1
|
Difficulties in research of Chinese medicine polysaccharides. Chin J Nat Med 2019; 17:883-886. [DOI: 10.1016/s1875-5364(19)30107-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Indexed: 11/17/2022]
|
2
|
Kumar TR. Fshb Knockout Mouse Model, Two Decades Later and Into the Future. Endocrinology 2018; 159:1941-1949. [PMID: 29579177 PMCID: PMC5888209 DOI: 10.1210/en.2018-00072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/02/2018] [Indexed: 12/20/2022]
Abstract
In 1997, nearly 20 years ago, we reported the phenotypes of follicle-stimulating hormone (FSH) β (Fshb) null mice. Since then, these mice have been useful for various physiological and genetic studies in reproductive and skeletal biology. In a 2009 review titled "FSHβ Knockout Mouse Model: A Decade Ago and Into the Future," I summarized the need for and what led to the development of an FSH-deficient mouse model and its applications, including delineation of the emerging extragonadal roles of FSH in bone cells by using this genetic model. These studies opened up exciting avenues of research on osteoporosis and now extend into those on adiposity in postmenopausal women. Here, I summarize the progress made with this mouse model since 2009 with regard to FSH rerouting in vivo, deciphering the role of N-glycosylation on FSHβ, roles of FSH in somatic-germ cell interactions in gonads, and provide a road map that is anticipated to emerge in the near future. Undoubtedly, the next 10 years should be an even more exciting time to explore the fertile area of FSH biology and its implications for basic and clinical reproductive physiology research.
Collapse
Affiliation(s)
- T Rajendra Kumar
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado at Denver, Anschutz Medical Campus, Aurora, Colorado
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Colorado at Denver, Anschutz Medical Campus, Aurora, Colorado
- Correspondence: T. Rajendra Kumar, PhD, Edgar L. and Patricia M. Makowski Professor, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, RC-2 Complex, 15-3000B, Aurora, Colorado 80045. E-mail:
| |
Collapse
|
3
|
Ulloa-Aguirre A, Lira-Albarrán S. Clinical Applications of Gonadotropins in the Male. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:121-174. [PMID: 27697201 DOI: 10.1016/bs.pmbts.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) play a pivotal role in reproduction. The synthesis and secretion of gonadotropins are regulated by complex interactions among several endocrine, paracrine, and autocrine factors of diverse chemical structure. In men, LH regulates the synthesis of androgens by the Leydig cells, whereas FSH promotes Sertoli cell function and thereby influences spermatogenesis. Gonadotropins are complex molecules composed of two subunits, the α- and β-subunit, that are noncovalently associated. Gonadotropins are decorated with glycans that regulate several functions of the protein including folding, heterodimerization, stability, transport, conformational maturation, efficiency of heterodimer secretion, metabolic fate, interaction with their cognate receptor, and selective activation of signaling pathways. A number of congenital and acquired abnormalities lead to gonadotropin deficiency and hypogonadotropic hypogonadism, a condition amenable to treatment with exogenous gonadotropins. Several natural and recombinant preparations of gonadotropins are currently available for therapeutic purposes. The difference between natural and the currently available recombinant preparations (which are massively produced in Chinese hamster ovary cells for commercial purposes) mainly lies in the abundance of some of the carbohydrates that conform the complex glycans attached to the protein core. Whereas administration of exogenous gonadotropins in patients with isolated congenital hypogonadotropic hypogonadism is a well recognized therapeutic approach, their role in treating men with normogonadotropic idiopathic infertility is still controversial. This chapter concentrates on the main structural and functional features of the gonadotropin hormones and how basic concepts have been translated into the clinical arena to guide therapy for gonadotropin deficit in males.
