1
|
Jia Q, Xie W. Alternative conformation induced by substrate binding for Arabidopsis thalianaN6-methyl-AMP deaminase. Nucleic Acids Res 2019; 47:3233-3243. [PMID: 30721978 PMCID: PMC6451127 DOI: 10.1093/nar/gkz070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/03/2022] Open
Abstract
Adenosine deaminase is involved in adenosine degradation and salvage pathway, and plays important physiological roles in purine metabolism. Recently, a novel type of adenosine deaminase-like protein has been identified, which displays deamination activity toward N6-methyl-adenosine monophosphate but not adenosine or AMP, and was consequently named N6-methyl-AMP deaminase (MAPDA). The underlying structural basis of MAPDA recognition and catalysis is poorly understood. Here, we present the crystal structures of MAPDA from Arabidopsis thaliana in the free and in the ligand-bound forms. The protein contains a conserved (β/α)8 Tim-barrel domain and a typical zinc-binding site, but it also exhibits idiosyncratic local differences for two flexible helices important for substrate binding. The extensive interactions between the N6-methyl-AMP substrate or the inosine monophosphate product and the enzyme were identified, and subsequently evaluated by the deamination activity assays. Importantly, each structure reported here represents a different stage of the catalytic pathway and their structural differences suggested that the enzyme can exist in two distinct conformational states. The open state switches to the closed one upon the binding of ligands, brought about by the two critical helices. Our structural studies provide the first look of this important metabolic enzyme and shed lights on its catalytic pathway, which holds promise for the structure-based drug design for MAPDA-related diseases.
Collapse
Affiliation(s)
- Qian Jia
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| |
Collapse
|
2
|
Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol 2014; 13:630-8. [PMID: 24113229 DOI: 10.1097/aci.0000000000000006] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF THE REVIEW To review the recent advances in the understanding and management of the immune and nonimmune effects of inherited adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) deficiencies. RECENT FINDINGS Abnormal thymocyte development and peripheral T-cell activation in ADA-deficient and PNP-deficient patients cause increased susceptibility to infections and immune dysregulation. The impaired purine homeostasis also damages many other cell types and tissues. Animal studies suggest that defects in surfactant metabolism by alveolar macrophages cause the pulmonary alveolar proteinosis commonly seen in ADA-deficient infants, while toxicity of purine metabolites to cerebellar Purkinje cells may lead to the ataxia frequently observed in PNP deficiency. Patients' outcome with current treatments including enzyme replacement and stem cell transplantations are inferior to those achieved in most severe immunodeficiency conditions. New strategies, including intracellular enzyme replacement, gene therapy and innovative protocols for stem cell transplantations hold great promise for improved outcomes in ADA and PNP deficiency. Moreover, newborn screening and early diagnosis will allow prompt application of these novel treatment strategies, further improving survival and reducing morbidity. SUMMARY Better understanding of the complex immune and nonimmune effects of ADA and PNP deficiency holds great promise for improved patients' outcome.
Collapse
|
3
|
Brigida I, Sauer AV, Ferrua F, Giannelli S, Scaramuzza S, Pistoia V, Castiello MC, Barendregt BH, Cicalese MP, Casiraghi M, Brombin C, Puck J, Müller K, Notarangelo LD, Montin D, van Montfrans JM, Roncarolo MG, Traggiai E, van Dongen JJM, van der Burg M, Aiuti A. B-cell development and functions and therapeutic options in adenosine deaminase-deficient patients. J Allergy Clin Immunol 2014; 133:799-806.e10. [PMID: 24506932 PMCID: PMC4489526 DOI: 10.1016/j.jaci.2013.12.1043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/25/2013] [Accepted: 12/09/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Adenosine deaminase (ADA) deficiency causes severe cellular and humoral immune defects and dysregulation because of metabolic toxicity. Alterations in B-cell development and function have been poorly studied. Enzyme replacement therapy (ERT) and hematopoietic stem cell (HSC) gene therapy (GT) are therapeutic options for patients lacking a suitable bone marrow (BM) transplant donor. OBJECTIVE We sought to study alterations in B-cell development in ADA-deficient patients and investigate the ability of ERT and HSC-GT to restore normal B-cell differentiation and function. METHODS Flow cytometry was used to characterize B-cell development in BM and the periphery. The percentage of gene-corrected B cells was measured by using quantitative PCR. B cells were assessed for their capacity to proliferate and release IgM after stimulation. RESULTS Despite the severe peripheral B-cell lymphopenia, patients with ADA-deficient severe combined immunodeficiency showed a partial block in central BM development. Treatment with ERT or HSC-GT reverted most BM alterations, but ERT led to immature B-cell expansion. In the periphery transitional B cells accumulated under ERT, and the defect in maturation persisted long-term. HSC-GT led to a progressive improvement in B-cell numbers and development, along with increased levels of gene correction. The strongest selective advantage for ADA-transduced cells occurred at the transition from immature to naive cells. B-cell proliferative responses and differentiation to immunoglobulin secreting IgM after B-cell receptor and Toll-like receptor triggering were severely impaired after ERT and improved significantly after HSC-GT. CONCLUSIONS ADA-deficient patients show specific defects in B-cell development and functions that are differently corrected after ERT and HSC-GT.
