Ngsee JK, Ting AE. Rab8b and its interacting partner TRIP8b are involved in regulated secretion in AtT20 cells. J Biol Chem 2001; 276:13209-16. [PMID: 11278749 DOI: 10.1074/jbc.m010798200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab proteins are a family of small GTPases that regulate intracellular vesicle traffic. Rab8b, because of its homology with Rab8, has been suggested to function in vesicle transport to the plasma membrane. Using the yeast two-hybrid system, we identified a Rab8b interacting clone, termed TRIP8b, from a rat brain cDNA library. The gene encodes a 66-kDa protein with homology to the peroxisomal targeting signal 1 receptor. The interaction between Rab8b and TRIP8b was further verified by in vitro binding assays and co-immunoprecipitation studies. Additional experiments with Rab8b mutants demonstrated that Rab8b requires a guanine nucleotide but not prenylation for its interaction with TRIP8b. Western immunoblot analysis showed that TRIP8b was primarily expressed in brain. Subcellular fractionation of AtT20 cells revealed that TRIP8b was present in both cytosolic and membrane fractions. To investigate the function of Rab8b and TRIP8b in secretion, we examined the release of ACTH from AtT20 cells. Results from stable cell lines expressing Rab8b or TRIP8b indicated that both proteins had a stimulatory effect on cAMP-induced secretion of ACTH. In summary, these data suggest that Rab8b and TRIP8b interact with each other and are involved in the regulated secretory pathway in AtT20 cells.
Collapse
Affiliation(s)
- S Chen
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | | | |
Collapse
|
14
|
Abstract
Ca(2+)-triggered exocytosis is a hallmark of neurosecretory granules, but the cellular pathway leading to the assembly of these regulated exocytotic carriers is poorly understood. Here we used the pituitary AtT-20 cell line to study the biogenesis of regulated exocytotic carriers involved in peptide hormone secretion. We show that immature secretory granules (ISGs) freshly budded from the trans-Golgi network (TGN) exhibit characteristics of unregulated exocytotic carriers. During a subsequent maturation period they undergo an important switch to become regulated exocytotic carriers. We have identified a novel sorting pathway responsible for this transition. The SNARE proteins, VAMP4 and synaptotagmin IV (Syt IV), enter ISGs initially but are sorted away during maturation. Sorting is achieved by vesicle budding from the ISGs, because it can be inhibited by brefeldin A (BFA). Inhibition of this sorting pathway with BFA arrested the maturing granules in a state that responded poorly to stimuli, suggesting that the transition to regulated exocytotic carriers requires the removal of a putative inhibitor. In support of this, we found that overexpression of Syt IV reduced the stimulus-responsiveness of maturing granules. We conclude that secretory granules undergo a switch from unregulated to regulated secretory carriers during biogenesis. The existence of such a switch may provide a mechanism for cells to modulate their secretory activities under different physiological conditions.
Collapse
|
15
|
Kuliawat R, Prabakaran D, Arvan P. Proinsulin endoproteolysis confers enhanced targeting of processed insulin to the regulated secretory pathway. Mol Biol Cell 2000; 11:1959-72. [PMID: 10848622 PMCID: PMC14896 DOI: 10.1091/mbc.11.6.1959] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recently, two different prohormone-processing enzymes, prohormone convertase 1 (PC1) and carboxypeptidase E, have been implicated in enhancing the storage of peptide hormones in endocrine secretory granules. It is important to know the extent to which such molecules may act as "sorting receptors" to allow the selective trafficking of cargo proteins from the trans-Golgi network into forming granules, versus acting as enzymes that may indirectly facilitate intraluminal storage of processed hormones within maturing granules. GH4C1 cells primarily store prolactin in granules; they lack PC1 and are defective for intragranular storage of transfected proinsulin. However, proinsulin readily enters the immature granules of these cells. Interestingly, GH4C1 clones that stably express modest levels of PC1 store more proinsulin-derived protein in granules. Even in the presence of PC1, a sizable portion of the proinsulin that enters granules goes unprocessed, and this portion largely escapes granule storage. Indeed, all of the increased granule storage can be accounted for by the modest portion converted to insulin. These results are not unique to GH4C1 cells; similar results are obtained upon PC1 expression in PC12 cells as well as in AtT20 cells (in which PC1 is expressed endogenously at higher levels). An in vitro assay of protein solubility indicates a difference in the biophysical behavior of proinsulin and insulin in the PC1 transfectants. We conclude that processing to insulin, facilitated by the catalytic activities of granule proteolytic enzymes, assists in the targeting (storage) of the hormone.
Collapse
Affiliation(s)
- R Kuliawat
- Division of Endocrinology, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
16
|
Turner MD, Arvan P. Protein traffic from the secretory pathway to the endosomal system in pancreatic beta-cells. J Biol Chem 2000; 275:14025-30. [PMID: 10799475 DOI: 10.1074/jbc.275.19.14025] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Constitutive-like secretion involves vesicular trafficking corresponding kinetically and biochemically with a post-trans-Golgi network (TGN) origin. In pancreatic beta-cells, the budding of AP-1/clathrin-coated vesicles, a portion of which is derived from immature secretory granules, has been hypothesized to initiate constitutive-like trafficking. However, approximately 30 min after release of a 20 degrees C intracellular transport block in pancreatic beta-cells (to synchronize protein egress from the TGN), addition of brefeldin A (BFA) (which inhibits AP-1 recruitment) was reported not to block subsequent constitutive-like secretion. To further explore post-TGN trafficking in pancreatic beta-cell lines, we have followed the fate of pulse-labeled procathepsin B (ProB, a lysosomal proenyzme) after postpulse wortmannin treatment or the BFA treatment described above. We find that continuous wortmannin treatment allows ProB to reach immature secretory granules but inhibits its egress from maturing granules. Remarkably, BFA treatment causes augmented unstimulated secretion of newly synthesized ProB that is not paralleled by insulin. This effect requires a delay of 25-35 min after release from the 20 degrees C block. Further, when ProB delivery to endosomes is inhibited, its BFA-augmented secretion is eliminated. We hypothesize that the constitutive-like pathway involves an endosomal intermediate.
Collapse
Affiliation(s)
- M D Turner
- Diabetes Center, Division of Endocrinology and the Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|