Collapse
Affiliation(s)
- A Ulloa-Aguirre
- Research Support Network, Universidad Nacional Autónoma de México (UNAM)-National Institutes of Health, Mexico City, Mexico.
| | - S Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
4
|
Butnev VY, Butnev VY, May JV, Shuai B, Tran P, White WK, Brown A, Smalter Hall A, Harvey DJ, Bousfield GR. Production, purification, and characterization of recombinant hFSH glycoforms for functional studies. Mol Cell Endocrinol 2015; 405:42-51. [PMID: 25661536 PMCID: PMC4378652 DOI: 10.1016/j.mce.2015.01.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 11/30/2022]
Abstract
Previously, our laboratory demonstrated the existence of a β-subunit glycosylation-deficient human FSH glycoform, hFSH(21). A third variant, hFSH(18), has recently been detected in FSH glycoforms isolated from purified pituitary hLH preparations. Human FSH(21) abundance in individual female pituitaries progressively decreased with increasing age. Hypo-glycosylated glycoform preparations are significantly more active than fully-glycosylated hFSH preparations. The purpose of this study was to produce, purify and chemically characterize both glycoform variants expressed by a mammalian cell line. Recombinant hFSH was expressed in a stable GH3 cell line and isolated from serum-free cell culture medium by sequential, hydrophobic and immunoaffinity chromatography. FSH glycoform fractions were separated by Superdex 75 gel-filtration. Western blot analysis revealed the presence of both hFSH(18) and hFSH(21) glycoforms in the low molecular weight fraction, however, their electrophoretic mobilities differed from those associated with the corresponding pituitary hFSH variants. Edman degradation of FSH(21/18)-derived β-subunit before and after peptide-N-glycanase F digestion confirmed that it possessed a mixture of both mono-glycosylated FSHβ subunits, as both Asn(7) and Asn(24) were partially glycosylated. FSH receptor-binding assays confirmed our previous observations that hFSH(21/18) exhibits greater receptor-binding affinity and occupies more FSH binding sites when compared to fully-glycosylated hFSH(24). Thus, the age-related reduction in hypo-glycosylated hFSH significantly reduces circulating levels of FSH biological activity that may further compromise reproductive function. Taken together, the ability to express and isolate recombinant hFSH glycoforms opens the way to study functional differences between them both in vivo and in vitro.
Collapse
Affiliation(s)
- Viktor Y Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, USA
| | - Vladimir Y Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, USA
| | - Jeffrey V May
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, USA
| | - Bin Shuai
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, USA
| | - Patrick Tran
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, USA
| | - William K White
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, USA
| | - Alan Brown
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, USA
| | - Aaron Smalter Hall
- Molecular Graphics and Modeling Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - David J Harvey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford 0X1 3QU, UK
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, USA.
| |
Collapse
|
5
|
Haj Hassan M, Cahoreau C, Jégot G, Jouanny C, Mariot J, Lecompte F, Klett D, Combarnous Y. Differential thermal stability of human, bovine and ovine Follicle-Stimulating Hormone (FSH) and Luteinizing Hormone (LH) quaternary structures. Gen Comp Endocrinol 2015; 212:124-30. [PMID: 24732063 DOI: 10.1016/j.ygcen.2014.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 03/04/2014] [Accepted: 03/12/2014] [Indexed: 11/16/2022]
Abstract
Quaternary structure of human, bovine and ovine Follicle-Stimulating Hormones (hFSH, bFSH and oFSH) and Luteinizing Hormone was assessed in sandwich ELISAs using monoclonal anti-oFSHβ or anti-oLHβ antibodies, respectively, for capture and a biotinylated anti-hFSHα (α4 epitope) for detection. Neither free subunit gave any signal in this assay so that it was possible to measure the residual heterodimeric fraction after thermal treatment of the gonadotropins under study. The hormones were subjected to 5-min heating between 37 and 90 °C before rapid cooling in melting ice before ELISA. The data show half-dissociation of natural and recombinant human and ovine FSH preparations between 68 and 74 °C whereas bovine FSH preparations exhibited lower stability in these conditions with half-dissociation between 61 and 64 °C. Moreover, whereas all human and bovine as well as most ovine FSH preparations were fully dissociated at temperatures above 80 °C, one natural oFSH and one recombinant hLH preparations contained an important fraction that resisted dissociation even at 93 °C and retained in vitro bioactivity. This suggests the existence of gonadotropin αβ heterodimer with covalently linked subunits. Similarly, about 20% of the recombinant hLH preparation was also found withstand heat denaturation and also probably to have cross-linked subunits. The origin and chemical nature of these inter-subunit bonds remain to be determined.