Collapse
Affiliation(s)
- Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Aisha V Sauer
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Pistoia
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara H Barendregt
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maria Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Casiraghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- CUSSB, Vita-Salute San Raffaele University, Milan, Italy
| | - Jennifer Puck
- Division of Allergy, Immunology and Bone Marrow Transplantation, Department of Pediatrics, University of California San Francisco, San Francisco, Calif
| | - Klaus Müller
- Pediatric Clinic, Juliane Marie Center, Copenhagen, Denmark
| | - Lucia Dora Notarangelo
- Pediatric Onco-Hematology and BMT Unit, Children's Hospital, Spedali Civili, Brescia, Italy
| | - Davide Montin
- Department of Pediatrics, University of Turin, Turin, Italy
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | | | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, Italy; Department of Systems Medicine, Tor Vergata University, Rome, Italy.
| |
Collapse
|
4
|
Keszler G, Virga S, Spasokoukotskaja T, Bauer PI, Sasvari-Szekely M, Staub M. Activation of deoxycytidine kinase by deoxyadenosine: implications in deoxyadenosine-mediated cytotoxicity. Arch Biochem Biophys 2005; 436:69-77. [PMID: 15752710 DOI: 10.1016/j.abb.2005.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 01/13/2005] [Indexed: 11/17/2022]
Abstract
The inborn deficiency of adenosine deaminase is characterised by accumulation of excess amounts of cytotoxic deoxyadenine nucleotides in lymphocytes. Formation of dATP requires phosphorylation of deoxyadenosine by deoxycytidine kinase (dCK), the main nucleoside salvage enzyme in lymphoid cells. Activation of dCK by a number of genotoxic agents including 2-chlorodeoxyadenosine, a deamination-resistant deoxyadenosine analogue, was found previously. Here, we show that deoxyadenosine itself is also a potent activator of dCK if its deamination was prevented by the adenosine deaminase inhibitor deoxycoformycin. In contrast, deoxycytidine was found to prevent stimulation of dCK by various drugs. The activated form of dCK was more resistant to tryptic digestion, indicating that dCK undergoes a substrate-independent conformational change upon activation. Elevated dCK activities were accompanied by decreased pyrimidine nucleotide levels whereas cytotoxic dATP pools were selectively enhanced. dCK activity was found to be downregulated by growth factor and MAP kinase signalling, providing a potential tool to slow the rate of dATP accumulation in adenosine deaminase deficiency.
Collapse
Affiliation(s)
- Gergely Keszler
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
5
|
Kodama EI, Kohgo S, Kitano K, Machida H, Gatanaga H, Shigeta S, Matsuoka M, Ohrui H, Mitsuya H. 4'-Ethynyl nucleoside analogs: potent inhibitors of multidrug-resistant human immunodeficiency virus variants in vitro. Antimicrob Agents Chemother 2001; 45:1539-46. [PMID: 11302824 PMCID: PMC90502 DOI: 10.1128/aac.45.5.1539-1546.2001] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of 4'-ethynyl (4'-E) nucleoside analogs were designed, synthesized, and identified as being active against a wide spectrum of human immunodeficiency viruses (HIV), including a variety of laboratory strains of HIV-1, HIV-2, and primary clinical HIV-1 isolates. Among such analogs examined, 4'-E-2'-deoxycytidine (4'-E-dC), 4'-E-2'-deoxyadenosine (4'-E-dA), 4'-E-2'-deoxyribofuranosyl-2,6-diaminopurine, and 4'-E-2'-deoxyguanosine were the most potent and blocked HIV-1 replication with 50% effective concentrations ranging from 0.0003 to 0.01 microM in vitro with favorable cellular toxicity profiles (selectivity indices ranging 458 to 2,600). These 4'-E analogs also suppressed replication of various drug-resistant HIV-1 clones, including HIV-1(M41L/T215Y), HIV-1(K65R), HIV-1(L74V), HIV-1(M41L/T69S-S-G/T215Y), and HIV-1(A62V/V75I/F77L/F116Y/Q151M). Moreover, these analogs inhibited the replication of multidrug-resistant clinical HIV-1 strains carrying a variety of drug resistance-related amino acid substitutions isolated from HIV-1-infected individuals for whom 10 or 11 different anti-HIV-1 agents had failed. The 4'-E analogs also blocked the replication of a non-nucleoside reverse transcriptase inhibitor-resistant clone, HIV-1(Y181C), and showed an HIV-1 inhibition profile similar to that of zidovudine in time-of-drug-addition assays. The antiviral activity of 4'-E-thymidine and 4'-E-dC was blocked by the addition of thymidine and 2'-deoxycytidine, respectively, while that of 4'-E-dA was not affected by 2'-deoxyadenosine, similar to the antiviral activity reversion feature of 2',3'-dideoxynucleosides, strongly suggesting that 4'-E analogs belong to the family of nucleoside reverse transcriptase inhibitors. Further development of 4'-E analogs as potential therapeutics for infection with multidrug-resistant HIV-1 is warranted.
Collapse
Affiliation(s)
- E I Kodama
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|