Collapse
Affiliation(s)
- Maya Haj Hassan
- Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Unit «Physiologie de la Reproduction et des Comportements», 37380 Nouzilly, France
| | - Claire Cahoreau
- Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Unit «Physiologie de la Reproduction et des Comportements», 37380 Nouzilly, France
| | - Gwenhael Jégot
- Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Unit «Physiologie de la Reproduction et des Comportements», 37380 Nouzilly, France
| | - Camille Jouanny
- Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Unit «Physiologie de la Reproduction et des Comportements», 37380 Nouzilly, France
| | - Julie Mariot
- Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Unit «Physiologie de la Reproduction et des Comportements», 37380 Nouzilly, France
| | - François Lecompte
- Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Unit «Physiologie de la Reproduction et des Comportements», 37380 Nouzilly, France
| | - Danièle Klett
- Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Unit «Physiologie de la Reproduction et des Comportements», 37380 Nouzilly, France
| | - Yves Combarnous
- Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Unit «Physiologie de la Reproduction et des Comportements», 37380 Nouzilly, France.
| |
Collapse
|
6
|
Bousfield GR, Butnev VY, Butnev VY, Hiromasa Y, Harvey DJ, May JV. Hypo-glycosylated human follicle-stimulating hormone (hFSH(21/18)) is much more active in vitro than fully-glycosylated hFSH (hFSH(24)). Mol Cell Endocrinol 2014; 382:989-97. [PMID: 24291635 PMCID: PMC3908837 DOI: 10.1016/j.mce.2013.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 01/31/2023]
Abstract
Hypo-glycosylated hFSH(21/18) (possesses FSHβ(21) and FSHβ(18)bands) was isolated from hLH preparations by immunoaffinity chromatography followed by gel filtration. Fully-glycosylated hFSH(24) was prepared by combining the fully-glycosylated FSHβ(24) variant with hCGα and isolating the heterodimer. The hFSH(21/18) glycoform preparation was significantly smaller than the hFSH(24) preparation and possessed 60% oligomannose glycans, which is unusual for hFSH. Hypo-glycosylated hFSH(21/18) was 9- to 26-fold more active than fully-glycosylated hFSH(24) in FSH radioligand assays. Significantly greater binding of (125)I-hFSH(21/18) tracer than hFSH(24) tracer was observed in all competitive binding assays. In addition, higher binding of hFSH(21/18) was noted in association and saturation binding assays, in which twice as much hFSH(21/18) was bound as hFSH(24). This suggests that more ligand binding sites are available to hFSH(21/18) in FSHR than to hFSH(24). Hypo-glycosylated hFSH(21/18) also bound rat FSHRs more rapidly, exhibiting almost no lag in binding, whereas hFSH(24) specific binding proceeded very slowly for almost the first hour of incubation.
Collapse
MESH Headings
- Animals
- Binding Sites
- Binding, Competitive
- Chromatography, Affinity
- Chromatography, Gel
- Follicle Stimulating Hormone, Human/chemistry
- Follicle Stimulating Hormone, Human/isolation & purification
- Follicle Stimulating Hormone, Human/metabolism
- Glycoprotein Hormones, alpha Subunit/chemistry
- Glycoprotein Hormones, alpha Subunit/metabolism
- Glycosylation
- Humans
- Iodine Radioisotopes
- Luteinizing Hormone/chemistry
- Luteinizing Hormone/metabolism
- Mannose/chemistry
- Mannose/metabolism
- Protein Binding
- Protein Multimerization
- Radioligand Assay
- Rats
- Receptors, FSH/chemistry
- Receptors, FSH/metabolism
- Sequence Analysis, Protein
Collapse
Affiliation(s)
- George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, USA.
| | - Vladimir Y Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, USA
| | - Viktor Y Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, USA
| | - Yasuaki Hiromasa
- Biotechnology Core Facility, Kansas State University, Manhattan, KS 66506, USA
| | - David J Harvey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford 0X1 3QU, UK
| | - Jeffrey V May
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, USA
| |
Collapse
|
7
|
Davis JS, Kumar TR, May JV, Bousfield GR. Naturally Occurring Follicle-Stimulating Hormone Glycosylation Variants. ACTA ACUST UNITED AC 2014; 4:e117. [PMID: 25893134 PMCID: PMC4398967 DOI: 10.4172/2153-0637.1000e117] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- John S Davis
- VA Nebraska-Western Iowa Health Care System and Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - T Rajendra Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey V May
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| |
Collapse
|
8
|
Lombardi A, Andreozzi C, Pavone V, Triglione V, Angiolini L, Caccia P. Evaluation of the oligosaccharide composition of commercial follicle stimulating hormone preparations. Electrophoresis 2013; 34:2394-406. [DOI: 10.1002/elps.201300045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Angela Lombardi
- Department of Chemical Sciences; University “Federico II” of Naples; Naples; Italy
| | - Concetta Andreozzi
- Department of Chemical Sciences; University “Federico II” of Naples; Naples; Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences; University “Federico II” of Naples; Naples; Italy
| | - Valeria Triglione
- Biopharmaceutical Products Division; IBSA Institut Biochimique S.A; Pambio-Noranco; Switzerland
| | - Luca Angiolini
- Biopharmaceutical Products Division; IBSA Institut Biochimique S.A; Pambio-Noranco; Switzerland
| | - Paolo Caccia
- Biopharmaceutical Products Division; IBSA Institut Biochimique S.A; Pambio-Noranco; Switzerland
| |
Collapse
|
9
|
Matarazzo S, Quitadamo MC, Mango R, Ciccone S, Novelli G, Biocca S. Cholesterol-lowering drugs inhibit lectin-like oxidized low-density lipoprotein-1 receptor function by membrane raft disruption. Mol Pharmacol 2012; 82:246-54. [PMID: 22570368 DOI: 10.1124/mol.112.078915] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lectin-like oxidized low-density lipoprotein (LOX-1), the primary receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, is up-regulated in atherosclerotic lesions. Statins are the principal therapeutic agents for cardiovascular diseases and are known to down-regulate LOX-1 expression. Whether the effect on the LOX-1 receptor is related to statin-mediated cholesterol-lowering activity is unknown. We investigate the requirement of cholesterol for LOX-1-mediated lipid particle internalization, trafficking, and processing and the role of statins as inhibitors of LOX-1 function. Disruption of cholesterol-rich membrane microdomains by acute exposure of cells to methyl-β-cyclodextrin or chronic exposure to different statins (lovastatin and atorvastatin) led to a spatial disorganization of LOX-1 in plasma membranes and a marked loss of specific LOX-1 function in terms of ox-LDL binding and internalization. Subcellular fractionation and immunochemical studies indicate that LOX-1 is naturally present in caveolae-enriched lipid rafts and, by cholesterol reduction, the amount of LOX-1 in this fraction is highly decreased (≥60%). In contrast, isoprenylation inhibition had no effect on the distribution and function of LOX-1 receptors. Furthermore, in primary cultures from atherosclerotic human aorta lesions, we confirm the presence of LOX-1 in caveolae-enriched lipid rafts and demonstrate that lovastatin treatment led to down-regulation of LOX-1 in lipid rafts and rescue of the ox-LDL-induced apoptotic phenotype. Taken together, our data reveal a previously unrecognized essential role of membrane cholesterol for LOX-1 receptor activity and suggest that statins protect vascular endothelium against the adverse effect of ox-LDL by disruption of membrane rafts and impairment of LOX-1 receptor function.
Collapse
Affiliation(s)
- Sara Matarazzo
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Bousfield GR, Butnev VY, Bidart JM, Dalpathado D, Irungu J, Desaire H. Chromatofocusing fails to separate hFSH isoforms on the basis of glycan structure. Biochemistry 2008; 47:1708-20. [PMID: 18197704 DOI: 10.1021/bi701764w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Follicle-stimulating hormone (FSH) glycosylation is regulated by feedback from the gonads, resulting in an array of glycans associated with FSH preparations derived from pools of pituitary or urine extracts. FSH glycosylation varies due to inhibition of FSHbeta N-glycosylation, elaboration of 1-4 branches possessed by mature N-glycans, and the number and linkage of terminal sialic acid residues. To characterize FSH glycosylation, FSH isoforms in pituitary gland extracts and a variety of physiological fluids are commonly separated by chromatofocusing. Variations in the ratios of immunological and biological activities in the resulting FSH isoform preparations are generally attributed to changes in glycosylation, which are most often defined in terms of sialic acid content. Using Western blotting to assess human FSHbeta glycosylation inhibition revealed 30-47% nonglycosylated hFSHbeta associated with four of six hFSH isoform preparations derived by chromatofocusing. Glycopeptide mass spectrometry assessment of glycan branching in these isoforms extensively characterized two N-glycosylation sites, one at alphaAsn52, the critical glycan for FSH function, and the other at betaAsn24. With two to four N-glycans per FSH molecule, many combinations of charges distributed over these sites can provide the same isoelectric point. Indeed, several glycans were common to all isoform fractions that were analyzed. There was no trend showing predominantly monoantennary glycans associated with the high-pI fractions, nor were predominantly tri- and tetra-antennary glycans associated with low-pI fractions. Thus, differences in receptor binding activity could not be associated with any specific glycan type or location in the hormone. FSH aggregation was associated with reduced receptor binding activity but did not affect immunological activity. However, as gel filtration indicated sufficient heterodimer was present in each isoform preparation to generate complete inhibition curves, the near total loss of receptor binding activity in several preparations could not be explained by aggregation alone, and the mechanism remains unknown.
Collapse
Affiliation(s)
- George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas 67260, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Watson JN, Indurugalla D, Cheng LL, Narine AA, Bennet AJ. The hydrolase and transferase activity of an inverting mutant sialidase using non-natural beta-sialoside substrates. Biochemistry 2006; 45:13264-75. [PMID: 17073447 DOI: 10.1021/bi061489x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Y370G inverting mutant sialidase from Micromonospora viridifaciens possesses beta-sialidase activity with phenyl beta-sialoside (Ph-betaNeuAc) to give alpha-sialic acid as the first formed product. The derived catalytic rate constants for k(cat) and k(cat)/K(m) are 13.3 +/- 0.3 and (2.9 +/- 0.3) x 10(5) M(-)(1) s(-)(1), respectively. This enzyme is highly specific for the phenyl substrate, with substituted phenyl and thiophenyl leaving groups having k(cat) values that are at least 1000-fold lower. In addition, the Y370G mutant can transfer the sialic acid moiety from Ph-betaNeuAc to lactose in yields of up to 13%. Greater than 90% of the sialyl-lactose product formed in the coupling reactions is the alpha-2,6-isomer. A library encoding 6 x 10(5) different sialidases was constructed by mutating Y370, E260, T309, N310, and N311, residues that include and are proximal the catalytic tyrosine residue. A total of 2628 individuals were screened for hydrolytic activity against 4-nitrophenyl 2-thio-beta-sialoside and 4-methylumbelliferyl beta-sialoside. However, none of the mutants screened possessed a significant activity against either of the beta-sialosides.
Collapse
Affiliation(s)
- Jacqueline N Watson
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | | | | | | | | |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update covering the period 1999-2000. MASS SPECTROMETRY REVIEWS 2006; 25:595-662. [PMID: 16642463 DOI: 10.1002/mas.20080] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review describes the use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates and continues coverage of the field from the previous review published in 1999 (D. J. Harvey, Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates, 1999, Mass Spectrom Rev, 18:349-451) for the period 1999-2000. As MALDI mass spectrometry is acquiring the status of a mature technique in this field, there has been a greater emphasis on applications rather than to method development as opposed to the previous review. The present review covers applications to plant-derived carbohydrates, N- and O-linked glycans from glycoproteins, glycated proteins, mucins, glycosaminoglycans, bacterial glycolipids, glycosphingolipids, glycoglycerolipids and related compounds, and glycosides. Applications of MALDI mass spectrometry to the study of enzymes acting on carbohydrates (glycosyltransferases and glycosidases) and to the synthesis of carbohydrates, are also covered.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
13
|
Barboza M, Duschak VG, Fukuyama Y, Nonami H, Erra-Balsells R, Cazzulo JJ, Couto AS. Structural analysis of the N-glycans of the major cysteine proteinase of Trypanosoma cruzi. FEBS J 2005; 272:3803-15. [PMID: 16045752 DOI: 10.1111/j.1742-4658.2005.04787.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trypanosoma cruzi, the parasitic protozoan that causes Chagas disease, contains a major cysteine proteinase, cruzipain. This lysosomal enzyme bears an unusual C-terminal extension that contains a number of post-translational modifications, and most antibodies in natural and experimental infections are directed against it. In this report we took advantage of UV-MALDI-TOF mass spectrometry in conjunction with peptide N-glycosidase F deglycosylation and high performance anion exchange chromatography analysis to address the structure of the N-linked oligosaccharides present in this domain. The UV-MALDI-TOF MS analysis in the negative-ion mode, using nor-harmane as matrix, allowed us to determine a new striking feature in cruzipain: sulfated high-mannose type oligosaccharides. Sulfated GlcNAc2Man3 to GlcNAc2Man9 species were identified. In accordance, after chemical or enzymatic desulfation, the corresponding signals disappeared. In addition, by UV-MALDI-TOF MS analysis (a) a main population of high-mannose type oligosaccharides was shown in the positive-ion mode, (b) lactosaminic glycans were also identified, among them, structures corresponding to monosialylated species were detected, and (c) as an interesting fact a fucosylated oligosaccharide was also detected. The presence of the deoxy sugar was further confirmed by high performance anion exchange chromatography. In conclusion, the total number of oligosaccharides occurring in cruzipain was shown to be much higher than previous estimates. This constitutes the first report on the presence of sulfated glycoproteins in Trypanosomatids.
Collapse
Affiliation(s)
- Mariana Barboza
- Instituto de Investigaciones Biotecnológicas-INTECH, Universidad Nacional de Gral. San Martin, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Xia B, Royall JA, Damera G, Sachdev GP, Cummings RD. Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis. Glycobiology 2005; 15:747-75. [PMID: 15994837 DOI: 10.1093/glycob/cwi061] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most lethal genetic disorder in Caucasians and is characterized by the production of excessive amounts of viscous mucus secretions in the airways of patients, leading to airway obstruction, chronic bacterial infections, and respiratory failure. Previous studies indicate that CF-derived airway mucins are glycosylated and sulfated differently compared with mucins from nondiseased (ND) individuals. To address unresolved questions about mucin glycosylation and sulfation, we examined O-glycan structures in mucins purified from mucus secretions of two CF donors versus two ND donors. All mucins contained galactose (Gal), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), fucose (Fuc), and sialic acid (Neu5Ac). However, CF mucins had higher sugar content and more O-glycans compared with ND mucins. Both ND and CF mucins contained GlcNAc-6-sulfate (GlcNAc-6-Sul), Gal-6-Sul, and Gal-3-Sul, but CF mucins had higher amounts of the 6-sulfated species. O-glycans were released from CF and ND mucins and derivatized with 2-aminobenzamide (2-AB), separated by ion exchange chromatography, and quantified by fluorescence. There was nearly a two-fold increase in sulfation and sialylation in CF compared with ND mucin. High performance liquid chromatography (HPLC) profiles of glycans showed differences between the two CF samples compared with the two ND samples. Glycan compositions were defined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Unexpectedly, 260 compositional types of O-glycans were identified, and CF mucins contained a higher proportion of sialylated and sulfated O-glycans compared with ND mucins. These profound structural differences in mucin glycosylation in CF patients may contribute to inflammatory responses and increased pathogenesis by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Baoyun Xia
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
15
|
de Mendonça F, de Oliveira JE, Bartolini P, Ribela MTCP. Two-step chromatographic purification of recombinant human thyrotrophin and its immunological, biological, physico-chemical and mass spectral characterization. J Chromatogr A 2005; 1062:103-12. [PMID: 15679148 DOI: 10.1016/j.chroma.2004.10.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A purification strategy for rapidly obtaining recombinant human thyrotropin (rhTSH) was designed based on size exclusion and reversed-phase high-performance liquid chromatographic (HPLC) analysis, carried out on hTSH-secreting CHO cell conditioned medium. These analyses permitted the identification of the main contaminants to be eliminated. Considering that hTSH is highly hydrophobic and elutes only with the addition of organic solvents, hydrophobic interaction chromatography was adopted as the first purification step; this resulted in the elimination of, among others, the major contaminant. A second purification step, based on size exclusion chromatography, was then utilized, being effective in the elimination of other previously identified contaminating proteins. Useful purity, as high as 99% at the chemical reagent level, and recoveries (37%) were obtained by adopting this two step strategy, which also provided adequate material for physico-chemical, immunological and biological characterization. This included matrix-assisted laser desorption ionization time-of-flight mass spectral analysis (MALDI-TOF-MS), Western blotting analysis, in vivo biological assay, size-exclusion HPLC (HPSEC) and reversed-phase HPLC (RP-HPLC) analysis, which confirmed the integrity and bioactivity of our rhTSH in comparison with the only two reference preparations available at the milligram level of native (hTSH-NIDDK) and recombinant (Thyrogen) hTSH. Thyrogen and rhTSH-IPEN, when compared to pit-hTSH-NIDDK, presented more than twice as much biological activity and about 7% increased molecular mass by MALDI-TOF-MS analysis, an accurate heterodimer mass determination providing the Mr values of 29,611, 29,839 and 27,829, respectively. The increased molecular mass of the two recombinant preparations was also confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and HPSEC analysis. Comparing the two recombinant preparations, minor though interesting physico-chemical and biological differences were also observed.
Collapse
Affiliation(s)
- Fernanda de Mendonça
- Biotechnology Department, IPEN-CNEN, Cidade Universitária, 05508-900 São Paulo, Brazil
| | | | | | | |
Collapse
|
16
|
Bousfield GR, Butnev VY, Butnev VY, Nguyen VT, Gray CM, Dias JA, MacColl R, Eisele L, Harvey DJ. Differential effects of alpha subunit Asparagine56 oligosaccharide structure on equine lutropin and follitropin hybrid conformation and receptor-binding activity. Biochemistry 2004; 43:10817-33. [PMID: 15311943 DOI: 10.1021/bi049857p] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gonadotropins, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and chorionic gonadotropin (CG), are cysteine-knot growth-factor superfamily glycoproteins composed of a common alpha subunit noncovalently associated with a hormone-specific beta subunit. The cysteine-knot motifs in both subunits create two hairpin loops, designated L1 and L3, on one side of the knot, with the intervening long loop, L2, on the opposite side. As the average alpha-subunit loop 2 oligosaccharide mass increased from 1482 to 2327, LH and FSH receptor-binding affinities of the dual-specificity eLH declined significantly, while the decrease in FSH receptor-binding affinity for eFSH was not significant. In the present study, we characterized hormone-specific glycosylation of alphaL2 oligosaccharides in eLHalpha, eFSHalpha, and eCGalpha preparations. MALDI mass spectrometry revealed 28-57 structures, including high mannose, hybrid, bi-, and triantennary oligosaccharides. The same intact subunit preparations and their alphaL2 loop-deglycosylated derivatives were combined with either eLHbeta or eFSHbeta, and the circular dichroism (CD) spectrum for each preparation was determined. We predicted that hybrid hormone preparations obtained by combining intact eLHalpha, eFSHalpha, and eCGalpha preparations with eLHbeta might exhibit differences in conformation that would disappear when the alphaL2 oligosaccharide attached to alphaAsn(56) was removed by selective peptide-N-glycanase digestion (N(56)dg-alpha). CD data supported the first prediction; however, elimination of alphaL2 oligosaccharide actually increased the conformational differences. The intact alpha subunit:eFSHbeta hybrids had virtually identical CD spectra, as expected. However, the N(56)dg-alpha:eFSHbeta hybrid spectra differed from each other. Oligosaccharide removal altered the conformation of most hybrids, suggesting that alphaAsn(82) oligosaccharide (located in alphaL3) also influenced gonadotropin conformation.
Collapse
Affiliation(s)
- George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas 67260, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jiang H, Desaire H, Butnev VY, Bousfield GR. Glycoprotein profiling by electrospray mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:750-758. [PMID: 15121204 DOI: 10.1016/j.jasms.2004.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 01/19/2004] [Accepted: 01/23/2004] [Indexed: 05/24/2023]
Abstract
This work compares several different methods of site-specific analysis of glycoproteins using electrospray mass spectrometry. The glycoprotein, oLHalpha (ovine luteinizing hormone, alpha-subunit) was chosen as an appropriate example protein for these studies because of its biological relevance and extreme microheterogeneity. More than 20 unique glycoforms were detected for this glycoprotein at the Asn(56) site of oLHalpha. The carbohydrates present at this site affect receptor binding affinity, so understanding the great variety in the composition of these carbohydrates is important in studying ligand binding interactions. MS data was acquired on a quadrupole ion trap, a triple quadrupole, and a quadrupole time of flight mass spectrometer, and carbohydrate composition at the Asn(56) site of oLHalpha was determined using these instruments. Additionally, neutral loss and precursor ion scanning modes were also used to identify the glycoforms present, and these techniques were compared to the standard MS data. Of the three instruments compared in the study, the qTOF mass spectrometer achieved the lowest sample consumption, but all three instruments were useful in profiling the glycopeptide composition.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | |
Collapse
|
18
|
Nguyen VT, Singh V, Butnev VY, Gray CM, Westfall S, Davis JS, Dias JA, Bousfield GR. Inositol phosphate stimulation by LH requires the entire alpha Asn56 oligosaccharide. Mol Cell Endocrinol 2003; 199:73-86. [PMID: 12581881 DOI: 10.1016/s0303-7207(02)00297-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lentil lectin-bound, fucose-enriched hTSH was reported to stimulate both cAMP and inositol phosphate (IP) intracellular signalling pathways, whereas fucose-depleted hTSH stimulated only the cAMP pathway. Gonadotropins activate the cAMP pathway and in several studies higher concentrations activate the IP pathway. Since only the 10% of alpha subunit Asn(56) oligosaccharides (Asn(52) in humans) are fucosylated, the higher glycoprotein hormone concentrations required for IP pathway activation might be related to the abundance of competent hormone isoforms. Lentil lectin-fractionated equine (e)LHalpha and eFSHalpha preparations were combined with a truncated, des(121-149)eLHbeta preparation. All four hybrid hormone preparations induced IP accumulation in porcine theca cells, suggesting that activation of the IP pathway was not dependent on fucosylation at alpha subunit Asn(56). However, the presence of Asn(56) carbohydrate was necessary for increased IP accumulation. Intact, rather than Asn(56)-deglycosylated eLH preparations provoked a biphasic steroidogenic response by rat testis Leydig cells, suggesting that Galpha(i) stimulation was also sensitive to loss of Asn(56) carbohydrate. While rat granulosa cells responded to human FSH preparations in a biphasic manner, a classical sigmoidal response was obtained to eFSH and Asn(56)-deglycosylated eFSH, suggesting that the equine preparations did not activate Galpha(i). Purified oLHalpha Asn(56) oligosaccharides inhibited FSH-stimulated steroidogenesis in rat granulosa cell cultures indicating a direct role for carbohydrate in FSH action. The same carbohydrate preparation inhibited hCG-stimulated fluorescence energy transfer suggesting oligosaccharide involvement in activated LH receptor self-association.
Collapse
Affiliation(s)
- Van T Nguyen
- Department of Biological Sciences, Box 26, Wichita State University, 1845 Fairmount, KS 67260-0026, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Walton WJ, Nguyen VT, Butnev VY, Singh V, Moore WT, Bousfield GR. Characterization of human FSH isoforms reveals a nonglycosylated beta-subunit in addition to the conventional glycosylated beta-subunit. J Clin Endocrinol Metab 2001; 86:3675-85. [PMID: 11502795 DOI: 10.1210/jcem.86.8.7712] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human FSH consists of a mixture of isoforms that can be separated on the basis of differences in negative charge conferred by variations in the numbers of sialic acid residues that terminate oligosaccharide branches. Western analysis of human FSH isoforms separated by chromatofocusing revealed the presence of two human FSHbeta isoforms that differed in size. A low mol wt human FSHbeta isoform was associated with all FSH isoform fractions. A high mol wt human FSHbeta isoform was associated with the more acidic fractions and increased in relative abundance as the pI decreased. Characterization of representative human FSHbeta isoforms by mass spectrometry and automated Edman degradation revealed a low mol wt isoform that was not glycosylated. A high mol wt isoform was N-glycosylated at Asn residues 7 and 24. These results indicate that pituitary human FSH consists of two classes of molecules: those that possess a nonglycosylated beta-subunit and those that possess a glycosylated beta-subunit. Glycoprotein hormones are known to be elliptical molecules, and the beta-subunit oligosaccharides project outward from the short diameter, thereby increasing it. It is interesting to speculate that this change in shape might affect ultrafiltration rates, leading to differences in delivery rates to target tissues and elimination by filtration in the kidney.
Collapse
Affiliation(s)
- W J Walton
- Department of Biological Sciences, Wichita State University, Wichita, Kansas 67260-0026, USA
| | | | | | | | | | | |
Collapse
|